
Chair of Software Engineering 

Software Verification 
 

Bertrand Meyer 

 

Lecture 14: Testing 



- 1 – 
 

Overview of the 
requirements task 

 
 

Testing basics 

2 

After material by Ilinca Ciupa 



Definition: testing 

To test a software system is to try to make it fail 

3 

Testing is none of: 

Ensuring software quality 

Assessing software quality 

Debugging 



Exercise* 

Scenario: 

 A program reads three integers representing the 
lengths of a triangle’s sides, and  prints a message stating 
whether the triangle is scalene, isosceles or equilateral. 

 

Task: 

 Devise inputs to test the program as thoroughly as 
possible  

 

 
*After Yuri Gurevich, LASER summer school 2009. Exercise originally from 
Glen Myers, “The Art of Software Testing”, Wiley, 1979   

 

4 



Myers: do you have these? 

1. A scalene triangle 

2. An isosceles triangle 

3. An equilateral triangle 

4. 3 permutations of 2 

5. A zero-length side 

6. A negative-length side 

7. Three positive sides,  
sum of two = third 

8. Three permutations of 7 

9. Three positive sides,  
sum of two < third 

10. Three permutations of 9 

11. (0,0,0) 

12.  Noninteger values 

13. Wrong number of initial 
values 

14. The expected output in 
each case 

5 



1. To test a program is to try to 
make it fail 
 

2. Tests are no substitute for 
specifications 
 

3. Any failed execution must yield a test case, to remain 
forever part of the regression test base 
 

4. Determining success or failure (oracles) must be automatic 
 
 4’: Oracles should be part of the program, as contracts 
 

5. A test suite must include both manual and automated cases 
 

6. Don’t believe your testing insights: evaluate any testing 
strategy through objective criteria 
 

7. The most important criterion is number of faults found 
against time:  fc (t) 
 
 

Seven principles of software testing 

Bertrand Meyer, Seven 
Principles of Software Testing, 
IEEE Computer, August 2008 

6 



- 1 – 
 

Overview of the 
requirements task 

- Intermezzo - 

 
Test-Driven 

 
Development 

7 



“The agile manifesto” 

We are uncovering better ways of developing software by 
doing it and helping others do it.  Through this work we 
have come to value: 

  

 Individuals and interactions over processes and tools  
 Working software over comprehensive documentation 

 Customer collaboration over contract negotiation 

 Responding to change over following a plan  
 

That is, while there is value in the items on  
the right, we value the items on the left more.  

8 

agilemanifesto.org 



Agile methods: basic concepts 

Principles: 

Iterative development 

Customer involvement 

Support for change 

Primacy of code 

Self-organizing teams 

Technical excellence 

Search for simplicity 

 

 

9 

Practices: 
 Evolutionary requirements 
 Customer on site 
 User stories 
 Pair programming 
 Design & code standards 
 Test-driven development 
 Continuous refactoring 
 Continuous integration 
 Timeboxing 
 Risk-driven development 
 Daily tracking 
 Servant-style manager 

Shunned: “big upfront 
requirements”; plans; 
binding documents; 
diagrams (e.g. UML); non-
deliverable products 



Evolutionary approach to development 

Combines  

 Test-first development  

 Refactoring 

Primarily a method of software design 

 Not just a method of testing 

Test-Driven Development 

10 



TDD1: Test-First Development 

1. Add a test 

2. Run all tests and check the new 
one fails 

3. Implement code to satisfy 
functionality 

4. Check that new test succeeds 

5. Run all tests again to avoid 
regression 

6. Refactor code 

11 

After Kent Beck* 

*Test Driven Development: By Example, Addison-Wesley 



A change to the system that leaves its behavior 
unchanged, but enhances some non-functional quality: 

 Simplicity 

 Understandability 

 Performance 

Refactoring does not fix bugs or add new functionality. 

TDD 2: Refactoring 

12 



Change the name of a variable, class, ... 

Convert local variable to attribute 

Generalize type 

Introduce argument  

Turn a block of code into a routine 

Replace a conditional with polymorphism 

Break down large routine 

Examples of refactoring 

13 



Apply test-first development 

 

Refactor whenever you see fit (before next functional 
modification) 

TDD = TFD + Refactoring  

14 



Developers must learn to write good unit tests: 

 Run fast (short setup, run, and tear-down) 

 Run in isolation (reordering is possible) 

 Use data that makes test cases easy to read 

 Use real data when needed 

 Each test case is one step towards overall goal 

TDD: consequences on unit tests 

15 



TDD assessment 

For: 

 Reclaims central role of tests  

 Continuous execution: reduce gap between 
decision and feedback 

 Encourage developers to write code that is easily 
tested 

 Yields extensive test repository 

 Requires that all tests pass 

16 

But: 

 Tests are not specs 

 Some code difficult to test 

 Risk that program pass tests 
and nothing else 



- 1 – 
 

Overview of the 
requirements task 

-End of Intermezzo - 

 
Test-Driven 

 
Development 

17 



What does testing involve? 

 Determine system parts & properties to be tested 

 

 Determine appropriate input values 

 

 Determine expected outputs (oracles) 

 

 Run system on selected input values 

 

 Compare results to oracles 

 

 Measure other execution characteristics: time, space… 

 

18 



Components of a test 

A test case specifies: 
 The state of the implementation under test (IUT) 

and its environment before test execution 
 The test inputs 
 The associated oracle 

 
An oracle defines: 

 If possible, pass/no pass evaluation 
 Expected returned values 
 Expected messages 
 Expected exceptions 
 Resulting state of IUT and environment 

19 



Test execution 

Test suite: collection of test cases 

 

Test driver: class or utility program that applies test 
cases to an IUT 

 

Stub: partial, temporary implementation of a component 

 May serve as a placeholder for an incomplete 
component or implement testing support code 

 

Test harness : a system of test drivers and other tools to 
support test execution 

20 



Types of tests: scope 

Unit test  

 Scope: program module, e.g. routine, class, cluster 

Integration test  

 Scope: subsystem or entire system, possibly including hardware 

 Exercises interfaces between units to demonstrate that they 
are collectively operable 

System test 

 Scope: Complete, integrated application 

 Focuses on characteristics that are present only at the level of 
the entire system 

 Categories: 

 Functional 

 Performance 

 Stress or load 

21 



Types of tests: intent 

Fault-directed testing 

 Intent: reveal faults through failures 

 Unit and integration testing 

 

Conformance-directed testing 

 Intent: demonstrate conformance to required 
capabilities 

 System testing 

 

Acceptance testing 

 Intent: enable customer to decide whether to accept 
software 

 
22 



Types of tests: intent 

Regression testing 

 After a change., re-test program to find out if 
change has not introduced, re-introduced or 
uncovered faults 

 

 

Mutation testing (also known as fault seeding)  

  Test a modified program, with faults introduced 

   Why would we do this? 

23 



Black box vs white box testing (1)  

Black box testing White box testing 

Uses no knowledge of the 
internals of the SUT 

Uses knowledge of the internal 
structure and implementation of 
the SUT 

Also known as responsibility-based 
testing and functional testing 

Also known as implementation-
based testing and structural 
testing 

Goal: to test how well the SUT 
conforms to its requirements 

(Cover all the requirements) 

Goal: to test that all paths in the 
code run correctly  

(Cover all the code) 

 

24 



Black box vs white box testing (2) 

Black box testing White box testing 

Uses no knowledge of the program 
except its specification 

Relies on source code analysis to 
design test cases 

Typically used in integration and 
system testing 

Typically used in unit testing 

Can also be done by user Typically done by programmer 

25 



Mutation testing 

How do you 

count the 

Eggli in the 

Zürichsee? 

26 



Mutation testing 

Purpose: estimate quality of a test suite 

 

 

Principle: make small changes to the program source code 
(so that the modified versions still compile) and see if 
successful test cases still succeed 

 

If they do, the test suite is not good enough! 

 

 

 

 
27 



Terminology 

Mutant: a modified version of the program, obtained by 
injecting a fault 

 We only consider mutants that are not equivalent to 
the original program 

 

Killed mutant: At least one test case detects the injected 
fault 

 

Alive mutant: no test case detects the injected fault 

 

Mutation score : measurement of effectiveness of test, 
defined next 

28 



Mutation operators 

Mutation operator: a rule that specifies a syntactic 
variation of the program text so that the modified 
program still compiles 
 
A mutant is the result of an application of a mutation 
operator 
 
The quality of the mutation operators determines the 
quality of the mutation testing process 
 
Mutation operator coverage (MOC): For each mutation 
operator o, there is at leas one mutant using o 

29 



Examples of mutants 

30 

Original program: 

 

if a < b then 

 b := b – a 

else 

 b := 0 

end 

Mutants: 

 

if a < b 

if a <= b 

if a > b 

if c < b 

 b := b – a 

 b := b + a 

 b := x – a 

else 

 b := 0 

 b := 1 

 a := 0 



OO mutation operators 

Polymorphism- and dynamic binding-related: 
 Change creation type 

  create x.make      create {T} x.make 
 Redefinition 

  Replace inherited routine or attribute 
  by redefined version 

Various: 
 Argument order change 

  If types match, e.g. f (x, y: INTEGER) 
 Replace assignment by copy 

  list1 := list2.twin      list1 := list2 

31 



System test quality (STQ) 

S: system composed of n components, denoted Ci   
di: number of killed mutants after applying test sequence to Ci 

mi: total number of mutants for Ci 
 
Mutation score for Ci and test sequence Ti: MS (Ci, Ti) = di / mi 
 

System test quality: 
 

 

STQ(S) =  
 

 

STQ provides a measure of test suite quality 
 
If contracts are used as oracles, STQ is a combined measure of 
test and contract quality 

32 

ni

i

ni

i

m

d

,1

,1



Mutation tools 

muJava - http://ise.gmu.edu/~ofut/mujava/ 

 

33 

http://ise.gmu.edu/~ofut/mujava/


- 1 – 
 

Overview of the 
requirements task 

 
 

Test Coverage 

34 



Coverage 

How extensive is a test? 

 

Coverage measures a percentage of elements of a certain 
kind exercised by a test suite. 

 

“Achieving coverage” means reaching 100% for the chosen 
criterion 

35 



Purposes of measuring code coverage 

Code coverage analysis makes it possible to: 

 

 Find sections of code not exercised by test cases 

 Create additional test cases that exercise properties 
not previously tested 

 Possibly obtain an estimate of test suite quality 

 

 

 

36 



Code coverage analyzer 

A code coverage analyzer is a tool that automatically 
computes the coverage achieved by a test suite 

 

Steps involved: 

1. Instrument source code by inserting trace 
instructions that write to a trace file 

2. Run tests 

3. Parse trace file to produce a coverage report 

 

 

37 



Standard measures of coverage 

Instruction coverage, branch coverage etc. 

38 



Instruction (statement) coverage 

Percentage of instructions (executable statements) executed 

 Disadvantage: insensitive to control structures 

 

39 



Branch (or “decision”) coverage 

Percentage of conditionals whose boolean expression has evaluated to 
both true and false 

 

 Disadvantage: insensitive to individual components of boolean 
expression 

 Does not account for multiple executions of loops 

 The most commonly used in practice (easy to achieve) 

40 



Predicate coverage 

A predicate is covered if at least one test run makes it 
true and at least one makes it false 

 

Example: 

 a or  b or  (f(x) and x > 0)  

is covered by the following two test cases: 

 

 {a = True; b = False; f(x) = False; x = 1} 

 {a = False; b = False; f(x) = True; x = -1} 

41 



Condition coverage 

Percentage of elementary boolean conditions that have evaluated to 
both true and false 

 

 Disadvantage: Not all combinations 

 Does not imply predicate coverage 

 Is not implied by predicate coverage 

 

 

 

Example: 

 

 if a and b then …  

42 



Clause coverage (CC) 

Satisfied if for every clause of the predicate at least one 
test run makes the clause true and at least one false 

Example: 

   x > 0 or  y < 0 

 Clause coverage is achieved by: 
 {x = -1; y = 1} 

 {x = 1; y = -1} 

 

Does clause coverage imply predicate coverage? 

 
 

43 

No: consider following variant: 
 {x = -1; y = -1} 

 {x = 1; y = 1} 

 

 
 



Combinatorial coverage (CoC) 

The test runs must include all possible combination of 
clause values 

Example: 

A B C ((A B) C) 

1 
2 
3 
4 
5 
6 
7 
8 

T 
T 
T 
T 
F 
F 
F 
F 

T 
T 
F 
F 
T 
T 
F 
F 

T 
F 
T 
F 
T 
F 
T 
F 

T 
F 
T 
F 
T 
F 
F 
F 

44 

((A B) C) 



Multiple-condition coverage 

Percentage of combinations of values of elementary boolean conditions 
affecting the result 

 Disadvantage: difficult to achieve, widely different number of 
tests for similar expressions 

 

Examples* 

   a and b and (c or (d and e))                      ((a or b) and (c or d)) and e  

45 

Source: Steve Cornett 



Modified Condition/Decision coverage (MC/DC) 

Percentage of combinations of elementary conditions that affect the 
overall condition independently 

We say that an elementary condition of a predicate “affects the 
predicate independently” if changing its value, without changing the 
values of other conditions, changes the value of the predicate 

 

Example: 

 

 (a or b) and (c or not d) 

 

 Advantage: easier to achieve than multiple condition 

 Required for safety-critical aviation software (FAA standard 
RCTA/DO-178B)  

 

 

 
46 



Determination 

For a predicate p with: 

 A clause cM, the major (or “active” clause) 

 The remaining “minor” clauses cm p, m M 

 

we say that cM determines p if, for some combination of 
the values of the minor clauses, changing the value of cM 
changes the value of p 

 

Example: 

    p = a  b 

a b 

cM = a T 
F 

f 
f 

cM = b f 
f 

T 
F 

47 



Restricted Active Clause Coverage (RACC)* 

For each p P and each major clause cM, choose minor clauses cm so 
that cM determines p 

The test runs must include at least one that makes cM true and one 
that makes it false, with the same values for the minor clauses 

Example: 

   p = a  ( b  c ) 

a b c a  ( b  c ) 

1 
5 

T 
F 

T 
T 

T 
T 

T 
F 

2 
6 

T 
F 

T 
T 

F 
F 

T 
F 

3 
7 

T 
F 

F 
F 

T 
T 

T 
F 

48 

We satisfy RACC for a if 
we choose (1,5), or (2,6), 
or (3,7): three 
possibilities only 

 

 

Often the interpretation 
of 
MC/DC in practice *Variant of MCDC 



Correlated Active Clause Coverage (CACC)* 

For each p P and each major clause cM, choose minor clauses cm so 
that cM determines p 

The test runs must include at least one that makes cM true and one 
that makes it false 

Loosening of RACC: the values for the minor clauses do not need to 
be the same for these two runs 

 

Example: 

   p = a  ( b  c ) 

 

a b c a  ( b  c ) 

1 
2 
3 

T 
T 
T 

T 
T 
F 

T 
F 
T 

T 
T 
T 

5 
6 
7 

F 
F 
F 

T 
T 
F 

T 
F 
T 

F 
F 
F 

49 

We satisfy CACC for a if we 
choose one test case out of 
rows 1, 2 and 3, and one out 
of 5, 6 or 7 (9 possibilities) 

*Variant of MCDC 



Path coverage 

Percentage of paths taken 

 

A path is a unique sequence of branches from  routine entry to exit 

 

 Disadvantage: exponential 

 Does not take loops into account (numerous variants exist that 
unfold loops up to a maximum bound) 

 

Can be impossible to achieve 100% 

 

 if c then a1 else a2 end 

 possible_other_instructions  -- Not affecting c 

 if c then b1 else b2 end 

50 



Limits of coverage measures 

51 Yi Wei, M. Oriol, B. Meyer (2009) 



Complementing coverage 

Keeping track of faults found in testing campaigns 

 

Comparing the results to: 

 Previous phases of the project 

 Other projects in the company 

52 



Are we shipping yet? 

Possible criteria: 

 

 Coverage (typical: 80% path coverage) 

 

 No blocking faults 

 

 Evolution of faults uncovered 

53 



Code coverage tools 

Emma 
 Java 
 Open-source 
 http://emma.sourceforge.net/ 

JCoverage 
 Java 
 Commercial tool 
 http://www.jcoverage.com/ 

NCover 
 C# 
 Open-source 
 http://ncover.sourceforge.net/ 

Clover, Clover.NET 
 Java, C# 
 Commercial tools 
 http://www.cenqua.com/clover/ 

 
See also http://www.codecoveragetools.com/ 

 
 

54 

http://emma.sourceforge.net/
http://www.jcoverage.com/
http://ncover.sourceforge.net/
http://www.cenqua.com/clover/
http://www.cenqua.com/clover/
http://www.codecoveragetools.com/


Dataflow-oriented testing  

Focuses on how variables are defined, modified, 
and accessed throughout the run of the program 

 

Looks for faults resulting from wrong paths 
between a definition of a variable in the code and 
certain uses of that variable 

 

55 



Access-related potential bugs 

Examples: 

 Using an uninitialized variable 

 Assigning to a variable more than once without an 
intermediate access 

 (C++) Deallocating a variable before it is initialized 

 (C++) Deallocating a variable before it is used 

 Modifying an object more than once without 
accessing it 

56 



Types of access to variables 

Definition (def) : change value of variable (constructor, 
assignment, procedure) 

Use: read value of variable 

 Computational use (c-use): in a computation 

 Predicative uses (p-use): in a test 

 Kill: instruction that results in a variable being 
deallocated, undefined, released or no longer visible 
 

Examples: 

 z := x  y      // c-use of y; c-use of x; def of z 

 if x > 0 then …   // p-use of x 

57 



Data flow graph 

All measures of dataflow coverage are defined in terms of 
the data flow graph 

 Sub-path: sequence of consecutive nodes 

 Path: sub-path starting at entry node and ending at 
exit node 

Path properties: 

 A sub-path is def-clear for a variable v if it contains 
no definition of v 

 A sub-path p starting with a def of variable  v is a du-
path for  v if p is def-clear for  v except for the 
first node, and  v encounters either a c-use in the 
last node or a p-use along the last edge of p 

 

 

 

 

58 



Example: source code 

class ACCOUNT feature 

 balance: INTEGER 

 

 withdraw (sum: INTEGER) 

  do 

   if balance >= sum then 

    balance := balance - sum 

    if balance = 0 then 

     io.put_string (“There were only " + sum +  

      "CHF in the account. The account is now empty.%N") 

    end 

   else 

    io.put_string (“There is less than ” + sum + “CHF in the account.”) 

   end 

  end 

end 

59 



Control flow graph for withdraw 

Definition of sum

(0)

if 

balance >= 

sum

(1)

balance = 

balance – sum

(2)

if 

balance == 0

(3)

print(sum)

(4)

True

True

print(sum)

(5)

False

False

60 



Data flow graph for sum in withdraw 

Definition of sum

(0)

if 

balance >= 

sum

(1)

balance = 

balance – sum

(2)

if 

balance == 0

(3)

print(sum)

(4)

True

True

print(sum)

(5)

False

False

def

(0)

p-use 

(1)

c-use

(2)

(3)

c-use

(4)

True

True

c-use

(5)

False

False

61 



Data flow graph for balance in withdraw 

Definition of sum

(0)

if 

balance >= 

sum

(1)

balance = 

balance – sum

(2)

if 

balance == 0

(3)

print(sum)

(4)

True

True

print(sum)

(5)

False

False

(0)

p-use 

(1)

c-use; def

(2)

p-use

(3)

(4)

True

True

(5)

False

False

62 



Dataflow coverage criteria 

all-defs: execute at least one def-clear sub-path between 
every definition of every variable and at least one 
reachable use of that variable. 

 

all-p-uses: execute at least one def-clear sub-path, if any,  
from every definition of every variable to every reachable 
p-use of that variable. 

 

all-c-uses: execute at least one def-clear sub-path from 
every definition of every variable to every reachable c-use 
of the respective variable. 

63 



Dataflow coverage criteria (continued) 

all-c-uses/some-p-uses: apply all-c-uses; then if any 
definition of a variable is not covered, use p-use 

 

all-p-uses/some-c-uses: symmetrical to all-c-uses/some-p-
uses 

 

all-uses: execute at least one def-clear sub-path from 
every definition of every variable to every reachable use 
of that variable 

 

64 



Dataflow coverage criteria for sum in withdraw  

def

(0)

p-use 

(1)

c-use

(2)

(3)

c-use

(4)

True

True

c-use

(5)

False

False

65 

all-defs: at least one def-clear sub-path 
between every definition and at least 
one reachable use 

 (0,1) 

 

all-p-uses: at least one def-clear sub-
path from every definition to every 
reachable p-use 

 (0,1) 

 

all-c-uses: at least one def-clear sub-
path from every definition to every 
reachable c-use 

 (0,1,2); (0,1,2,3,4); (0,1,5) 



Dataflow coverage criteria for sum in withdraw (cont.) 

def

(0)

p-use 

(1)

c-use

(2)

(3)

c-use

(4)

True

True

c-use

(5)

False

False

66 

all-c-uses/some-p-uses: apply all-c-uses; 
then if any definition of a variable is 
not covered, use p-use 

 (0,1,2); (0,1,2,3,4); (0,1,5) 

 

all-p-uses/some-c-uses: symmetrical to 
all-c-uses/some-p-uses 

 (0,1) 

 

all-uses: at least one def-clear sub-path 
from every definition to every 
reachable use 

 (0,1); (0,1,2);(0,1,2,3,4);(0,1,5) 

 



Partition testing 

If we cannot test every value of the input domain, how do 
we choose inputs? 

 

 

A partition divides input space into 

subsets (equivalence classes)  satisfying: 

  Completeness (covers all input) 

  Disjointness 

 

Expectation (hope) behind partition testing: 

 If any value in the subset produces a failure, any 
other value in the subset does too 

68 



Examples of partition testing 

 

Boundary value analysis 

 

Special values testing 

 

69 



Choosing values 

Each Choice (EC): 

 Test suite includes at least one test case from every 
equivalence class for every input 

 

 

All Combinations (AC): 

 Test suite includes at least one test case from every 
combination of equivalence classes for all inputs 

70 



Partition testing 

Applicable to all levels of testing: unit, class, integration, 
system, etc. 

 

Based only on the input space of the program, not the 
implementation (i.e. black box concept) 

 

Many testers intuitively apply a similar concept 

71 



 
 

 

 

 

Contract-based & 
random testing 

72 



Test automation 

Testing is so difficult and time consuming…  

 

So why not do it automatically? 

 

What is most commonly meant by “automated testing” 
currently is automatic test execution 
 

But actually… 

73 



What can we automate? 

Test execution 
 Run test suite without step-by-step actions 
 Should be parameterizable 
  Recover from failures (multi-process architecture) 

Test management 
 Let user adapt process to needs and preferences 
 Save tests for regression testing 

Test result evaluation (applying oracles)  
 Classifying tests as pass/no pass 
 Other info about test results 

 

74 



What can we automate?  

Regression testing  

 Re-run previous tests 

 May require minimization 
Estimation of test suite quality 

 Report a measure of code coverage 
 Other measures of test quality 
 Feed this estimation back to the test generator 

Test generation 

 Generation of test data (objects used as targets or 
parameters for feature calls) 

 Procedure for selecting the objects used at runtime 

 Generation of test code (code for calling the 
features under test) 

75 



“Push-button testing”  

Never write a test case, a test suite, a test oracle, or a 
test driver 

Automatically generate 

 Objects 

 Feature calls 

 Evaluation and saving of results 

The user must only specify the system under test and the 
tool does the rest (test generation, execution and result 
evaluation) 

 

76 



Testing strategy 

How do we plan and structure the testing of a large 
program? 

 Who is testing? 
 Developers / special testing teams / customer 
 It is hard to test your own code 

 What test levels do we need? 
 Unit, integration, system, acceptance, regression test 

 How do we do it in practice? 
 Manual testing 
 Testing tools 
 Automatic testing 

 

77 



xunit 

The generic name for any test automation framework for 
unit testing 

 Test automation framework – provides all the 
mechanisms needed to run tests so that only the 
test-specific logic needs to be provided by the test 
writer 

Implemented in all the major programming languages: 
 JUnit – for Java 
 cppunit – for C++ 
 SUnit – for Smalltalk (the first one) 
 PyUnit – for Python 
 vbUnit – for Visual Basic 

78 



JUnit: resources 

Unit testing framework for Java 

Written by Erich Gamma and Kent Beck 

Open source (CPL 1.0), hosted on SourceForge 

Current version: 4.0 

Available at: www.junit.org 

Very good introduction for JUnit 3.8: Erich Gamma, Kent Beck, 
JUnit Test Infected: Programmers Love Writing Tests, 
available at  
http://junit.sourceforge.net/doc/testinfected/testing.htm 

For JUnit 4.0: Erich Gamma, Kent Beck, JUnit Cookbook, 
available at 
http://junit.sourceforge.net/doc/cookbook/cookbook.htm 

 

79 

http://www.junit.org/
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/cookbook/cookbook.htm


JUnit: Overview 

Provides a framework for running test cases 

 

Test cases  

 Written manually 

 Normal classes, with annotated methods 

 

Input values and expected results defined by the tester 

 

Execution is the only automated step 

 

 

80 



How to use JUnit 

Requires JDK 5 
 
Annotations: 

 @Test for every method that represents a test case 
 @Before for every method that will be executed before every 
@Test method 

 @After for every method that will be executed after every 
@Test method 

 
Every @Test method must contain some check that the 
actual result matches the expected one – use asserts for 
this 

 assertTrue, assertFalse, assertEquals, 

assertNull, assertNotNull, assertSame, 

assertNotSame 

81 



Example: basics 

package unittests; 
 
import org.junit.Test; // for the Test annotation 
import org.junit.Assert; // for using asserts 
import junit.framework.JUnit4TestAdapter; // for running 
 
import ch.ethz.inf.se.bank.*; 
 
public class AccountTest { 
 @Test public void initialBalance() { 
  Account a = new Account("John Doe", 30, 1, 1000); 
  Assert.assertEquals( 
   "Initial balance must be the one set through the 
constructor", 
   1000, 
   a.getBalance()); 
 } 
  
 public static junit.framework.Test suite() { 
  return new JUnit4TestAdapter(AccountTest.class); 
 } 
} 

82 

To declare a routine as 

a test case 

To compare the actual result 

to the expected one 

Required to run JUnit4 

tests with the old JUnit 

runner 



Example: set up and tear down 

package unittests; 
 
import org.junit.Before; // for the Before annotation 
import org.junit.After; // for the After annotation 
// other imports as before… 
 
public class AccountTestWithSetUpTearDown { 
  
 private Account account; 
  
 @Before public void setUp() { 
  account = new Account("John Doe", 30, 1, 1000); 
 } 
 @After public void tearDown() { 
  account = null; 
 } 
 @Test public void initialBalance() { 
  Assert.assertEquals("Initial balance must be the one set through the 
constructor", 
   1000, 
   account.getBalance()); 
 } 
 public static junit.framework.Test suite() { 
  return new JUnit4TestAdapter(AccountTestWithSetUpTearDown.class); 
 } 
} 

83 

To run this routine before any 

@Test method 

To run this method after 

any @Test method 

Must make account an 

attribute of the class now 



@BeforeClass, @AfterClass 

A routine annotated with @BeforeClass will be executed 
once, before any of the tests in that class is executed. 

A routine annotated with @AfterClass will be executed 
once, after all of the tests in that class have been 
executed. 

Can have several @Before and @After routines, but only 
one @BeforeClass and @AfterClass routine respectively. 

 

84 



Checking for exceptions 

Pass an argument to the @Test annotation stating the 
type of exception expected: 

 

 
@Test(expected=AmountNotAvailableException.class) public void overdraft () 
throws AmountNotAvailableException { 

  Account a = new Account("John Doe", 30, 1, 1000); 

  a.withdraw(1001); 

 } 

 

 

The test will fail if a different exception is thrown or if 
no exception is thrown. 

85 



Setting a timeout 

Pass an argument to the @Test annotation setting a 
timeout period in milliseconds. The test fails if it takes 
longer than the given timeout. 

 
@Test(timeout=1000) public void testTimeout () { 

  Account a = new Account("John Doe", 30, 1, 1000); 

  a.infiniteLoop(); 

 } 

86 



 From a survey of 240 software companies in 
North America and Europe: 

 
 8% of companies release software to beta 

sites without any testing. 
 83% of organizations' software developers 

don't like to test code. 
 53% of organizations' software developers 

don't like to test their own code because they 
find it tedious. 

 30% don't like to test because they find 
testing tools inadequate. 

Testing is tedious! 

87 



Create input 

 Instructions 

 Data 

Execute tests 

Evaluate result (Oracle) 

 Compare 

 Compute 

(Tear down) 

88 

Parts of a test case 



No automation 

Automated execution 

Automated input generation 

Automated oracle 

89 

Degrees of automation 



Challenges of automated testing 

Vast input space 

Is this input good? 

 Precondition 

Is this output good? 

 Postcondition 

 

The quality of the test is only as good as the quality of the 
assertions 

90 



Vast input space 

Input space typically 
unbounded 

Even when finite, very large 

Exhaustive testing 
impossible 

Number of test cases 
increases exponentially 
with number of input 
variables 

91 

foo (c: CHARACTER) 

 do 

  ... 

 end 

bar (c1: CHARACTER;  

        c2: CHARACTER) 

 do 

  ... 

 end 



Automatic testing tools 

 PEX (.NET; Microsoft Research) 

 Randoop (C#, Java, C; Mike Ernst) 

 Yeti (Java, C#; Manuel Oriol) 

 JTest (Java; Parasoft) 

 JCrasher (Java; Christoph Csallner) 

 SAGE (C, C++; Microsoft Research) 

 AutoTest (Eiffel; ETH) 

92 



AutoTest 

Fully automated testing framework 

 Actual strategies are extensions 

Based on Design By Contract 

Robust execution 

Integration of manual unit tests 

93 



AutoTest: three parts 

1. Generated tests 

 

2. Extracted tests 

 

3. Manual tests 

94 



AutoTest: strategies 

Random Strategy 

 Use random input 

Precondition satisfaction Strategy 

 Keeps track of created objects that satisfy non-
trivial preconditions 

... 

95 



AutoTest: automatic test framework 

 

 Input: set of classes 

 Generates instances, calls routines with automatically 
selected arguments 

 Oracles are contracts: 

  Direct precondition violation: skip 

  Postcondition/invariant violation: bingo! 

 Value selection: Random+ (use special values such as 0, 
+/-1, +/-10, max and min) 

 Add manual tests if desired 

 Any test (manual or automated) that fails becomes  
part of the test suite 

96 

Ilinca Ciupa 
Andreas Leitner 

Yi Wei 



Minimization through dynamic slicing 

auto_test system.ace –t 120 ACCOUNT CUSTOMER  

 

97 

create {STRING} v1 

v1.wipe_out 

v1.append_character (’c’) 

v1.append_double (2.45) 
create {STRING} v2 

v1.append_string (v2) 

v2.fill (’g’, 254343) 
... 
create {ACCOUNT} v3.make (v2) 

v3.deposit (15) 

v3.deposit (100) 

v3.deposit (-8901) 
... 

 

class 
 ACCOUNT 
create 
 make 
feature 
 make (n : STRING) 
   require 
    n /= Void 
   do 
    name := n 
    balance := 0 
   ensure 
    name = n 
    balance = 0 
 end 

name : STRING 

balance : INTEGER 

deposit (v : INTEGER) 

   do 

  balance := balance + v 

   ensure 

   balance = 

         old balance + v 

    end 

invariant 

     name /= Void 

   balance >= 0 

end 



98 

AutoTest strategies 

 Object pool 
 Get objects through creation procedures (constructors) 

 Diversify through procedures 

 Routine arguments 

 Basic values: heuristics for each type 

 Objects: get from pool 

 Test all routines, including inherited ones (“Fragile base 
class” issue) 

98 



99 

Conjecture: 
Random testing may find 
faults faster if inputs evenly 
spread 

 So far: basic types 

Adaptive Random Testing (Chen et al.) 

99 

m 

n 

Our contribution: extend 
this to objects 

 

Need to define notion of 
distance between objects 



100 

Object distance 

p ↔ q 

  

 combination ( 

  type_distance  (p.type, q.type), 

  field_distance (p, q), 

  recursive_distance ( 

   {[p.r ↔ q.r] | r   
Reference_attributes } ) 

 
100 

= Δ 

Ilinca Ciupa 
(ICSE 2008) 



ART vs pure random 

Results so far: 

 

 Does not find more faults 

 Does not find faults faster 

 Finds other faults! 

101 



Random testing: example bug found 

102 

 
* 

SET 
* 
* 

+ 
 

SET1 

+ 
 

SET2 + + 

Test: 

 s1, s2 : SET 

 s2    s1  

*: Deferred 
 +: Effective 

Bernd Schoeller 



The testbed: EiffelBase 

 Version of September 2005 

 20-year history 

 Showcase of Eiffel technology 

 About 1800 classes, 20,000 SLOC 

 Extensive (but not complete) contracts 

 Widely used in production applications 

 Significant faults remained 

 

103 



104 

Some AutoTest results (random strategy) 

104 

Library Total Failed 
 

Total 
 

Failed 

 
EiffelBase 
         (Sep 2005) 40,000 3% 2,000 6% 

 
Gobo Math 1,500 1% 140 6% 

TESTS ROUTINES 



Testing results and strategy 

“Smart” ideas not always better 

Don’t believe your intuition 

Measure and assess objectively 

105 

fc (t) 

Class STRING 

Define good assessment criteria: 

 Number of faults found 

 Time to find all faults 

Time 



Fault categories 

Specification faults -- examples: 

 Precondition: 

 Missing non-voidness precondition (will go away) 

 Missing min-max precondition 

 Too strong precondition 

 Postcondition: 

 Missing 

 Wrong 

Implementation faults -- examples: 

 Faulty supplier 

 Missing implementation 

 Case not treated 

 Violating a routine’s precondition 

 Infinite loop 

106 



Who finds what faults? 

On a small EiffelBase subset, 
we compared: 

 AutoTest 

 Manual testing (students) (3 classes, 2 with bugs 
seeded) 

 User reports from the field 

 

AutoTest: 62% specification, 38% implementation 

User reports: 36% specification, 64% implementation 

 

 

 

107 

I.Ciupa, A. Leitner, 
M.Oriol, A. Pretschner 



AutoTest vs manual testers 

On three classes (two with seeded bugs): 

 Humans found 14 faults, AutoTest 9 of them 

 AutoTest found 2 faults that humans did not (in large 
class) 

 3 faults not found by AutoTest found by 60% of 
humans (one is infinite loop) 

 2 faults not found by AutoTest are missing 
preconditions (void, min-max) 

 

108 



AutoTest vs user reports 

On 39 EiffelBase classes: 
 AutoTest found 85 faults, 

  Plus 183 related to RAW_FILE, 
  PLAIN_TEXT_FILE, DIRECTORY (total 268) 

 4 of these also reported by users 
 21 faults solely reported by users 
 30% of AutoTest-found bugs related to extreme values; 

users never report them 
 

AutoTest finds only 1 out of 18 (5%) of implementation faults 
and 3 out of 7 specification faults 
 
AutoTest bad at over-strong preconditions, wrong operator 
semantics, infinite loops, missing implementations 
 
Users never find faulty suppliers (blame on client) 

109 



Test Extraction 

 

 

Like Test-Driven Development, but  

 Tests derived from spec (contracts) 

  Not the other way around! 

 

Record every failed execution, make it reproducible by 
retaining objects 

 

Turn it into a regression test 

111 

Andreas Leitner, Arno Fiva 
 



Specified but unimplemented routine 

112 



Running the system and entering input 

113 

(erroneous) 

20 



Postcondition 
violated 

The violated clause: 

balance > old balance 

Error caught at run time as contract violation 

114 



This has become a test case 

115 
115 



Correcting and recompiling 

116 



One fault corrected, the other not 

117 



Automatic test case generation: assessment 

Testing is tedious 

Automation can help 

Challenges involved 

Tools are getting there! 

119 


