
Reachability Analysis of Program Variables

Ðurica Nikolić

ETH - Chair of Software Engineering

November 6th, 2013

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 1 / 30

Introduction

Static Analysis - basic facts

provides facts about run-time behavior of programs before their executions:

no division by zero
no null dereference
no infinite loops
...

numerical properties vs. memory-related properties

over-approximations vs. under-approximations

Abstract Interpretation [CousotCousot77] usually helps

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 2 / 30

Introduction Our Goals

Static Analysis - main issues

Static Analysis of real life software is extremely difficult:

complex semantics of current programming languages

memory-related properties required

side-effects of method calls

exceptional behaviors should be handled

libraries heavily used

annotations help, but...

formalization vs. implementation

proof of Soundness is difficult

A Generic Framework for Constraint-Based Static Analyses of Java Bytecode
Programs [NikolicPhD] deals with all these issues.

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 3 / 30

Introduction Our Goals

Static Analysis - main issues

Static Analysis of real life software is extremely difficult:

complex semantics of current programming languages

memory-related properties required

side-effects of method calls

exceptional behaviors should be handled

libraries heavily used

annotations help, but...

formalization vs. implementation

proof of Soundness is difficult

A Generic Framework for Constraint-Based Static Analyses of Java Bytecode
Programs [NikolicPhD] deals with all these issues.

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 3 / 30

Constraint-Based Static Analyses of Java Bytecode Programs A General Idea of the Approach

First steps

JAR

CLASSES

LIBRARIES

Jar: classes and libraries

CFG: extracted from Jar

nodes
sequential and exceptional
arcs
return value and side-effects
arcs

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 4 / 30

Constraint-Based Static Analyses of Java Bytecode Programs A General Idea of the Approach

First steps

JAR

CLASSES

LIBRARIES

node anode c

catch

node 11
exc@delayMinBy

node b
store 3 int

node 8
exit@delayMinBy

call Event.delayMinBy(int) : int

node 1
load 0 Event

node 2
getfield Event.min: int

node 3
load 1 int

node 4
add int

node 5
const 60

node 6
rem

node 7
return int

node 9
catch

node 10
throw Throwable

E

PP

SE SE
RV

S

S S

SE

S

S

SE

FF

Jar: classes and libraries

CFG: extracted from Jar

nodes
sequential and exceptional
arcs
return value and side-effects
arcs

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 4 / 30

Constraint-Based Static Analyses of Java Bytecode Programs A General Idea of the Approach

First steps

JAR

CLASSES

LIBRARIES

node anode c

catch

node 11
exc@delayMinBy

node b
store 3 int

node 8
exit@delayMinBy

call Event.delayMinBy(int) : int

node 1
load 0 Event

node 2
getfield Event.min: int

node 3
load 1 int

node 4
add int

node 5
const 60

node 6
rem

node 7
return int

node 9
catch

node 10
throw Throwable

E

PP

SE SE
RV

S

S S

SE

S

S

SE

FF

getfield Event.min: int

Jar: classes and libraries

CFG: extracted from Jar

nodes

sequential and exceptional
arcs
return value and side-effects
arcs

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 4 / 30

Constraint-Based Static Analyses of Java Bytecode Programs A General Idea of the Approach

First steps

JAR

CLASSES

LIBRARIES

node anode c

catch

node 11
exc@delayMinBy

node b
store 3 int

node 8
exit@delayMinBy

call Event.delayMinBy(int) : int

node 1
load 0 Event

node 2
getfield Event.min: int

node 3
load 1 int

node 4
add int

node 5
const 60

node 6
rem

node 7
return int

node 9
catch

node 10
throw Throwable

E

PP

SE SE
RV

S

S S

SE

S

S

FF

getfield Event.min: int

load 1 intcatch

SE

Jar: classes and libraries

CFG: extracted from Jar

nodes
sequential and exceptional
arcs

return value and side-effects
arcs

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 4 / 30

Constraint-Based Static Analyses of Java Bytecode Programs A General Idea of the Approach

First steps

JAR

CLASSES

LIBRARIES

node anode c

catch

node 11
exc@delayMinBy

node b
store 3 int

node 8
exit@delayMinBy

call Event.delayMinBy(int) : int

node 1
load 0 Event

node 2
getfield Event.min: int

node 3
load 1 int

node 4
add int

node 5
const 60

node 6
rem

node 7
return int

node 9
catch

node 10
throw Throwable

E

PP

SE

S

S S

SE

S

S

SE

FF

call Event.delayMinBy(int) : int store 3 int

exit@delayMinBy

SE
RV

Jar: classes and libraries

CFG: extracted from Jar

nodes
sequential and exceptional
arcs
return value and side-effects
arcs

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 4 / 30

Constraint-Based Static Analyses of Java Bytecode Programs A General Idea of the Approach

Abstract Constraint Graphs

A - generic abstract domain
Πins : A → A - generic propagation rule (abstract semantics of ins)

node anode c

catch

node 11
exc@delayMinBy

node b
store 3 int

node 8
exit@delayMinBy

call Event.delayMinBy(int) : int

node 1
load 0 Event

node 2
getfield Event.min: int

node 3
load 1 int

node 4
add int

node 5
const 60

node 6
rem

node 7
return int

node 9
catch

node 10
throw Throwable

E
PP

SE SE

RV

S

S S

SE

S

S

SE

F
F

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 5 / 30

Constraint-Based Static Analyses of Java Bytecode Programs A General Idea of the Approach

Abstract Constraint Graphs

A - generic abstract domain

Πins : A → A - generic propagation rule (abstract semantics of ins)

node anode c

catch

node 11
exc@delayMinBy

node b
store 3 int

node 8
exit@delayMinBy

call Event.delayMinBy(int) : int

node 1
load 0 Event

node 2
getfield Event.min: int

node 3
load 1 int

node 4
add int

node 5
const 60

node 6
rem

node 7
return int

node 9
catch

node 10
throw Throwable

E
PP

SE SE

RV

S

S S

SE

S

S

SE

F
F

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 5 / 30

Constraint-Based Static Analyses of Java Bytecode Programs A General Idea of the Approach

Abstract Constraint Graphs

A - generic abstract domain
Πins : A → A - generic propagation rule (abstract semantics of ins)

node anode c

catch

node 11
exc@delayMinBy

node b
store 3 int

node 8
exit@delayMinBy

call Event.delayMinBy(int) : int

node 1
load 0 Event

node 2
getfield Event.min: int

node 3
load 1 int

node 4
add int

node 5
const 60

node 6
rem

node 7
return int

node 9
catch

node 10
throw Throwable

E
PP

SE SE

RV

S

S S

SE

S

S

SE

F
F

aaac

a11

ab

a8

a1

a2

a3

a4

a5

a6

a7

a9

a10

ΠE
call

ΠPP

ΠS
load

ΠS
getfieldΠE

getfield

ΠS
load

ΠS
add

ΠS
const

ΠS
rem

ΠF
return

ΠF
throw

ΠS
catch

ΠE
ret

ΠSE

ΠRVΠSE

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 5 / 30

Constraint-Based Static Analyses of Java Bytecode Programs A General Idea of the Approach

From ACG to Constraint-Based Static Analyses

JAR

CLASSES

LIBRARIES

node anode c

catch

node 11
exc@delayMinBy

node b
store 3 int

node 8
exit@delayMinBy

call Event.delayMinBy(int) : int

node 1
load 0 Event

node 2
getfield Event.min: int

node 3
load 1 int

node 4
add int

node 5
const 60

node 6
rem

node 7
return int

node 9
catch

node 10
throw Throwable

E

PP

SE SE
RV

S

S S

SE

S

S

SE

FF

aaac

a11

ab

a8

a1

a2

a3

a4

a5

a6

a7

a9

a10

ΠE
call

ΠPP

ΠS
load

ΠS
getfieldΠE

getfield

ΠS
load

ΠS
add

ΠS
const

ΠS
rem

ΠF
ret

ΠF
throw

ΠS
catch

ΠE
ret

ΠSE

ΠRVΠSE

A SYSTEM OF
CONSTRAINTS

Jar: classes and libraries

CFG: extracted from Jar

nodes
sequential and exceptional
arcs
return value and side-effects
arcs

Abstract Constraints Graph

a system of constraints - static analysis

Requirements!!!

A satisfies ACC, each Πins monotonic, each
Πins soundly approximates ins
⇒ Soundness!!!

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 6 / 30

Constraint-Based Static Analyses of Java Bytecode Programs A General Idea of the Approach

From ACG to Constraint-Based Static Analyses

JAR

CLASSES

LIBRARIES

node anode c

catch

node 11
exc@delayMinBy

node b
store 3 int

node 8
exit@delayMinBy

call Event.delayMinBy(int) : int

node 1
load 0 Event

node 2
getfield Event.min: int

node 3
load 1 int

node 4
add int

node 5
const 60

node 6
rem

node 7
return int

node 9
catch

node 10
throw Throwable

E

PP

SE SE
RV

S

S S

SE

S

S

SE

FF

aaac

a11

ab

a8

a1

a2

a3

a4

a5

a6

a7

a9

a10

ΠE
call

ΠPP

ΠS
load

ΠS
getfieldΠE

getfield

ΠS
load

ΠS
add

ΠS
const

ΠS
rem

ΠF
ret

ΠF
throw

ΠS
catch

ΠE
ret

ΠSE

ΠRVΠSE

A SYSTEM OF
CONSTRAINTS

Jar: classes and libraries

CFG: extracted from Jar

nodes
sequential and exceptional
arcs
return value and side-effects
arcs

Abstract Constraints Graph

a system of constraints - static analysis

Requirements!!!

A satisfies ACC, each Πins monotonic, each
Πins soundly approximates ins
⇒ Soundness!!!

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 6 / 30

Constraint-Based Static Analyses of Java Bytecode Programs A General Idea of the Approach

User vs. Framework

User

Instantiate A (property)

Instantiate Πins for each ins
(abstract semantics of ins)

Show that A and each Πins meet
framework’s Requirements

Framework

Extract CFG from a Jar

Construct ACG using Πinss

Extract constraints from ACG

Existence of the least solution

Soundness of the solution

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 7 / 30

Constraint-Based Static Analyses of Java Bytecode Programs Julia Static Analyzer - www.juliasoft.com

Julia - a static analyzer for Java and Android

Several Constraint-Based Static Analyses have been implemented inside Julia.
They are used like supporting analyses for Julia’s Nullness and Termination
tools and improve their precision. www.juliasoft.com

Definite Aliasing Analysis

Possible Sharing Analysis [SAS 2008]

Possible Side Effects Analysis

Possible Creation Point Analysis

Possible Reachability Analysis [IJCAR 2012, TOPLAS 2013]

Definite Expression Aliasing Analysis [ICTAC 2012]

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 8 / 30

Reachability Analysis of Program Variables

Reachability Analysis of Variables:
An Example of Constraint-Based Static

Analysis

[IJCAR 2012, TOPLAS 2013]

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 9 / 30

Reachability Analysis of Program Variables Intuitive definition

Intuitive definition of Reachability

A A
f f
g g
h h

o1 o2

x

nullnull

null null
00

y

Is there a sequence of fields f1, . . . , fk such that x.f1.. . . .fk = y?
x.f.m.n = y ⇒ x reaches y

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 10 / 30

Reachability Analysis of Program Variables Intuitive definition

Intuitive definition of Reachability

A A

B
m
n

B
m
n

f f
g g10 45
h h null

o1

o3

o4

o2

x

null

null

y

Is there a sequence of fields f1, . . . , fk such that x.f1.. . . .fk = y?

x.f.m.n = y ⇒ x reaches y

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 10 / 30

Reachability Analysis of Program Variables Intuitive definition

Intuitive definition of Reachability

A A

B
m
n

B
m
n

f
g 10
h

null

o1

o3

o4

o2

x

null

45
null

f
g
h

y

Is there a sequence of fields f1, . . . , fk such that x.f1.. . . .fk = y?
x.f.m.n = y

⇒ x reaches y

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 10 / 30

Reachability Analysis of Program Variables Intuitive definition

Intuitive definition of Reachability

A A

B
m
n

B
m
n

f
g 10
h

null

o1

o3

o4

o2

x

null

45
null

f
g
h

y

Is there a sequence of fields f1, . . . , fk such that x.f1.. . . .fk = y?
x.f.m.n = y ⇒ x reaches y

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 10 / 30

Reachability Analysis of Program Variables Intuitive definition

A Simple Example - List of Students

public class Student {
String name;
...

}
public class List<Student> {
public Student head;
public List<Student> tail;

public static void main(String[] args) {
List<Student> list = null;
for (int i = 1; i <= n; i++) {
Student student = new Student(i);
List<Student> tmp = new List<Student>();
tmp.head = student;
tmp.tail = list;
list = tmp;

}
}

}

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 11 / 30

Reachability Analysis of Program Variables Intuitive definition

A Simple Example - List of Students

public class Student {
String name;
...

}
public class List<Student> {
public Student head;
public List<Student> tail;

public static void main(String[] args) {
List<Student> list = null;
for (int i = 1; i <= n; i++) {
Student student = new Student(i);
List<Student> tmp = new List<Student>();
tmp.head = student;
tmp.tail = list;
list = tmp;

}
}

}

Reachability

a reaches b, i.e., a b iff
a reaches a location bound to b

tmp student
list tmp
list student

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 11 / 30

Reachability Analysis of Program Variables Intuitive definition

A Simple Example - List of Students

public class Student {
String name;
...

}
public class List<Student> {
public Student head;
public List<Student> tail;

public static void main(String[] args) {
List<Student> list = null;
for (int i = 1; i <= n; i++) {
Student student = new Student(i);
List<Student> tmp = new List<Student>();
tmp.head = student;
tmp.tail = list;
list = tmp;

}
}

}

Reachability

a reaches b, i.e., a b iff
a reaches a location bound to b

tmp student

list tmp
list student

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 11 / 30

Reachability Analysis of Program Variables Intuitive definition

A Simple Example - List of Students

public class Student {
String name;
...

}
public class List<Student> {
public Student head;
public List<Student> tail;

public static void main(String[] args) {
List<Student> list = null;
for (int i = 1; i <= n; i++) {
Student student = new Student(i);
List<Student> tmp = new List<Student>();
tmp.head = student;
tmp.tail = list;
list = tmp;

}
}

}

Reachability

a reaches b, i.e., a b iff
a reaches a location bound to b

tmp student
list tmp

list student

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 11 / 30

Reachability Analysis of Program Variables Intuitive definition

A Simple Example - List of Students

public class Student {
String name;
...

}
public class List<Student> {
public Student head;
public List<Student> tail;

public static void main(String[] args) {
List<Student> list = null;
for (int i = 1; i <= n; i++) {
Student student = new Student(i);
List<Student> tmp = new List<Student>();
tmp.head = student;
tmp.tail = list;
list = tmp;

}
}

}

Reachability

a reaches b, i.e., a b iff
a reaches a location bound to b

tmp student
list tmp
list student

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 11 / 30

Reachability Analysis of Program Variables Intuitive definition

A Simple Example 2 - List of Students

public class Student {
String name;
...

}
public class List<Student> {
public Student head;
public List<Student> tail;

public List(Student head, List<Student> tail) {
this.head = head;
this.tail = tail;

}

public static void main(String[] args) {
ListStudent list = null;
for (int i = 1; i <= n; i++) {
Student student = new Student(i);
List<Student> tmp = new List<Student>(student, list);
list = tmp;

}
}

}Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 12 / 30

Reachability Analysis of Program Variables Intuitive definition

A Simple Example 2 - List of Students

public class Student {
String name;
...

}
public class List<Student> {
public Student head;
public List<Student> tail;

public List(Student head, List<Student> tail) {
this.head = head;
this.tail = tail;

}

public static void main(String[] args) {
ListStudent list = null;
for (int i = 1; i <= n; i++) {
Student student = new Student(i);
List<Student> tmp = new List<Student>(student, list);
list = tmp;

}
}

}

Reachability

a reaches b, i.e., a b iff
a reaches a location bound to b

tmp student
tmp list
list student
list tmp

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 12 / 30

Reachability Analysis of Program Variables Intuitive definition

A Simple Example 2 - List of Students

public class Student {
String name;
...

}
public class List<Student> {
public Student head;
public List<Student> tail;

public List(Student head, List<Student> tail) {
this.head = head;
this.tail = tail;

}

public static void main(String[] args) {
ListStudent list = null;
for (int i = 1; i <= n; i++) {
Student student = new Student(i);
List<Student> tmp = new List<Student>(student, list);
list = tmp;

}
}

}

Reachability

a reaches b, i.e., a b iff
a reaches a location bound to b

tmp student
tmp list

list student
list tmp

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 12 / 30

Reachability Analysis of Program Variables Intuitive definition

A Simple Example 2 - List of Students

public class Student {
String name;
...

}
public class List<Student> {
public Student head;
public List<Student> tail;

public List(Student head, List<Student> tail) {
this.head = head;
this.tail = tail;

}

public static void main(String[] args) {
ListStudent list = null;
for (int i = 1; i <= n; i++) {
Student student = new Student(i);
List<Student> tmp = new List<Student>(student, list);
list = tmp;

}
}

}

Reachability

a reaches b, i.e., a b iff
a reaches a location bound to b

tmp student

tmp list

list student
list tmp

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 12 / 30

Reachability Analysis of Program Variables RelatedWork

Haven’t we solved this problem yet?
There is a lot of pointer analyses: [Hind01] surveys more than 75 papers

Sharing Analysis

Aliasing Analysis

REACHABILITY entails SHARING

SHARING entails REACHABILITY

ALIASING entails REACHABILITY

REACHABILITY entails ALIASING

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 13 / 30

Reachability Analysis of Program Variables RelatedWork

Haven’t we solved this problem yet?
There is a lot of pointer analyses: [Hind01] surveys more than 75 papers

Sharing Analysis

Aliasing Analysis

A A

B
m
n

B
m
n

f f
g g10 45
h h null

o1

o3

o4

o2

x

null

null

y

REACHABILITY entails SHARING

SHARING entails REACHABILITY

ALIASING entails REACHABILITY

REACHABILITY entails ALIASING

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 13 / 30

Reachability Analysis of Program Variables RelatedWork

Haven’t we solved this problem yet?
There is a lot of pointer analyses: [Hind01] surveys more than 75 papers

Sharing Analysis

Aliasing Analysis

A A

B
m
n

B
m
n

f f
g g10 45
h h null

o1

o3

o4

o2

x

null

null

y

REACHABILITY entails SHARING

SHARING entails REACHABILITY

ALIASING entails REACHABILITY

REACHABILITY entails ALIASING

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 13 / 30

Reachability Analysis of Program Variables RelatedWork

Haven’t we solved this problem yet?
There is a lot of pointer analyses: [Hind01] surveys more than 75 papers

Sharing Analysis

Aliasing Analysis

A A

B
m
n

B
m
n

f f
g g10 45
h h null

o1

o3

o4

o2

x

null

null

y

REACHABILITY entails SHARING

SHARING entails REACHABILITY

ALIASING entails REACHABILITY

REACHABILITY entails ALIASING

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 13 / 30

Reachability Analysis of Program Variables RelatedWork

Haven’t we solved this problem yet?
There is a lot of pointer analyses: [Hind01] surveys more than 75 papers

Sharing Analysis

Aliasing Analysis

A A

B
m
n

B
m
n

f f
g g10 45
h h null

o1

o3

o4

o2

x y

null

null

REACHABILITY entails SHARING

SHARING entails REACHABILITY

ALIASING entails REACHABILITY

REACHABILITY entails ALIASING

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 13 / 30

Reachability Analysis of Program Variables Application

Where can it be useful?
Cyclicity Analysis: An assignment y.h = x might make y cyclical?

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 14 / 30

Reachability Analysis of Program Variables Application

Where can it be useful?
Cyclicity Analysis: An assignment y.h = x might make y cyclical?

"Sharing" approachaaa

A A

B
m
n

B
m
n

f f
g g10 45
h h null

o1

o3

o4

o2

x

null

null

y

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 14 / 30

Reachability Analysis of Program Variables Application

Where can it be useful?
Cyclicity Analysis: An assignment y.h = x might make y cyclical?

"Sharing" approachaaa

A A

B
m
n

B
m
n

f f
g g10 45
h h null

o1

o3

o4

o2

x

null

null

y

y.h=x makes y cyclical?

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 14 / 30

Reachability Analysis of Program Variables Application

Where can it be useful?
Cyclicity Analysis: An assignment y.h = x might make y cyclical?

"Sharing" approachaaa

A A

B
m
n

B
m
n

f f
g g10 45
h h

o1

o3

o4

o2

x

null

null

y

y.h=x makes y cyclical?

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 14 / 30

Reachability Analysis of Program Variables Application

Where can it be useful?
Cyclicity Analysis: An assignment y.h = x might make y cyclical?

"Sharing" approachaaa

A A

B
m
n

B
m
n

f f
g g10 45
h h

o1

o3

o4

o2

x

null

null

y

if x shares with y?
y.h=x makes y cyclical?

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 14 / 30

Reachability Analysis of Program Variables Application

Where can it be useful?
Cyclicity Analysis: An assignment y.h = x might make y cyclical?

"Sharing" approachaaa

A A

B
m
n

B
m
n

f f
g g10 45
h h

o1

o3

o4

o2

x

null

null

y

y.h=x makes y cyclical? No!

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 14 / 30

Reachability Analysis of Program Variables Application

Where can it be useful?
Cyclicity Analysis: An assignment y.h = x might make y cyclical?

"Reachability" approachaaa

A A

B
m
n

B
m
n

f f
g g10 45
h h null

o1

o3

o4

o2

x

null

null

y

null

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 14 / 30

Reachability Analysis of Program Variables Application

Where can it be useful?
Cyclicity Analysis: An assignment y.h = x might make y cyclical?

"Reachability" approachaaa

A A

B
m
n

B
m
n

f f
g g10 45
h h null

o1

o3

o4

o2

x

null

null

y

null

y.h=x makes y cyclical?

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 14 / 30

Reachability Analysis of Program Variables Application

Where can it be useful?
Cyclicity Analysis: An assignment y.h = x might make y cyclical?

"Reachability" approachaaa

A A

B
m
n

B
m
n

f f
g g10 45
h h

o1

o3

o4

o2

x

null

null

y

if x reaches y

null

y.h=x makes y cyclical?

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 14 / 30

Reachability Analysis of Program Variables Application

Where can it be useful?
Cyclicity Analysis: An assignment y.h = x might make y cyclical?

"Reachability" approachaaa

A A

B
m
n

B
m
n

f f
g g10 45
h h

o1

o3

o4

o2

x

null

null

y

y.h=x makes y cyclical? Yes!

null

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 14 / 30

Reachability Analysis of Program Variables Application

Where can it be useful?
Side-effects Analysis: An assignment y.g = 45 might affect a parameter x of a method m?

A A

B
m
n

B
m
n

f f
g g10 0
h h null

o1

o3

o4

o2

x

null

null

y

45
if x and y share

A A

B
m
n

B
m
n

f f
g g10
h h null

o1

o3

o4

o2

x

null

null

y

null
0 45

might happen

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 15 / 30

Reachability Analysis of Program Variables Application

Where can it be useful?
Side-effects Analysis: An assignment y.g = 45 might affect a parameter x of a method m?

A A

B
m
n

B
m
n

f f
g g10 0
h h null

o1

o3

o4

o2

x

null

null

y

45
if x and y share

A A

B
m
n

B
m
n

f f
g g10
h h null

o1

o3

o4

o2

x

null

null

y

null
0 45

if x reaches y
YES

might happen

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 15 / 30

Reachability Analysis of Program Variables Operational semantics of the target language

Target language: a fragment of java bytecode

const v
dup t
load k t

Basic Instructions

store k t
ifne t
new κ
getfield κ.f: t

Object-manipulating

putfield κ.f: t
throw κ
catch

Exception-handling

exception_is K

Our implementation handles all Java types and bytecodes.

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 16 / 30

Reachability Analysis of Program Variables Operational semantics of the target language

Target language: a fragment of java bytecode

const v
dup t
load k t Basic Instructions
store k t
ifne t
new κ
getfield κ.f: t

Object-manipulating

putfield κ.f: t
throw κ
catch

Exception-handling

exception_is K

Our implementation handles all Java types and bytecodes.

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 16 / 30

Reachability Analysis of Program Variables Operational semantics of the target language

Target language: a fragment of java bytecode

const v
dup t
load k t

Basic Instructions

store k t
ifne t
new κ
getfield κ.f: t Object-manipulating
putfield κ.f: t
throw κ
catch

Exception-handling

exception_is K

Our implementation handles all Java types and bytecodes.

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 16 / 30

Reachability Analysis of Program Variables Operational semantics of the target language

Target language: a fragment of java bytecode

const v
dup t
load k t

Basic Instructions

store k t
ifne t
new κ
getfield κ.f: t

Object-manipulating

putfield κ.f: t
throw κ
catch Exception-handling
exception_is K

Our implementation handles all Java types and bytecodes.

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 16 / 30

Reachability Analysis of Program Variables Operational semantics of the target language

Target language: a fragment of java bytecode

const v
dup t
load k t

Basic Instructions

store k t
ifne t
new κ
getfield κ.f: t

Object-manipulating

putfield κ.f: t
throw κ
catch

Exception-handling

exception_is K

Our implementation handles all Java types and bytecodes.

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 16 / 30

Reachability Analysis of Program Variables Operational semantics of the target language

Target language: A Fragment of Java Bytecode

...
tmp.tail = list;

...

tmp ←→ l4
list ←→ l1

load 4 List
load 1 List
putfield List.tail: List

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 17 / 30

Reachability Analysis of Program Variables Operational semantics of the target language

State
Some definitions:

we distinguish local (L = {l0, l1, . . .}) and stack (S = {s0, s1, . . .})
variables;

values can be integers (Z), locations (L = {@`1, . . .}) and null;

objects contain fields and have methods;

environments map variables into values ϕ : L∪S→ Z∪L∪{null};

memories µ map locations to objects;

states are tuples 〈ϕ, µ〉;

Σ denotes the set of all possible states.

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 18 / 30

Reachability Analysis of Program Variables Operational semantics of the target language

State

l1 l2 l3 l4

@`2 2 @`3 @`4

Environment ϕ s0 s1

@`4 @`2

Student

name

st1

@`1
ListStudent

head

@`2

tail
Student

name

st2

@`3
ListStudent

head

@`4

tail
null

Memory µ

local
variables

stack
elements

null

σ = 〈〈[@`2, 2,@`3,@`4]︸ ︷︷ ︸
L

‖ @`2 :: @`4︸ ︷︷ ︸
S

〉, µ〉

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 18 / 30

Reachability Analysis of Program Variables Operational semantics of the target language

Semantics of tmp.tail = list at bytecode level

l1 l2 l3 l4

@`2 2 @`3 @`4

Environment ϕ

Student

name

st1

@`1
ListStudent

head

@`2

tail
Student

name

st2

@`3
ListStudent

head

@`4

tail
null

Memory µ

local
variables

stack
elements

null

load 4 List
load 1 List
putfield List.tail: List

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 19 / 30

Reachability Analysis of Program Variables Operational semantics of the target language

Semantics of tmp.tail = list at bytecode level

l1 l2 l3 l4

@`2 2 @`3 @`4

Environment ϕ

@`4

Student

name

st1

@`1
ListStudent

head

@`2

tail
Student

name

st2

@`3
ListStudent

head

@`4

tail
null

Memory µ

local
variables

stack
elements

s0

null

load 4 List
load 1 List
putfield List.tail: List

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 19 / 30

Reachability Analysis of Program Variables Operational semantics of the target language

Semantics of tmp.tail = list at bytecode level

l1 l2 l3 l4

@`2 2 @`3 @`4

Environment ϕ s0 s1

@`4 @`2

Student

name

st1

@`1
ListStudent

head

@`2

tail
Student

name

st2

@`3
ListStudent

head

@`4

tail
null

Memory µ

local
variables

stack
elements

null

load 4 List
load 1 List
putfield List.tail: List

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 19 / 30

Reachability Analysis of Program Variables Operational semantics of the target language

Semantics of tmp.tail = list at bytecode level

l1 l2 l3 l4

@`2 2 @`3 @`4

Environment ϕ

Student

name

st1

@`1
ListStudent

head

@`2

tail
Student

name

st2

@`3
ListStudent

head

@`4

tail
null

Memory µ

local
variables

stack
elements

load 4 List
load 1 List
putfield List.tail: List

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 19 / 30

Reachability Analysis of Program Variables Formal definition of reachability

Reachable locations and variables

Reachable locations Lσ(a)

Given a state σ = 〈ϕ, µ〉 and a location @`, locations reachable from @` in σ
are Lσ(@`) = lfp i≥0Li

σ(@`), where Li
σ(@`) represents the set of locations

reachable from @` in i steps, i.e.,

Li
σ(@`) =


{@`} if i = 0⋃
@`1∈Li−1

σ (@`)

(rng(µ(@`1).φ) ∩ L) ∪ Li−1
σ (@`) otherwise.

Reachability of variables a σb

We say that a variable b is reachable from a variable a in σ, and we denote it
a σb iff ϕ(a), ϕ(b) ∈ L and ϕ(b) ∈ Lσ(a).

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 20 / 30

Reachability Analysis of Program Variables Formal definition of reachability

Reachable locations and variables

Reachable locations Lσ(a)

Given a state σ = 〈ϕ, µ〉 and a location @`, locations reachable from @` in σ
are Lσ(@`) = lfp i≥0Li

σ(@`), where Li
σ(@`) represents the set of locations

reachable from @` in i steps, i.e.,

Li
σ(@`) =


{@`} if i = 0⋃
@`1∈Li−1

σ (@`)

(rng(µ(@`1).φ) ∩ L) ∪ Li−1
σ (@`) otherwise.

Reachability of variables a σb

We say that a variable b is reachable from a variable a in σ, and we denote it
a σb iff ϕ(a), ϕ(b) ∈ L and ϕ(b) ∈ Lσ(a).

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 20 / 30

Reachability Analysis of Program Variables Formal definition of reachability

Reachable locations and variables

l1 l2 l3 l4

@`2 2 @`3 @`4

Environment ϕ

Student

name

st1

@`1
ListStudent

head

@`2

tail
Student

name

st2

@`3
ListStudent

head

@`4

tail
null

Memory µ

local
variables

stack
elements

which locations are reachable from @`4?

L0
σ(@`4) = {@`4}

L1
σ(@`4) = {@`2,@`3,@`4}

L2
σ(@`4) = {@`1,@`2,@`3,@`4} ⇒ Lσ(@`4) = {@`1,@`2,@`3,@`4}

ϕ(l4) = @`4 ⇒ l4 σl4
ϕ(l1) = @`2 ⇒ l4 σl1
ϕ(l3) = @`3 ⇒ l4 σl3

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 20 / 30

Reachability Analysis of Program Variables Formal definition of reachability

Reachable locations and variables

l1 l2 l3 l4

@`2 2 @`3 @`4

Environment ϕ

Student

name

st1

@`1
ListStudent

head

@`2

tail
Student

name

st2

@`3 @`4

tail
null

Memory µ

local
variables

stack
elements

ListStudent

head

which locations are reachable from @`4?

L0
σ(@`4) = {@`4}

L1
σ(@`4) = {@`2,@`3,@`4}

L2
σ(@`4) = {@`1,@`2,@`3,@`4} ⇒ Lσ(@`4) = {@`1,@`2,@`3,@`4}

ϕ(l4) = @`4 ⇒ l4 σl4
ϕ(l1) = @`2 ⇒ l4 σl1
ϕ(l3) = @`3 ⇒ l4 σl3

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 20 / 30

Reachability Analysis of Program Variables Formal definition of reachability

Reachable locations and variables

l1 l2 l3 l4

@`2 2 @`3 @`4

Environment ϕ

Student

name

st1

@`1 @`2 @`3

Memory µ

local
variables

stack
elements

ListStudent

head tail
null

Student

name

st2
tailhead

@`4
ListStudent

which locations are reachable from @`4?

L0
σ(@`4) = {@`4}

L1
σ(@`4) = {@`2,@`3,@`4}

L2
σ(@`4) = {@`1,@`2,@`3,@`4} ⇒ Lσ(@`4) = {@`1,@`2,@`3,@`4}

ϕ(l4) = @`4 ⇒ l4 σl4
ϕ(l1) = @`2 ⇒ l4 σl1
ϕ(l3) = @`3 ⇒ l4 σl3

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 20 / 30

Reachability Analysis of Program Variables Formal definition of reachability

Reachable locations and variables

l1 l2 l3 l4

@`2 2 @`3 @`4

Environment ϕ

@`1

Memory µ

local
variables

stack
elements

name

st1

Student

@`2 @`3 @`4

tail
ListStudent

head
ListStudent

null

Student

name

st2
head tail

which locations are reachable from @`4?

L0
σ(@`4) = {@`4}

L1
σ(@`4) = {@`2,@`3,@`4}

L2
σ(@`4) = {@`1,@`2,@`3,@`4} ⇒ Lσ(@`4) = {@`1,@`2,@`3,@`4}

ϕ(l4) = @`4 ⇒ l4 σl4
ϕ(l1) = @`2 ⇒ l4 σl1
ϕ(l3) = @`3 ⇒ l4 σl3

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 20 / 30

Reachability Analysis of Program Variables Formal definition of reachability

Reachable locations and variables

l1 l2 l3 l4

@`2 2 @`3 @`4

Environment ϕ

@`1

Memory µ

local
variables

stack
elements

name

st1

Student

@`2 @`3 @`4

tail
ListStudent

head
ListStudent

null

Student

name

st2
head tail

which locations are reachable from @`4?

L0
σ(@`4) = {@`4}

L1
σ(@`4) = {@`2,@`3,@`4}

L2
σ(@`4) = {@`1,@`2,@`3,@`4} ⇒ Lσ(@`4) = {@`1,@`2,@`3,@`4}

ϕ(l4) = @`4 ⇒ l4 σl4
ϕ(l1) = @`2 ⇒ l4 σl1
ϕ(l3) = @`3 ⇒ l4 σl3

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 20 / 30

Reachability Analysis of Program Variables Static analysis

Formal definition depends on the current program state, i.e.,
on one particular execution.

We want to determine an approximation of the reachability
holding for any possible execution.

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 21 / 30

Reachability Analysis of Program Variables Abstract interpretation-based static analysis

Abstract Interpretation Framework [CousotCousot77]

C

A

α γ

C

A

f

f]

α γ

best correct approximation: f bca = α ◦ f ◦ γ
in practice: f] is less precise than f bca and

introduces over-approximation

concrete
domain

abstract
domain

abstraction
map

concretization
map

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 22 / 30

Reachability Analysis of Program Variables Abstract states

Concrete and Abstract Domains

Σ - set of all states

V - set of all variables

Concrete Domain: C = 〈℘(Σ),⊆〉

Abstract Domain: A = 〈℘(V × V),⊆〉

an abstract element R ∈ A represents those concrete states whose
reachability information is over-approximated by the pairs of variables in R
we write a b to denote 〈a, b〉

Concretization Map:

γ(R) = {σ ∈ Σ | ∀a, b ∈ V.a σb ⇒ a b ∈ R}

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 23 / 30

Reachability Analysis of Program Variables Abstract semantics

Constraint-based static analysis - example

Abstract Constraint Graph (ACG= 〈V ,E〉) gives rise to an
over-approximation of the reachability information
at each point of a program P.

the cfg of P gives rise to the nodes and arcs of the ACG,
i.e., there is a node for every bytecode and there is an arc between 2 nodes
if their corresponding bytecodes are adjacent in the CFG.

each node is decorated by an abstract element,
i.e., by a set of ordered pairs of variables representing an
over-approximation of the reachability information at that point.
arcs propagate approximations of the reachability of their sources,
i.e., they represent abstract semantics of bytecodes.

the reachability information of the initial node, corresponding to the
beginning of the main method is ∅, and it is propagated through the ACG.

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 24 / 30

Reachability Analysis of Program Variables Abstract semantics

Constraint-based static analysis - example

load 0 ListStudent
call java.lang.Object.〈init〉() : void

load 0 ListStudent
load 1 Student

putfield ListStudent.head : Student

load 0 ListStudent
load 2 ListStudent

putfield ListStudent.tail : ListStudent

return void

catch
throw java.lang.Throwable

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 24 / 30

Reachability Analysis of Program Variables Abstract semantics

Constraint-based static analysis - example

load 0 ListStudent
call java.lang.Object.〈init〉() : void

load 0 ListStudent
load 1 Student

putfield ListStudent.head : Student

load 0 ListStudent
load 2 ListStudent

putfield ListStudent.tail : ListStudent

return void

catch
throw java.lang.Throwable

ex
ce
pt
io
n

exit

node Anode C
catch

node 13
exception@〈init〉

node B
store 4 Student

node 10
exit@〈init〉

call ListStudent.〈init〉(Student, ListStudent) : void

node 1
load 0 ListStudent

node 2
call java.lang.Object.〈init〉() : void

node 3
load 0 ListStudent

node 4
load 1 Student

node 5
putfield ListStudent.head : Student

node 6
load 0 ListStudent

node 7
load 2 ListStudent

node 8
putfield ListStudent.tail : ListStudent

node 9
return void

node 11
catch

node 12
throw java.lang.Throwable

]14

]16]16

]3

]16
]12

]12

]16

]7

]3

]3

]6

]3

]3

]6

]8

]10

]13

]13

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 24 / 30

Reachability Analysis of Program Variables Abstract semantics

Constraint-based static analysis - example

load 0 ListStudent
call java.lang.Object.〈init〉() : void

load 0 ListStudent
load 1 Student

putfield ListStudent.head : Student

load 0 ListStudent
load 2 ListStudent

putfield ListStudent.tail : ListStudent

return void

catch
throw java.lang.Throwable

ex
ce
pt
io
n

exit

node Anode C
catch

node 13
exception@〈init〉

node B
store 4 Student

node 10
exit@〈init〉

call ListStudent.〈init〉(Student, ListStudent) : void

node 1
load 0 ListStudent

node 2
call java.lang.Object.〈init〉() : void

node 3
load 0 ListStudent

node 4
load 1 Student

node 5
putfield ListStudent.head : Student

node 6
load 0 ListStudent

node 7
load 2 ListStudent

node 8
putfield ListStudent.tail : ListStudent

node 9
return void

node 11
catch

node 12
throw java.lang.Throwable

]14

]16]16

]3

]16
]12

]12

]16

]7

]3

]3

]6

]3

]3

]6

]8

]10

]13

]13

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 24 / 30

Reachability Analysis of Program Variables Abstract semantics

Constraint-based static analysis - example

node 4
load 1 Student

node 5
putfield ListStudent.head : Student

node 6
load 0 ListStudent

]3

]6

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 24 / 30

Reachability Analysis of Program Variables Abstract semantics

Propagation rules - example

ListStudentStudentListStudentListStudent

initial approximation

l0 l0, l0 s0, l1 l1,
l0 l1 l2

type environment

l2 l2, s0 l0, s0 s0

putfield ListStudent.head: Student
node 5

load 1 Student
node 4

s0

final approximation type environment

#3

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 25 / 30

Reachability Analysis of Program Variables Abstract semantics

Propagation rules - example

ListStudent ListStudentListStudent

initial approximation

l0 l0, l0 s0, l1 l1,
l0 l1 l2

type environment

l2 l2, s0 l0, s0 s0

putfield ListStudent.head: Student
node 5

load 1 Student
node 4

s0

final approximation type environment

#3

ListStudent ListStudentListStudent

l0 l1 l2 s0 s1

Student

Student Student

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 25 / 30

Reachability Analysis of Program Variables Abstract semantics

Propagation rules - example

ListStudent ListStudentListStudent

initial approximation

l0 l0, l0 s0, l1 l1,
l0 l1 l2

type environment

l2 l2, s0 l0, s0 s0

s0

final approximation type environment

#3

ListStudent ListStudentListStudent

l0 l1 l2 s0 s1

Student

Student Student

propagation rule• if l1 a at node 4,
then s1 a at node 5

• if a l1 at node 4,
then a s1 at node 5

• l1 s1, s1 l1, s1 s1

load 1 Student
node 4

putfield ListStudent.head: Student
node 5

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 25 / 30

Reachability Analysis of Program Variables Abstract semantics

Propagation rules - example

ListStudent ListStudentListStudent

initial approximation
l0 l1 l2

type environment

l2 l2, s0 l0, s0 s0

putfield ListStudent.head: Student
node 5

load 1 Student
node 4

s0

final approximation type environment

#3

ListStudent ListStudentListStudent

l0 l1 l2 s0 s1

Student

Student Student

l0 l0, l0 s0, l1 l1,
l1 s1, l2 l2, s0 l0,
s0 s0, s1 l1, s1 s1

l0 l0, l0 s0, l1 l1,

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 25 / 30

Reachability Analysis of Program Variables Abstract semantics

Propagation rules - example

initial approximation type environment

ListStudentStudentListStudentListStudent

l0 l1 l2 s0
Student

s1

#6

l0 l0, l0 s0, l1 l1,
l1 s1, l2 l2, s0 l0,
s0 s0, s1 l1, s1 s1

load 0 ListStudent
node 6

putfield ListStudent.head: Student
node 5

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 25 / 30

Reachability Analysis of Program Variables Abstract semantics

Propagation rules - example

initial approximation type environment

ListStudentStudentListStudentListStudent

l0 l1 l2 s0
Student

s1

#6

l0 l0, l0 s0, l1 l1,
l1 s1, l2 l2, s0 l0,
s0 s0, s1 l1, s1 s1

load 0 ListStudent
node 6

putfield ListStudent.head: Student
node 5

type environment
ListStudentStudentListStudent

l0 l1 l2

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 25 / 30

Reachability Analysis of Program Variables Abstract semantics

Propagation rules - example

initial approximation type environment

ListStudentStudentListStudentListStudent

l0 l1 l2 s0
Student

s1

#6

l0 l0, l0 s0, l1 l1,
l1 s1, l2 l2, s0 l0,
s0 s0, s1 l1, s1 s1

load 0 ListStudent
node 6

putfield ListStudent.head: Student
node 5

type environment
ListStudentStudentListStudent

l0 l1 l2

• if a b at node 5
and a, b /∈{s0, s1},
then a b at node 6

• if a s0 and s1 b at node 5
and a, b /∈{s0, s1},
then a b at node 6

propagation rule

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 25 / 30

Reachability Analysis of Program Variables Abstract semantics

Propagation rules - example

initial approximation type environment

ListStudentStudentListStudentListStudent

l0 l1 l2 s0
Student

s1

#6

l0 l0, l0 s0, l1 l1,
l1 s1, l2 l2, s0 l0,
s0 s0, s1 l1, s1 s1

load 0 ListStudent
node 6

putfield ListStudent.head: Student
node 5

type environment
ListStudentStudentListStudent

l0 l1 l2

• if a b at node 5
and a, b /∈{s0, s1},
then a b at node 6

• if a s0 and s1 b at node 5
and a, b /∈{s0, s1},
then a b at node 6

propagation rule

l0 l0, l1 l1, l2 l2

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 25 / 30

Reachability Analysis of Program Variables Abstract semantics

Propagation rules - example

initial approximation type environment

ListStudentStudentListStudentListStudent

l0 l1 l2 s0
Student

s1

#6

load 0 ListStudent
node 6

putfield ListStudent.head: Student
node 5

type environment
ListStudentStudentListStudent

l0 l1 l2

• if a b at node 5
and a, b /∈{s0, s1},
then a b at node 6

• if a s0 and s1 b at node 5
and a, b /∈{s0, s1},
then a b at node 6

propagation rule

l0 l1

l0 l0, l0 s0, l1 l1,
l1 s1, l2 l2, s0 l0,
s0 s0, s1 l1, s1 s1

l0 s0

s1 l1

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 25 / 30

Reachability Analysis of Program Variables Abstract semantics

Propagation rules - example

initial approximation type environment

ListStudentStudentListStudentListStudent

l0 l1 l2 s0
Student

s1

#6

l0 l0, l0 s0, l1 l1,
l1 s1, l2 l2, s0 l0,
s0 s0, s1 l1, s1 s1

load 0 ListStudent
node 6

putfield ListStudent.head: Student
node 5

final approximation type environment
l0 l0, l0 l1, l1 l1, l2 l2 ListStudentStudentListStudent

l0 l1 l2

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 25 / 30

Reachability Analysis of Program Variables Soundness

Soundness of our approach
Let ins and σ ∈ Σ be a bytecode instruction and a state reached by an execution
of the main method of a program, and let Rins ∈ A be the reachability
approximation computed by our analysis at ins . Then,

σ ∈ γ(Rins).

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 26 / 30

Reachability Analysis of Program Variables Experimental evaluation

Experimental evaluation with Julia - Sharing vs. Reachability

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 27 / 30

Reachability Analysis of Program Variables Experimental evaluation

Experimental evaluation with Julia - Impact on other analyses

reachability
analysis

side-effects
analysis

field initializat.

analysis

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 28 / 30

Reachability Analysis of Program Variables Experimental evaluation

Experimental evaluation with Julia - Impact on other analyses

reachability
analysis

45.07%

side-effects
analysis

field initializat.

analysis

the ratio of pairs of variables 〈v, w〉 such that the
analysis concludes that v might reach w, over the
total number of pairs of variables of reference type:

the lower the ratio, the higher the precision

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 28 / 30

Reachability Analysis of Program Variables Experimental evaluation

Experimental evaluation with Julia - Impact on other analyses

reachability
analysis

45.07%

side-effects
analysis

−23.47%

field initializat.

analysis

which parameters p of a method might be affected
by its execution: the method might update a field of

an object reachable from p:
the lower the numbers, the better the precision

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 28 / 30

Reachability Analysis of Program Variables Experimental evaluation

Experimental evaluation with Julia - Impact on other analyses

reachability
analysis

45.07%

side-effects
analysis

−23.47%

field initializat.

analysis

+3.46%
the number of fields of reference type proven to be

always initialized before being read, in all
constructors of their defining class:

the higher the numbers, the better the precision

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 28 / 30

Reachability Analysis of Program Variables Experimental evaluation

Experimental evaluation with Julia - Impact on other analyses

reachability
analysis

45.07%

side-effects
analysis

−23.47%

field initializat.

analysis

+3.46%

runtime

nullness
analysis

−7.77%

termination
analysis

−1.62%
warnings −3.38% 0%

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 28 / 30

Conclusion HaveWe Achieved Our Goals?

Static Analysis - main issues

Static Analysis of real life software is extremely difficult:

complex semantics of current programming languages

Java bytecode

memory-related properties required

Ireachability,sharing,aliasing,side-effects

side-effects of method calls

ACG’s SE arcs deal with them

instructions’ exceptional behaviors

ACG’s exceptional arcs deal with them

libraries heavily used

our CFG includes them

annotations help, but...

Iwe do not use annotations

formalization vs. implementation

Idone

proof of Soundness is difficult

Iour framework simplifies these proofs

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 29 / 30

Conclusion HaveWe Achieved Our Goals?

Static Analysis - main issues

Static Analysis of real life software is extremely difficult:

complex semantics of current programming languages Java bytecode

memory-related properties required Ireachability,sharing,aliasing,side-effects

side-effects of method calls ACG’s SE arcs deal with them

instructions’ exceptional behaviors ACG’s exceptional arcs deal with them

libraries heavily used our CFG includes them

annotations help, but... Iwe do not use annotations

formalization vs. implementation Idone

proof of Soundness is difficult Iour framework simplifies these proofs

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 29 / 30

Conclusion HaveWe Achieved Our Goals?

Questions?

Ð. Nikolić (ETH - Software Verification) Reachability Analysis of Program Variables November 6th, 2013 30 / 30

	Introduction
	Our Goals

	Constraint-Based Static Analyses of Java Bytecode Programs
	A General Idea of the Approach
	Julia Static Analyzer - www.juliasoft.com

	Reachability Analysis of Program Variables
	Intuitive definition
	Related Work
	Application
	Operational semantics of the target language
	Formal definition of reachability
	Static analysis
	Abstract interpretation-based static analysis
	Abstract states
	Abstract semantics
	Soundness
	Experimental evaluation

	Conclusion
	Have We Achieved Our Goals?

