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Program slicing 

sum := 0 
 
i := 0 
while i < y do 
    sum := sum + x 
 
    i := i + 1 
end 
print(sum) 
 

sum := 0 
prod := 1 
i := 0 
while i < y do 
    sum := sum + x 
    prod := prod * x 
    i := i + 1 
end 
print(sum) 
print(prod) 
 

"What program statements potentially affect the value of 
variable sum at line 8 of the program?" 
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Program slicing 

Ø  Program slicing provides an answer to the question 

Ø  The resulting program statements are called the 
program slice. 
Ø  The program point l is called the slicing criterion. 
Ø  An observer focusing on the slicing criterion (i.e. only 
observing values of the variables at program point l) 
cannot distinguish a run of the program from the run of its 
slice. 

 

"What program statements potentially affect the 
values of the variables at program point l?" 
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Applications of program slicing 

Ø  Debugging: Slicing lets the programmer focus on the 
program part relevant to a certain failure, which might 
lead to quicker detection of a fault. 
Ø  Testing: Slicing can minimize test cases, i.e. find the 
smallest set of statements that produces a certain failure 
(good for regression testing). 
Ø  Parallelization: Slicing can determine parts of the 
program which can be computed independently of each 
other and can thus be parallelized. 
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Classification 

Ø  Static slicing vs. dynamic slicing 
Ø  Static: general, not considering a particular input 
Ø  Dynamic: computed for a fixed input, therefore 

smaller slices can be obtained 
Ø  Backward slicing vs. forward slicing 

Ø  Backward: "Which statements affect the execution 
of a statement?" 

Ø  Forward: "Which statements are affected by the 
execution of a certain statement?" 

Ø   In the following we present an algorithm for static 
backward slicing. 
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Program slice 

A backward slice S of program P with respect to slicing 
criterion l is any executable program with the following 
properties: 
 
1.  S can be obtained by deleting zero or more statements 

from P. 
2.  If P halts on input I, then the values of the variables at 

program point l are the same in P and in S every time 
program point l is executed.  
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Slicing algorithm 

Ø  We present a slicing algorithm for static backward 
slicing. 
Ø  Many different approaches, we show one that 
constructs a program dependence graph (PDG). 
Ø  A PDG is a directed graph with two types of edges: 

Ø  Data dependencies: given by data-flow analysis 
Ø  Control dependencies: program point l is control-

dependent on program point l' if  
(1)  l' labels the guard of a control structure  
(2) the execution of l depends on the outcome of 
     the evaluation of the guard at l' 
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Control flow graph of the example program 

[print(sum)]8 

[print(prod)]9 

[i<y]4 

[sum := sum + x]5 

[prod := prod * x]6 

[sum:=0]1 

[i := i + 1]7 

[prod:=1]2 

[i:=0]3 
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Example: Program dependence graph 

[i<y]4 

[sum := sum + x]5 

[sum:=0]1 

[i := i + 1]7 

[prod:=1]2 [i:=0]3 

[prod := prod * x]6 

[print(sum)]8 [print(prod)]9 

{(l, l') | l ∈ ∪ UD(x, l') where l' labels a block} 
x used 

in block l' 

1. Data dependence subgraph  

(self-loops are omitted) 
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Example: Program dependence graph 

[i<y]4 

[sum := sum + x]5 

[sum:=0]1 

[i := i + 1]7 

[prod:=1]2 [i:=0]3 

[prod := prod * x]6 

ENTRY 

[print(sum)]8 [print(prod)]9 

2. Control dependence subgraph  

(1) Edge from special node ENTRY to any node not within 
     any control structure (such as while, if-then-else) 

(2) Edge from any guard of a control structure to any  
     statement within the control structure  
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Example: Computing the program slice 

[i<y]4 

[sum := sum + x]5 

[sum:=0]1 

[i := i + 1]7 

[prod:=1]2 [i:=0]3 

[prod := prod * x]6 

ENTRY 

[print(sum)]8 [print(prod)]9 

Slicing using the PDG: 
(1) Take as initial node the one given by the slicing criterion 

(2) Include all nodes which the initial node transitively  
     depends upon (use both data- and control-dependencies) 

Data dependencies 
Control dependencies 
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Fixed point solutions (recap) 

Ø  The equation system of the example defines the 14 sets  
  LVentry(1), LVentry(2), ..., LVexit(7) 

in terms of each other. 
Ø  When writing LV for the vector of these 14 sets, the 
equation system can be written as a function F where 

   LV = F(LV) 
Ø  Using a vector of variables X = (X1,..., X14), the function 
can be defined as 

 F(X) = (f1(X), ..., f14(X)) 
where for example 
     f11(X1, ..., X14) = X5∪ X6 
Ø  From the above equation it is clear that the solution LV we 
are looking for is the (least) fixed point of the function F. 
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Why are we interested in the least solution? 

Remember the formulation of the goal of the Live 
Variables Analysis: 
 
 
 
Clearly, larger solutions can always be accepted – even the 
set of all variables would do! – but the least ("smallest") 
solution is the most precise one. 

“For each program point, which variables 
may be live at the exit from the point.” 
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Partially ordered sets (recap) 

For any analysis, we are interested in expressing that one 
analysis result is "better" (more precise) than another.  
In other words, we want the analysis domain to be partially 
ordered.  
 
A partial ordering is a relation ⊑ that is 
Ø  reflexive: ∀d : d ⊑ d 
Ø  transitive: ∀d1, d2, d3 : d1 ⊑ d2 and d2 ⊑ d3 imply d1 ⊑ d3 

Ø  anti-symmetric: ∀d1, d2 : d1 ⊑ d2 and d2 ⊑ d1 imply d1 = d2 
 
A partially ordered set (D, ⊑) is a set D with a partial 
ordering ⊑. 

Examples: Real numbers (R, ≤), power sets (℘(S), ⊆), ... 
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Existence of the fixed point 

Ø To ensure that we can always obtain a result, we would 
like to know whether a fixed point of F always exists. 

Ø To decide this, we need background on properties of: 
Ø  the analysis domain used to represent the data flow 

information, i.e. in the case of the LV analysis the 

domain ℘(Var*), the power set of all variables 
occurring in the program 

Ø  the function F, as defined before 
 
Note: 
Ø  Var: set of all variables 
Ø  Var*: set of all variables occurring in the given program 
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Complete lattices 

We  are aiming for a specific kind of partially ordered set 
with even nicer properties: complete lattices. 
Ø  d ∈ D is an upper bound of Y if ∀d' ∈ Y : d' ⊑ d 
Ø  A least upper bound d of Y is an upper bound of Y that 
satisfies d ⊑ d0 whenever d0 is another upper bound of Y 
Ø  A complete lattice is a partially ordered set (D, ⊑) such 
that each subset Y has a least upper bound ⨆ Y (and a 
greatest lower bound ⊓ Y) 
Example: Power sets 

{} 

{z} 

{x,y,z} 

{x,z} {y,z} {x,y} 

{x} {y} 
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Least upper bound operator, top, bottom 

Ø  The least upper bound (lub) operator ⨆ : ℘(D) -> D (also: 
join operator) is used to combine analysis information from 
different paths. 
Ø  For example, in the case of the LV analysis, the join is 
given by ordinary set union ∪, and we were using it to 
combine information from both if-branches: 

  LVexit(4) = LVentry(5) ∪ LVentry(6) 

Ø  Every complete lattice has a least and a greatest 
element, they are called bottom ⊥ and top ⊤, respectively. 
Ø  A complete lattice is never empty. 
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Tarski's Fixed Point Theorem 

Monotone function 
A function F : D -> D is called monotone over (D, ⊑) if 

 d  ⊑ d' implies F(d) ⊑ F(d')          for all d, d' ∈ D 
Fixed point 
Assume F : D -> D. A value d ∈ D such that F(d) = d is 
called a fixed point of F. 
 
Tarski's Fixed Point Theorem 
Let (D, ⊑) be a complete lattice and let F : D -> D be a 
monotone function. Then the set of all fixed points of F is 
a complete lattice with respect to ⊑. 
 
In particular, F has a least and a greatest fixed point. 
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Existence of the least solution 

Ø  Using Tarski's fixed point theorem, we know that a least 
solution exists if  

Ø  the function F describing the equation system is 
monotone 

Ø  the analysis domain is a complete lattice 
Ø  In the case of the LV analysis these properties are 
easily checked: 

Ø  To prove the monotonicity of F, we prove the 
monotonicity of each function fi 

Ø  The domain ℘(Var*) is trivially a complete lattice 
(it is a power set) 
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Equation solving (recap) 

Ø  How can we obtain the least fixed point practically? 
Ø  For the least element ⊥ ∈ D of a partially ordered set 
D we have 

 ⊥ ⊑ F(⊥) 
Ø  Since F is monotone, we have by induction for all n ∈ N 

 Fn(⊥) ⊑ Fn+1(⊥) 
Ø  All elements of the sequence are in the domain D, and 
therefore, if D is finite, there exists an n ∈ N such that 

 Fn(⊥) = F(Fn(⊥)) 
(Requires special properties of D and F, shown later.) 
Ø  But this means that  Fn(⊥) is a fixed point! (And indeed 
a least fixed point.)  
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Available expressions analysis 

Another example of a data flow analysis: available 
expressions (AE) analysis. 
Ø  The aim of the available expressions analysis is to 
determine 

 
 
Example: 

 [x:=a+b]1; [y:=a*b]2;  
 while [y>a+b]3 do [a:=a+1]4; [x:=a+b]5 end 

Which expression is always available at the entry to 3? 

“For each program point, which expressions 
must have already been computed, and not later 
modified, on all paths to the program point.” 
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Formalization: Data flow equations 

The available expressions analysis can be specified 
following the scheme for LV analysis.  

Analysis domain: ℘(AExp*), i.e. sets of arithmetic 
expressions. 
AEentry(l')  =      ∩    AEexit(l) 
 
                      (and AEentry(l) = {} if l is the initial label) 
AEexit(l)  = (AEentry(l) \ killAE(l)) ∪ genAE (l) 
 
killAE ([x:=a]l)    = {all expressions containing x} 
killAE ([b]l)      = {} 
genAE ([x:=a]l)   = {all subexpressions of a not containing x} 
genAE ([b]l)      = {all subexpressions of b} 

(l, l') ∈ CFG 
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Application: Common subexpression elimination 

Goal: Find computations that are always performed at 
least twice on a given execution path and then eliminate 
the second and later occurrences. 
 
Example: 

 [x:=a+b]1; [y:=a*b]2;  
 while [y>a+b]3 do [a:=a+1]4; [x:=a+b]5 end 

 

is transformed into 
 

 [u:=a+b]; [x:=u]1 ; [y:=a*b]2;  
 while [y>u]3 do [a:=a+1]4; [u:=a+b]; [x:=u]5 end 
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Differences of the LV, RD, and AE analyses 

The flow has been reversed: 
Ø  LV: backward analysis 
Ø  AE, RD: forward analysis 
 
Also, we are now interested in an 
under-approximation ("must"): 
Ø  LV, RD: may analysis 
Ø  AE: must analysis 
 
For that reason, in AE we are taking 
an intersection ∩ instead of a union 
∪ on the paths. We are then 
interested in the greatest solution. 

Domain Over-approximation 

Exact program behavior 

Under-approximation 
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Four classical analyses 

Live Variables 
Variables that may be live at a program point. 
Reaching Definitions 
Assignments that may have been made and not overwritten 
along some path to a program point. 
Available Expressions 
Expressions that must have already been computed and 
not later modified on all paths to a program point. 
Very Busy Expressions 
Expressions that must be very busy at a program point. 
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A general schema 

The four classical analyses, and many more data flow 
analyses follow a general schema. 
 
Ø  The analysis domain is always a power set of some finite 
set, e.g. sets of variables in case of LV. 
Ø  The functions that specify how data is propagated 
through elementary blocks (so-called transfer functions) 
are all of the form 

  f(d) = (d \ kill)∪gen 
 
(It's easy to prove that functions of this form are 
monotone.) 
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Bit Vector Frameworks 

These properties of classical analyses make for efficient 
implementation using bit vectors to represent sets. 
 
Example:  
LV analysis for a program with variables x, y, z 
Ø  Representation:  

 {} = 000, {x} = 100, {y} = 010, ..., {x, z} = 101 
Ø  Join is very efficient (use boolean or): 

 {x, y} ∪ {x, z} = {x, y, z} 
   110  or   101  =    111 

  


