
Chair of Software Engineering

Software Verification

Sebastian Nanz	

Lecture 9: Data Flow Analysis, Slicing

Chair of Software Engineering

Program	
 Slicing	

3

Program slicing

sum := 0

i := 0
while i < y do
 sum := sum + x

 i := i + 1
end
print(sum)

sum := 0
prod := 1
i := 0
while i < y do
 sum := sum + x
 prod := prod * x
 i := i + 1
end
print(sum)
print(prod)

"What program statements potentially affect the value of
variable sum at line 8 of the program?"

1
2
3
4
5
6
7

8
9

1

3
4
5

7

8

4

Program slicing

Ø  Program slicing provides an answer to the question

Ø  The resulting program statements are called the
program slice.
Ø  The program point l is called the slicing criterion.
Ø  An observer focusing on the slicing criterion (i.e. only
observing values of the variables at program point l)
cannot distinguish a run of the program from the run of its
slice.

"What program statements potentially affect the
values of the variables at program point l?"

5

Applications of program slicing

Ø  Debugging: Slicing lets the programmer focus on the
program part relevant to a certain failure, which might
lead to quicker detection of a fault.
Ø  Testing: Slicing can minimize test cases, i.e. find the
smallest set of statements that produces a certain failure
(good for regression testing).
Ø  Parallelization: Slicing can determine parts of the
program which can be computed independently of each
other and can thus be parallelized.

6

Classification

Ø  Static slicing vs. dynamic slicing
Ø  Static: general, not considering a particular input
Ø  Dynamic: computed for a fixed input, therefore

smaller slices can be obtained
Ø  Backward slicing vs. forward slicing

Ø  Backward: "Which statements affect the execution
of a statement?"

Ø  Forward: "Which statements are affected by the
execution of a certain statement?"

Ø  In the following we present an algorithm for static
backward slicing.

7

Program slice

A backward slice S of program P with respect to slicing
criterion l is any executable program with the following
properties:

1.  S can be obtained by deleting zero or more statements

from P.
2.  If P halts on input I, then the values of the variables at

program point l are the same in P and in S every time
program point l is executed.

8

Slicing algorithm

Ø  We present a slicing algorithm for static backward
slicing.
Ø  Many different approaches, we show one that
constructs a program dependence graph (PDG).
Ø  A PDG is a directed graph with two types of edges:

Ø  Data dependencies: given by data-flow analysis
Ø  Control dependencies: program point l is control-

dependent on program point l' if
(1) l' labels the guard of a control structure
(2) the execution of l depends on the outcome of
 the evaluation of the guard at l'

9

Control flow graph of the example program

[print(sum)]8

[print(prod)]9

[i<y]4

[sum := sum + x]5

[prod := prod * x]6

[sum:=0]1

[i := i + 1]7

[prod:=1]2

[i:=0]3

10

Example: Program dependence graph

[i<y]4

[sum := sum + x]5

[sum:=0]1

[i := i + 1]7

[prod:=1]2 [i:=0]3

[prod := prod * x]6

[print(sum)]8 [print(prod)]9

{(l, l') | l ∈ ∪ UD(x, l') where l' labels a block}
x used

in block l'

1. Data dependence subgraph

(self-loops are omitted)

11

Example: Program dependence graph

[i<y]4

[sum := sum + x]5

[sum:=0]1

[i := i + 1]7

[prod:=1]2 [i:=0]3

[prod := prod * x]6

ENTRY

[print(sum)]8 [print(prod)]9

2. Control dependence subgraph

(1) Edge from special node ENTRY to any node not within
 any control structure (such as while, if-then-else)

(2) Edge from any guard of a control structure to any
 statement within the control structure

12

Example: Computing the program slice

[i<y]4

[sum := sum + x]5

[sum:=0]1

[i := i + 1]7

[prod:=1]2 [i:=0]3

[prod := prod * x]6

ENTRY

[print(sum)]8 [print(prod)]9

Slicing using the PDG:
(1) Take as initial node the one given by the slicing criterion

(2) Include all nodes which the initial node transitively
 depends upon (use both data- and control-dependencies)

Data dependencies
Control dependencies

Chair of Software Engineering

Data	
 Flow	
 Analysis	

Existence	
 of	
 solu9ons	

14

Fixed point solutions (recap)

Ø  The equation system of the example defines the 14 sets
 LVentry(1), LVentry(2), ..., LVexit(7)

in terms of each other.
Ø  When writing LV for the vector of these 14 sets, the
equation system can be written as a function F where

 LV = F(LV)
Ø  Using a vector of variables X = (X1,..., X14), the function
can be defined as

 F(X) = (f1(X), ..., f14(X))
where for example
 f11(X1, ..., X14) = X5∪ X6
Ø  From the above equation it is clear that the solution LV we
are looking for is the (least) fixed point of the function F.

15

Why are we interested in the least solution?

Remember the formulation of the goal of the Live
Variables Analysis:

Clearly, larger solutions can always be accepted – even the
set of all variables would do! – but the least ("smallest")
solution is the most precise one.

“For each program point, which variables
may be live at the exit from the point.”

16

Partially ordered sets (recap)

For any analysis, we are interested in expressing that one
analysis result is "better" (more precise) than another.
In other words, we want the analysis domain to be partially
ordered.

A partial ordering is a relation ⊑ that is
Ø  reflexive: ∀d : d ⊑ d
Ø  transitive: ∀d1, d2, d3 : d1 ⊑ d2 and d2 ⊑ d3 imply d1 ⊑ d3

Ø  anti-symmetric: ∀d1, d2 : d1 ⊑ d2 and d2 ⊑ d1 imply d1 = d2

A partially ordered set (D, ⊑) is a set D with a partial
ordering ⊑.

Examples: Real numbers (R, ≤), power sets (℘(S), ⊆), ...

17

Existence of the fixed point

Ø To ensure that we can always obtain a result, we would
like to know whether a fixed point of F always exists.

Ø To decide this, we need background on properties of:
Ø  the analysis domain used to represent the data flow

information, i.e. in the case of the LV analysis the

domain ℘(Var*), the power set of all variables
occurring in the program

Ø  the function F, as defined before

Note:
Ø  Var: set of all variables
Ø  Var*: set of all variables occurring in the given program

18

Complete lattices

We are aiming for a specific kind of partially ordered set
with even nicer properties: complete lattices.
Ø  d ∈ D is an upper bound of Y if ∀d' ∈ Y : d' ⊑ d
Ø  A least upper bound d of Y is an upper bound of Y that
satisfies d ⊑ d0 whenever d0 is another upper bound of Y
Ø  A complete lattice is a partially ordered set (D, ⊑) such
that each subset Y has a least upper bound ⨆ Y (and a
greatest lower bound ⊓ Y)
Example: Power sets

{}

{z}

{x,y,z}

{x,z} {y,z} {x,y}

{x} {y}

19

Least upper bound operator, top, bottom

Ø  The least upper bound (lub) operator ⨆ : ℘(D) -> D (also:
join operator) is used to combine analysis information from
different paths.
Ø  For example, in the case of the LV analysis, the join is
given by ordinary set union ∪, and we were using it to
combine information from both if-branches:

 LVexit(4) = LVentry(5) ∪ LVentry(6)

Ø  Every complete lattice has a least and a greatest
element, they are called bottom ⊥ and top ⊤, respectively.
Ø  A complete lattice is never empty.

20

Tarski's Fixed Point Theorem

Monotone function
A function F : D -> D is called monotone over (D, ⊑) if

 d ⊑ d' implies F(d) ⊑ F(d') for all d, d' ∈ D
Fixed point
Assume F : D -> D. A value d ∈ D such that F(d) = d is
called a fixed point of F.

Tarski's Fixed Point Theorem
Let (D, ⊑) be a complete lattice and let F : D -> D be a
monotone function. Then the set of all fixed points of F is
a complete lattice with respect to ⊑.

In particular, F has a least and a greatest fixed point.

21

Existence of the least solution

Ø  Using Tarski's fixed point theorem, we know that a least
solution exists if

Ø  the function F describing the equation system is
monotone

Ø  the analysis domain is a complete lattice
Ø  In the case of the LV analysis these properties are
easily checked:

Ø  To prove the monotonicity of F, we prove the
monotonicity of each function fi

Ø  The domain ℘(Var*) is trivially a complete lattice
(it is a power set)

22

Equation solving (recap)

Ø  How can we obtain the least fixed point practically?
Ø  For the least element ⊥ ∈ D of a partially ordered set
D we have

 ⊥ ⊑ F(⊥)
Ø  Since F is monotone, we have by induction for all n ∈ N

 Fn(⊥) ⊑ Fn+1(⊥)
Ø  All elements of the sequence are in the domain D, and
therefore, if D is finite, there exists an n ∈ N such that

 Fn(⊥) = F(Fn(⊥))
(Requires special properties of D and F, shown later.)
Ø  But this means that Fn(⊥) is a fixed point! (And indeed
a least fixed point.)

Chair of Software Engineering

Data	
 Flow	
 Analysis	

Available	
 Expressions	
 Analysis	

24

Available expressions analysis

Another example of a data flow analysis: available
expressions (AE) analysis.
Ø  The aim of the available expressions analysis is to
determine

Example:

 [x:=a+b]1; [y:=a*b]2;
 while [y>a+b]3 do [a:=a+1]4; [x:=a+b]5 end

Which expression is always available at the entry to 3?

“For each program point, which expressions
must have already been computed, and not later
modified, on all paths to the program point.”

25

Formalization: Data flow equations

The available expressions analysis can be specified
following the scheme for LV analysis.

Analysis domain: ℘(AExp*), i.e. sets of arithmetic
expressions.
AEentry(l') = ∩ AEexit(l)

 (and AEentry(l) = {} if l is the initial label)
AEexit(l) = (AEentry(l) \ killAE(l)) ∪ genAE (l)

killAE ([x:=a]l) = {all expressions containing x}
killAE ([b]l) = {}
genAE ([x:=a]l) = {all subexpressions of a not containing x}
genAE ([b]l) = {all subexpressions of b}

(l, l') ∈ CFG

26

Application: Common subexpression elimination

Goal: Find computations that are always performed at
least twice on a given execution path and then eliminate
the second and later occurrences.

Example:

 [x:=a+b]1; [y:=a*b]2;
 while [y>a+b]3 do [a:=a+1]4; [x:=a+b]5 end

is transformed into

 [u:=a+b]; [x:=u]1 ; [y:=a*b]2;
 while [y>u]3 do [a:=a+1]4; [u:=a+b]; [x:=u]5 end

27

Differences of the LV, RD, and AE analyses

The flow has been reversed:
Ø  LV: backward analysis
Ø  AE, RD: forward analysis

Also, we are now interested in an
under-approximation ("must"):
Ø  LV, RD: may analysis
Ø  AE: must analysis

For that reason, in AE we are taking
an intersection ∩ instead of a union
∪ on the paths. We are then
interested in the greatest solution.

Domain Over-approximation

Exact program behavior

Under-approximation

Chair of Software Engineering

Data	
 Flow	
 Analysis	

Bit	
 Vector	
 Frameworks	

29

Four classical analyses

Live Variables
Variables that may be live at a program point.
Reaching Definitions
Assignments that may have been made and not overwritten
along some path to a program point.
Available Expressions
Expressions that must have already been computed and
not later modified on all paths to a program point.
Very Busy Expressions
Expressions that must be very busy at a program point.

30

A general schema

The four classical analyses, and many more data flow
analyses follow a general schema.

Ø  The analysis domain is always a power set of some finite
set, e.g. sets of variables in case of LV.
Ø  The functions that specify how data is propagated
through elementary blocks (so-called transfer functions)
are all of the form

 f(d) = (d \ kill)∪gen

(It's easy to prove that functions of this form are
monotone.)

31

Bit Vector Frameworks

These properties of classical analyses make for efficient
implementation using bit vectors to represent sets.

Example:
LV analysis for a program with variables x, y, z
Ø  Representation:

 {} = 000, {x} = 100, {y} = 010, ..., {x, z} = 101
Ø  Join is very efficient (use boolean or):

 {x, y} ∪ {x, z} = {x, y, z}
 110 or 101 = 111

