D. Nikoli¢ (ETH - Software Verification)

REeAcHABILITY ANALYSIS OF PROGRAM VARIABLES

Durica Nikoli¢

ETH - Chair of Software Engineering

November 6, 2013

software verification made easy
o
Reachability Analysis of Program Variables

®
=

STATIC ANALYSIS - BASIC FACTS

@ PROVIDES FACTS ABOUT RUN-TIME BEHAVIOR OF PROGRAMS BEFORE THEIR EXECUTIONS:

@ NO DIVISION BY ZERO

@ NO NULL DEREFERENCE
@ NO INFINITE LOOPS
o

@ NUMERICAL PROPERTIES VS. MEMORY-RELATED PROPERTIES
@ OVER-APPROXIMATIONS VS. UNDER-APPROXIMATIONS

@ ABSTRACT INTERPRETATION [CousotCousoT77] USUALLY HELPS

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November 6“‘, 2013 2/30

Our Goats
STATIC ANALYSIS - MAIN ISSUES

STATIC ANALYSIS OF REAL LIFE SOFTWARE IS EXTREMELY DIFFICULT:

COMPLEX SEMANTICS OF CURRENT PROGRAMMING LANGUAGES
MEMORY-RELATED PROPERTIES REQUIRED

SIDE-EFFECTS OF METHOD CALLS

EXCEPTIONAL BEHAVIORS SHOULD BE HANDLED

LIBRARIES HEAVILY USED

ANNOTATIONS HELP, BUT...

FORMALIZATION VS. IMPLEMENTATION

PROOF OF SOUNDNESS IS DIFFICULT

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November 6“‘, 2013

3/30

Our Goats
STATIC ANALYSIS - MAIN ISSUES

STATIC ANALYSIS OF REAL LIFE SOFTWARE IS EXTREMELY DIFFICULT:
@ COMPLEX SEMANTICS OF CURRENT PROGRAMMING LANGUAGES

MEMORY-RELATED PROPERTIES REQUIRED

SIDE-EFFECTS OF METHOD CALLS

EXCEPTIONAL BEHAVIORS SHOULD BE HANDLED

LIBRARIES HEAVILY USED

ANNOTATIONS HELP, BUT...

FORMALIZATION VS. IMPLEMENTATION

PROOF OF SOUNDNESS IS DIFFICULT

A Generic FRAMEWORK FOR CONSTRAINT-BASED Staric ANALYSES oF JAvA ByTECODE
PRroGRrAMS [NikoLicPHD] DEALS WITH ALL THESE ISSUES.

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November 6“‘, 2013 3/30

Constraint-Based Static Analyses of Java Bytecode Programs

FIRST STEPS

JAR
CLASSES

@ JAR: CLASSES AND LIBRARIES

LIBRARIES

Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

Constraint-Based Static Analyses of Java Bytecode Programs A GENERAL IDEA OF THE APPROACH
FIRST STEPS

JAR

CLASSES

NODE b
store 3 int

@ JAR: CLASSES AND LIBRARIES

NODE ¢ NODE a
catch lcall Event.delayMinBy(int) : int

SE

@ CFG: EXTRACTED FROM JAR

NODE 2
getfield Event.min:int

s
NODE 3
s
NODE 4 F|
[e |

NODE 11
excdelayMinBy

NODE 8
exitadelayMinBy

LIBRARIES

NODE 10
throw Throwable|

S
NODE T
return int

Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November 6“‘, 2013 4/30

Constraint-Based Static Analyses of Java Bytecode Programs A GENERAL IDEA OF THE APPROACH
FIRST STEPS

JAR

CLASSES

A 4
| o [l cveneacmpiney] | awobi @ JAR: CLASSES AND LIBRARIES
PP,

NODE 1
load 0 Event

@ CFG: EXTRACTED FROM JAR

N
NODE 8
itadelayMinBy

NODE 11
excdelayMing

@ NODES

LIBRARIES

NODE 4

NODE 10
throw Throwable| add int

S
NODE T
return int

Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November 6“‘, 2013 4/30

Constraint-Based Static Analyses of Java Bytecode Programs A GENERAL IDEA OF THE APPROACH

FIRST STEPS

JAR
CLASSES

A 4
NODE a

NODE ©
catch call Event.delayMinBy(int): int|

NODE b
store 3 int

NODE 11
excdelayMing

getfield Event.min:int

\}/\s‘

LIBRARIES
catch

| load 1 int |

F NODE 10
[throw Throwable|

NODE 4
add int

Nikoli¢ (ETH - Software Verification)

const 60

return int

Reachability Analysis of Program Variables

@ JAR: CLASSES AND LIBRARIES
@ CFG: EXTRACTED FROM JAR

@ NODES
@ SEQUENTIAL AND EXCEPTIONAL
ARCS

November 61, 2013 4/30

Constraint-Based Static Analyses of Java Bytecode Programs A GENERAL IDEA OF THE APPROACH
FIRST STEPS

JAR

CLASSES

Nle:fhc |<a||Event‘delayMinBy(int): int|-| store 3 int | [~ JAR: CLASSES AND LIBRARIES
PP, RY
SE NODE 1 E
>/ %’ @ CFG: EXTRACTED FROM JAR
NODE 11 .\s)l)li 2
excdelayMinBy ‘ getfield Event.min:int |~ |exit@delayMinBy| @ NODES
s
. @ SEQUENTIAL AND EXCEPTIONAL
load 1 int
- 5 4 ARCS
¥ NODE NODE r
%thvahwb‘eE [’] @ RETURN VALUE AND SIDE-EFFECTS
ARCS

S

NODE 7
return int

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November 6“‘, 2013 4/30

ased Static

Constrain

lyses of Java Bytecode Programs

ABSTRACT CONSTRAINT (GRAPHS

A GENERAL IDEA OF THE APPROACH

NODE ¢ NODE a
catch E |call Event.delayMinBy(int): int|

NODE b
store 3 int

SE

NODE 11
exc@delayMinBy

s
NODE 2
getfield Event.min:int

NODE 8
exitQdelayMinBy

NODE 9
catch

NODE 3
load 1int

sy

S
F [NoDE 10
[throw Throwable

NODE 4

addint ‘ F

Nikoli¢ (ETH - Software Ve

November 6t, 2013

5/30

Constraint-Based Static Analyses of Java Bytecode Programs A GENERAL IDEA OF THE APPROACH

ABSTRACT CONSTRAINT (GRAPHS

A - GENERIC ABSTRACT DOMAIN

NODE b
store 3 int

NODE ¢ NODE a
catch E |call Event.delayMinBy(int): int|
PP

SE NODE 1
load 0 Event

RY

s
NODE 2
getfield Event.min:int

NODE 11
exc@delayMinBy

NODE 8
exit@delayMinBy

NODE 9 NODE 3
‘ catch ‘ load 1 int ‘
s Sy
F [NoDE 10 NODE 4

throw Throwable add int ‘ F

s

NODE 7
return int

Nikoli¢ (ETH - Software Verificati Reachability Analysis of Program Variables November 6“‘, 2013 5/30

A GENERAL IoEA OF THE ApPROACH
ABSTRACT CONSTRAINT (GRAPHS

A - GENERIC ABSTRACT DOMAIN
Mins : A — A - GENERIC PROPAGATION RULE (ABSTRACT SEMANTICS OF iNS)

E
call
NODE ¢ (7, NODE a
‘ catch [Eleall Event delameBy(mt)

NODE 1 a
HSE load 0 Event
NODE 11 (1, Ioad NODE 2
excdelayMinBy getfield Event.min:int

NODE b (1
store 3 int

£
int]

NODE 8 (1,
exit@delayMinBy

ngtfleld

s
NODE 10 (11 ()
throw Throwable

return

M

nst

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November 6“‘, 2013 5/30

A GENERAL IoEA OF THE ApPROACH
From ACG 10 CONSTRAINT-BASED STATIC ANALYSES

@ JAR: CLASSES AND LIBRARIES

JAR
LTS @ CFG: EXTRACTED FROM JAR
T @ NODES
call v
[o "9t v iy 2 | gt © SEQUENTIAL AND EXCEPTIONAL
SE Ioad 0 Event
1 IS 11iid @ RETURN VALUE AND SIDE-EFFECTS
RO | s N P
. J ARCS
*“getfiel| g‘etf\e\d
LR R o e [@ AssTRACT CONSTRAINTS GRAPH

I 15|

d

¥ e 1mF, @ A SYSTEM OF CONSTRAINTS - STATIC ANALYSIS

S

afd
A SYSTEM OF S

CONSTRAINTS Eonst
S

i

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November 6“‘, 2013 6/30

A GENERAL IoEA OF THE ApPROACH
From ACG 10 CONSTRAINT-BASED STATIC ANALYSES

@ JAR: CLASSES AND LIBRARIES

JAR
LA @ CFG: EXTRACTED FROM JAR
T @ NODES
call A 4
‘ Nfa::hc a'#“{cauEvem.d’:fz);r\;i:lsy(im):%\?{ s':;:fii':ta @ SEQUENTIAL AND EXCEPTIONAL
SE Ioad 0 Event
I e 1 @ RETURN VALUE AND SIDE-EFFECTS
NODE T1 (11]{ TYE NODEZ (I ‘ NODES (1
excdelayMinBy getfield Event.min: int exit@delayMinBy ARCS
**getfiel getfield
LR AR NODE 9 @ (,j:d"fijta @ ABSTRACT CONSTRAINTS GRAPH
I 115
B Pfdnfet @ A SYSTEM OF CONSTRAINTS - STATIC ANALYSIS
S|
add ' ' '
AsveTEMOR | o ’ REeQuIiREMENTS!!!
CONSTRAINTS Pinst
S A sansries ACC, eEacH [T, MONOTONIC, EACH
B [is SOUNDLY APPROXIMATES iNS

= SounDpNEss!!!

B. Nikoli¢ (ETH - Software Verificatio Reachability Analysis of Program Variables November 6“‘, 2013 6/30

A GENERAL IoEA OF THE ApPROACH
UsER vs. FRAMEWORK

USER FRAMEWORK

eEXTRACT CFG FROM A JAR

eINSTANTIATE A (PROPERTY)

o[NSTANTIATE Ilj,s FOR EACH ins
(ABSTRACT SEMANTICS OF ins)

eCONSTRUCT ACG USING IT;,sS

®EXTRACT CONSTRAINTS FROM ACG

oSHOW THAT A AND EACH Ilj,s MEET
FRAMEWORK’S REQUIREMENTS

eEEXISTENCE OF THE LEAST SOLUTION

e SOUNDNESS OF THE SOLUTION

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Gth, 2013 7130

Juuin Sraric Awawvzes - wiwwjuliasoft.com
JULIA - A STATIC ANALYZER FOR JAVA AND ANDROID

JULIN

software verification made easy

SEVERAL CONSTRAINT—BASED STATIC ANALYSES HAVE BEEN IMPLEMENTED INSIDE JULIA.
THEY ARE USED LIKE SUPPORTING ANALYSES FOR JuLiA’s NULLNESS AND TERMINATION
TOOLS AND IMPROVE THEIR PRECISION. ‘WWW.JULIASOFT.COM ‘

@ DEFINITE ALIASING ANALYSIS

@ PossiBLE SHARING ANALYsis [SAS 2008]
@ PossiBLE SibE EFFECTS ANALYSIS

@ PossiBLE CREATION PoINT ANALYSIS

@ PossiBLE REACHABILITY ANALYSIS [IJCAR 2012, TOPLAS 2013]

@ DeriniTe ExpressioN Auiasing Anaysis [ICTAC 2012]

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November 6“‘, 2013 8/30

Reachability Analysis of Program Variables

REACHABILITY ANALYSIS OF VARIABLES:
AN ExampPLE oF CONSTRAINT-BASED STATIC
ANALYSIS

[IJCAR 2012, TOPLAS 2013]

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November 6“‘, 2013 9/30

Reachability Analysis of Program Variables

INTUITIVE DEFINITION OF REACHABILITY

Sl
Qe
(\)

null

' 0q+h
' 0Q+h

null

D. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables

INTUITIVE DEFINITION OF REACHABILITY

} B}
x mC e~

pr— 0yl s

g 10 0L Pl

h .\\ m| null h Fu
) N e

Is THERE A SEQUENCE OF FIELDS f1,..., fx SUCH THAT X.fq.....fx = y?

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 20138 10/30

Reachability Analysis of Program Variables INTUITIVE DEFINITION

INTUITIVE DEFINITION OF REACHABILITY

03 y

} B }
—x mC e~ g
— n nglll s
& 10 01 ¥ gl 45
B _/'h null
h N m| null U/
U n —

Is THERE A SEQUENCE OF FIELDS f1,..., fx SUCH THAT X.fq.....fx = y?

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

November 61, 2013 10/30

Reachability Analysis of Program Variables INTUITIVE DEFINITION

INTUITIVE DEFINITION OF REACHABILITY

03 y

} B }
—x mC e~ g
— n nglll s
& 10 01 ¥ gl 45
B _/'h null
h N m| null U/
U n —

Is THERE A SEQUENCE OF FIELDS f1,..., fx SUCH THAT X.fq.....fx = y?

S P

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

November 61, 2013 10/30

A SimpPLE EXAMPLE - LisT OF STUDENTS

public class Student {
String name;

}

public class List<Student> {
public Student head;
public List<Student> tail;

public static void main(String[] args) {

List<Student> list = null;

for (int i = 1; i <= n; i++) {
Student student = new Student(i);
List<Student> tmp = new List<Student>(Q);
tmp.head = student;
tmp.tail = list;
list = tmp;

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2013 11/30

A SimpPLE EXAMPLE - LisT OF STUDENTS

public class Student {
String name;

}
public class List<Student> {
public Student head; R
X . . EACHABILITY
public List<Student> tail;
a REACHES b, i.e., av b iff
public static void main(String[] args) { 2 REACHES A LOCATION BOUND TO b
List<Student> list = null;
for (int i = 1; i <= n; i++) {
Student student = new Student(i);
List<Student> tmp = new List<Student>(Q);
tmp.head = student;
tmp.tail = list;
list = tmp;

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 20138 11/30

A SimpPLE EXAMPLE - LisT OF STUDENTS

public class Student {
String name;

}
public class List<Student> {
public Student head; REAGHABILITY
public List<Student> tail;
a REACHES b, i.e., av b iff
public static void main(String[] args) { 2 REACHES A LOCATION BOUND TO b
List<Student> list = null; tmp ~»> student
for (int i = 1; i <= n; i++) {
Student student = new Student(i);
List<Student> tmp = new List<Student>(Q);
tmp.head = student;
tmp.tail = list;
list = tmp;

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 20138 11/30

A SimpPLE EXAMPLE - LisT OF STUDENTS

public class Student {
String name;

}

public class List<Student> {
public Student head; REAGHABILITY

public List<Student> tail;

a REACHES b, i.e., av b iff

public static void main(String[] args) { a REACHES A LOCATION BOUND TO b
List<Student> list = null; tmp ~»> student
for (int i = 1; i <= n; i++) { list ~» tmp

Student student = new Student(i);
List<Student> tmp = new List<Student>(Q);
tmp.head = student;

tmp.tail = list;

list = tmp;

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 20138 11/30

A SimpPLE EXAMPLE - LisT OF STUDENTS

public class Student {
String name;

}

public class List<Student> {
public Student head; REAGHABILITY

public List<Student> tail;

a REACHES b, i.e., av b iff

public static void main(String[] args) { a REACHES A LOCATION BOUND TO b
List<Student> list = null; tmp ~»> student
for (int i = 1; i <= n; i++) { list ~» tmp

Student student = new Student(i);
List<Student> tmp = new List<Student>(Q);
tmp.head = student;

tmp.tail = list;

list = tmp;

list ~> student

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 20138 11/30

A SimpPLE ExAMPLE 2 - LiST OF STUDENTS

public class Student {
String name;

}
public class List<Student> {

public Student head;
public List<Student> tail;

public List(Student head, List<Student> tail) {
this.head = head;
this.tail = tail;

}

public static void main(String[] args) {
ListStudent list = null;
for (int i = 1; i <= n; i++) {
Student student = new Student(i);
List<Student> tmp = new List<Student>(student, list);
list = tmp;
}

}

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2018 12/30

A SimpPLE ExAMPLE 2 - LiST OF STUDENTS

public class Student {
String name;

}
public class List<Student> {
public Student head;
public List<Student> tail; EEEENGY

public List(Student head, List<Student> tail) { a REACHES b, i.e., av» b iff

this.head = head; a REACHES A LOCATION BOUND TO b
this.tail = tail;
}

public static void main(String[] args) {
ListStudent list = null;)
for (int i = 1; i <= n; i++) {
Student student = new Student(i);
List<Student> tmp = new List<Student>(student, list);
list = tmp;
}

}

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2018 12/30

A SimpPLE ExAMPLE 2 - LiST OF STUDENTS

public class Student {
String name;

}
public class List<Student> {

public Student head;
public List<Student> tail; EEEENGY

public List(Student head, List<Student> tail) { a REACHES b, i.e., av b iff
this.head = head; a REACHES A LOCATION BOUND TO b
this.tail = tail; tmp ~~» student

} tmp > list

public static void main(String[] args) {
ListStudent list = null;)
for (int i = 1; i <= n; i++) {
Student student = new Student(i);
List<Student> tmp = new List<Student>(student, list);
list = tmp;
}

}

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2018 12/30

A SimpPLE ExAMPLE 2 - LiST OF STUDENTS

public class Student {
String name;

}
public class List<Student> {

public Student head;
public List<Student> tail; EEEENGY

public List(Student head, List<Student> tail) { a REACHES b, i.e., av b iff
this.head = head; a REACHES A LOCATION BOUND TO b
this.tail = tail; tmp ~»> student

}
. .]]] list ~» student
pufi!.lc static V(')ld xilam(SFrlng[] args) { st o T
istStudent list = null;)
for (int i = 1; i <= n; i++) {
Student student = new Student(i);
List<Student> tmp = new List<Student>(student, list);
list = tmp;
}

}

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2018 12/30

Reachability Analysis of Program Variables

HAVEN'T WE SOLVED THIS PROBLEM YET?
THERE IS A LOT OF POINTER ANALYSES: [HINDO1] SURVEYS MORE THAN 75 PAPERS

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

Reachability Analysis of Program Variables

HAVEN'T WE SOLVED THIS PROBLEM YET?

THERE IS A LOT OF POINTER ANALYSES: [HINDO1] SURVEYS MORE THAN 75 PAPERS

[red
1 m S 2
A]S —
(o o |
[nu.
@ SHARING ANALYSIS) m

B. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables

Reachability Analysis of Program Variables

HAVEN'T WE SOLVED THIS PROBLEM YET?

THERE IS A LOT OF POINTER ANALYSES: [HINDO1] SURVEYS MORE THAN 75 PAPERS

(e
1 m Y 2
— e A
malN==y
[nu.
@ SHARING ANALYSIS) m

D. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables

Reachability Analysis of Program Variables

HAVEN'T WE SOLVED THIS PROBLEM YET?

THERE IS A LOT OF POINTER ANALYSES: [HINDO1] SURVEYS MORE THAN 75 PAPERS

==

1 m Y 2
T e A
g 10 o g 15 |
hi =« ™~ h| null

@ SHARING ANALYSIS) E

@ REACHABILITY entaiLs SHARING
@ SHARING exnmaics REACHABILITY

B. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables

Reachability Analysis of Program Variables ReLatED WoRK

HAVEN'T WE SOLVED THIS PROBLEM YET?

THERE IS A LOT OF POINTER ANALYSES: [HINDO1] SURVEYS MORE THAN 75 PAPERS

a Og/iy
gl‘/ B 09
A mi s ~_ A
D[nyll |
% B i PY /E 4511
* nu.
m [Faull
@ SHARING ANALYSIS) n

@ ALIASING ANALYSIS

@ ALIASING entaiLs REACHABILITY
@ REACHABILITY entatcs ALIASING

b. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables November Sth, 2018 13/30

WHERE CAN IT BE USEFUL?

CycLiciTy ANALYSIS: AN ASSIGNMENT y.h = X MIGHT MAKE ' CYCLICAL?

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

Reachability Analysis of Program Variables

WHERE CAN IT BE USEFUL?

CycLiciTy ANALYSIS: AN ASSIGNMENT y.h = X MIGHT MAKE ' CYCLICAL?

"SHARING" APPROACH

v’ o3 (¥ y
]]
) R
T L null
o= e
nu
o REE

D. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables

Reachability Analysis of Program Variables APPLICATION

WHERE CAN IT BE USEFUL?

CycticiTy ANALYsIS: AN ASSIGNMENT y.h = X MIGHT MAKE Y CYCLICAL?

"SHARING" APPROACH

T o5 (]‘3\,)

) I\ m g \32 K
o On pa—
g 10 - gl 45
hl < " h[null
) nie

y.h=2 MAKES y CYCLICAL?

b. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables November Sth, 20138 14 /30

Reachability Analysis of Program Variables APPLICATION

WHERE CAN IT BE USEFUL?

CycticiTy ANALYsIS: AN ASSIGNMENT y.h = X MIGHT MAKE Y CYCLICAL?

"SHARING" APPROACH

L o3 (¥
B

NI

3. 2
A o] N
f — [
e - =
) n

y.h=2 MAKES y CYCLICAL?

b. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables November Sth, 20138 14 /30

Reachability Analysis of Program Variables APPLICATION

WHERE CAN IT BE USEFUL?

CycticiTy ANALYsIS: AN ASSIGNMENT y.h = X MIGHT MAKE Y CYCLICAL?

"SHARING" APPROACH

L 0‘4m
B

NI

} E
A ol | A
f — fh—e
g 10 g g 45
. hi—
n[_null |
) n

y.h= MAKES Y CYCLICAL?
IF T SHARES WITH Y7

b. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables November Sth, 20138 14 /30

Reachability Analysis of Program Variables APPLICATION

WHERE CAN IT BE USEFUL?

CycticiTy ANALYsIS: AN ASSIGNMENT y.h = X MIGHT MAKE Y CYCLICAL?

"SHARING" APPROACH

L Ozﬁ

Qe
By
[94—&@

\B

m[%]
e
Bl :~O4 B =
) o

y.h=x makes y cycricaL? No!

b. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables November Sth, 20138 14 /30

Reachability Analysis of Program Variables

WHERE CAN IT BE USEFUL?

CycLiciTy ANALYSIS: AN ASSIGNMENT y.h = X MIGHT MAKE ' CYCLICAL?

"REACHABILITY" APPROACH

=

=

B
mf s |
: = n [npll - A
g 10 oy g 45
hl < m-//'h null
4 n

D. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables

Reachability Analysis of Program Variables APPLICATION

WHERE CAN IT BE USEFUL?

CycticiTy ANALYsIS: AN ASSIGNMENT y.h = X MIGHT MAKE Y CYCLICAL?

"REACHABILITY" APPROACH

B]
L ml s 2
n| ngil
f — oLy f[null
gl 10 E) L8 d
i o - R
) n. o«

y.h=2 MAKES y CYCLICAL?

b. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables

November 61, 2013 14/30

Reachability Analysis of Program Variables APPLICATION

WHERE CAN IT BE USEFUL?

CycticiTy ANALYsIS: AN ASSIGNMENT y.h = X MIGHT MAKE Y CYCLICAL?

"REACHABILITY" APPROACH

x o5 Yy
} B]
1 mfp | 2
N[npll
f = oLy f[null
% 19 5 845
m [Fauly =
) n| o«

y.h=x MAKES ¥ CYCLICAL?
IF & REACHES Y

b. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables November Sth, 2018 14/30

Reachability Analysis of Program Variables APPLICATION

WHERE CAN IT BE USEFUL?

CycticiTy ANALYsIS: AN ASSIGNMENT y.h = X MIGHT MAKE Y CYCLICAL?

"REACHABILITY" APPROACH

x 0 Yy
; =
£ : ” f [Eull
nu
gl 10 o g 45
hl < ||e —
m| null |
L) n o«

y.h=x mMaKES y cycLicaL? YES!

b. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables November Sth, 2018 14/30

Reachability Analysis of Program Variables

WHERE CAN IT BE USEFUL?

SIDE-EFFECTS ANALYSIS: AN ASSIGNMENT y¥.g = 45 MIGHT AFFECT @ parameter X oF A METHOD m?

T

51

B5'0g+Hh

A

—

10

hY N
)

o3 (v y

B gz

m o

I

] g H 45
h| null

B

MIGHT HAPPEN
IF ' AND Yy SHARE

D. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables

ApuicaTioN
WHERE CAN IT BE USEFUL?

SIDE-EFFECTS ANALYSIS: AN ASSIGNMENT y¥.g = 45 MIGHT AFFECT @ parameter X oF A METHOD m?

T oo (v Y
} : s
" a LI N
pre— D[null | pa— MIGHT HAPPEN
g 10 04 5 g} A5 | | IF T AND Y SHARE
h LY AN . h| null

) nf=.
X 05 Yy
} B}
1 m 2

A n| oyl A YES
g 1‘6/ 04 é §u}115 IF ' REACHES Y
B

= o e

) n e

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2018 15/30

OPERATIONAL SEWANTICS OF THE TARGET LANGUAGE
TARGET LANGUAGE: A FRAGMENT OF JAVA BYTECODE

const v

dup t

load k t
store Kk t
ifne t

new
getfield «.f:t
putfield «.f:t
throw «
catch

exception_is K

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2013 16/30

TARGET LANGUAGE: A FRAGMENT OF JAVA BYTECODE

const v

dup t

load k t Basic INSTRUCTIONS
store Kk t

ifne t

new K
getfield «.f:t
putfield «.f:t
throw «

catch
exception_is K

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

TARGET LANGUAGE: A FRAGMENT OF JAVA BYTECODE

const v

dup t

load k t

store k t

ifne t

new
getfield «.f:t OBJECT-MANIPULATING
putfield «.f:t
throw «

catch
exception_is K

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

TARGET LANGUAGE: A FRAGMENT OF JAVA BYTECODE

const v

dup t

load k t

store k t

ifne t

new K
getfield «.f:t
putfield «.f:t
throw «

catch EXCEPTION-HANDLING
exception_is K

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

TARGET LANGUAGE: A FRAGMENT OF JAVA BYTECODE

const v

dup t

load k t
store Kk t
ifne t

new K
getfield «.f:t
putfield «.f:t
throw «
catch
exception_is K

OUR IMPLEMENTATION HANDLES ALL JAVA TYPES AND BYTECODES. J

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

TARGET LANGUAGE: A FRAGMENT oF JAvA BYTECODE

tmp.tail = list; load 4 List
load 1 List

putfield List.tail: List
tmp «— Iy

list «— |y

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

Reachability Analysis of Program Variables (OPERATIONAL SEMANTICS OF THE TARGET LANGUAGE

SOME DEFINITIONS:

@ WE DISTINGUISH LOCAL (L = {lp, /1, ...}) AND STACK (S = {sp, S1,...})
VARIABLES;

VALUES CAN BE INTEGERS (Z), LOCATIONS (L = {@{1,...}) aNnD null;
OBJECTS CONTAIN FIELDS AND HAVE METHODS;

MEMORIES 4 MAP LOCATIONS TO OBJECTS;

°
°
@ ENVIRONMENTS MAP VARIABLES INTO VALUES ¢ : LUS — ZULU{null};
°
@ STATES ARE TUPLES (¢, 1);

°

> DENOTES THE SET OF ALL POSSIBLE STATES.

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2018 18/30

Reachability Analysis of Program Variables (OPERATIONAL SEMANTICS OF THE TARGET LANGUAGE

LOCAL STACK
ARIABLES ELEMENTS

ENVIRONMENT o—= [y | Iy | I3 | s | So| s1

MEMORY @52 2 |Qlz|Ql)@l Qfy

=]
\
(@14 Q/fy Q/f3 Qly
Student ListStudent Student ListStudent
name head [tail name head [tail
stl Q [null st2 Q [null

A A\
o = <<[©€2,2, @fg,@&;] Il Q¢ :: ©f4>,ll>
—_—— e
L S

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2013 18/30

OPERATIONAL SEMANTICS OF THE TARGET LANGUAGE
SEMANTICS OF tmp.tail = list AT BYTECODE LEVEL

ENVIRONMENT ¢o—=| [; | [y

MEMORY p

e

LOCAL STACK
VARIABLES __ ELEMENTS

I3 | Iy

Qfy| 2 |Qr5|@QL,

@z, @/, Qly Qly

Student ListStudent Student ListStudent
name head[tail name head[tail
stl Q‘ [null st2 C{ [null

load 4 List
load 1 List

putfield List.tail: List

b. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables

November 6t, 2013

19/30

OPERATIONAL SEMANTICS OF THE TARGET LANGUAGE
SEMANTICS OF tmp.tail = list AT BYTECODE LEVEL

ENVIRONMENT ¢o—=| [; | [y

MEMORY p

.

LOCAL STACK
VARIABLES LEMENTS

3| Iy | s0

Qfy| 2 |Qr5|QL QL

@z, @/, Qly Qly

Student ListStudent Student ListStudent
name head[tail name head[tail
stl Q‘ [null st2 C{ [null

load 4 List
load 1 List

putfield List.tail: List

b. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables

November 6t, 2013

19/30

Reachability Analysis of Program Variables (OPERATIONAL SEMANTICS OF THE TARGET LANGUAGE

SEMANTICS OF tmp.tail = list AT BYTECODE LEVEL

LOCAL

VARIA

BLES

STACK

LE

ENTS

ENVIRONMENT ¢o—=| [; | [y

MEMORY p

s

I3

ly

50

S1

Q/ly| 2

=Y
‘@,‘ég

Qy

Qly

I

ar,

@z, @/, Qly Q/ly

Student ListStudent Student ListStudent
name head[tall name head[tail
stl [null st2 [null

‘\J‘\J

load 4 List
load 1 List

putfield List.tail: List

b. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables

November 6t, 2013

19/30

OPERATIONAL SEMANTICS OF THE TARGET LANGUAGE
SEMANTICS OF tmp.tail = list AT BYTECODE LEVEL

LOCAL

VARIA

BLES

STACK
ELEMENTS

ENVIRONMENT ¢o—=| [; | [y

MEMORY p

e

I3

ly

Q/ly| 2

=Y
‘@,‘ég

Qy

@z, Qs Qls Qly

Student ListStudent Student ListStudent
name head[tail name head[tail
stl 9 [null st2 Q‘,J/o

N

load 4 List
load 1 List

putfield List.tail: List

—

b. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables

November 6t, 2013

19/30

Reachability Analysis of Program Variables FORMAL DEFINITION OF REACHABILITY

REACHABLE LOCATIONS AND VARIABLES

REACHABLE LocATIONS L(a)

GIVEN A STATE 0 = (¢, 1) AND A LOCATION @, LOCATIONS REACHABLE FROM @f IN o
ARE L, (Q@() = Ifp;soL!(@C), wHERE L] (@) REPRESENTS THE SET OF LOCATIONS
REACHABLE FROM ©f IN j STEPS, I.E.,

{@¢} Fi=0

Li,(@f) = U (rng(u(@¢1).¢) NL) UL (@) oTHERWISE.
Qt1eliz1(@f)

Reachability Analysis of Program Variables November Sth, 2018 20/30

b. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables FORMAL DEFINITION OF REACHABILITY

REACHABLE LOCATIONS AND VARIABLES

REACHABLE LocATIONS L(a)

GIVEN A STATE 0 = (¢, 1) AND A LOCATION @, LOCATIONS REACHABLE FROM @f IN o
ARE L, (Q@() = Ifp;soL!(@C), wHERE L] (@) REPRESENTS THE SET OF LOCATIONS
REACHABLE FROM ©f IN j STEPS, I.E.,

{@¢} Fi=0

Li,(@f) = U (rng(u(@¢1).¢) NL) UL (@) oTHERWISE.
Qt1eliz1(@f)

REACHABILITY OF VARIABLES a~»7b

WE SAY THAT A VARIABLE D IS REACHABLE FROM A VARIABLE & IN O, AND WE DENOTE IT
a~"b IFF ¢(a),p(b) € L anp ¢(b) € L,(a).

v

November 61, 2013 20/30

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

Reachability Analysis of Program Variables FORMAL DEFINITION OF REACHABILITY

REACHABLE LOCATIONS AND VARIABLES

STACK
BELEMENTS

LOCAL

VARIABLES
ENVIRONMENT ¢o—= [y | Iy | I | Iy
MEMORY g Qly| 2 |Qly|Q1,

e

Qr, Qly Qr Qly

[[student | |[ListStudent | [[Student

|
[name |||head[tail||[name ||[head|tail
| Q

[stl \Q‘ [nu1l]|[st2]

N ——

[Liststudent |

WHICH LOCATIONS ARE REACHABLE FROM @{,7

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

November 6t, 2013

20/30

Reachability Analysis of Program Variables FORMAL DEFINITION OF REACHABILITY

REACHABLE LOCATIONS AND VARIABLES

STACK
BELEMENTS

LOCAL
VARIABLES
ENVIRONMENT ¢o—= [y | Iy | I | Iy
MEMORY g Qly| 2 |Qly|Q1,
~

e

Qr, Qly Qr Qly

[[student | [[Liststudent || [student || [ListStudent |

|
[name |||head[taill|[name || head|tail
Cstl J|[] [null]|[st2]|[Q ﬂ

)

S

WHICH LOCATIONS ARE REACHABLE FROM @{,7

L0(@f) = (Ol

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

November 6t, 2013

20/30

REACHABLE LOCATIONS AND VARIABLES

STACK
BELEMENTS

LOCAL
VARIABLES
ENVIRONMENT ¢o—= [y | Iy | I | Iy
MEMORY 4 Qb| 2 |ats|ar,
‘/‘///

Q7 Q/ly (@4 Qly
[(student | [[Liststudent || [student || [ListStudent |
[name ||[head[taill|| name || head[tail

stl 9\ null st2 kﬁz‘

N ——

WHICH LOCATIONS ARE REACHABLE FROM @{,7

L3 ()

{@L4}

L1(@t) = {©lp, Ols, @y}

b. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables

November 6t, 2013

20/30

REACHABLE LOCATIONS AND VARIABLES

LOCAL

VARIA

BLES

STACK
BELEMENTS

ENVIRONMENT ¢o—= [| Iy

MEMORY p

ls

ly

Qfy| 2

Qr,

ar,
~

e

Qr Qly

[student | | [ListStudent |
|

Qr, Qly
[[student | | [ListStudent |
| name || head[tail]

stl 3 null

| name head[tail
st2

S —

WHICH LOCATIONS ARE REACHABLE FROM @{,7

L0(06) = (@)
L' () = (@l 0Ly, QL)
L2(0L) =

(011,065, 005,004) = | Ly(OLy) = {Of1, 0Ly, O3, OLy)

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

November 61, 2013 20/30

REACHABLE LOCATIONS AND VARIABLES

LOCAL STACK
VARIABLES ELEMENTS
ENVIRONMENT ¢o—= [y | Iy | I | Iy

MEMORY 4 Qly| 2 |Gty @,
~

e

Qr, Qly Qr Qly

tudent | | [ListStudent | | [Student || [ListStudent |
name || head|taill|[name || head[tail
stl 3 null st2

WHICH LOCATIONS ARE REACHABLE FROM @{,7

L0(@Ly) = {0}
L1(@fy) = (@, Ols, QL)
L2(0ls) = (O, 0fp, 06, 0l) = |Ly(0ly) = (06, 0ly, Ols, OLs)

(,0(/4) = ©f4 = /4M'>(rl4
(,0(11) = @fg = I4'V\'>o—/1
(,0(/3) = @63 = /4'\/\»(’—[3

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 20138 20/30

Reachability Analysis of Program Variables STATIC ANALYSIS

FORMAL DEFINITION DEPENDS ON THE CURRENT PROGRAM STATE, I.E.,
oN ONE PARTICULAR EXECUTION.
WE WANT TO DETERMINE AN APPROXIMATION OF THE REACHABILITY
HoLDING FOR ANY POSSIBLE EXECUTION.

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2018 21/30

ABSTRACT INTERPRETATION FRAMEWORK [CousotCousot77]

CONCRETE f
— ~_ 7 ~__ —p
DOMAIN C

ABSTRACTION CONCRETIZATION
MAP g ¥ MAP
ay ay
ABSTRACT
DOMAIN ™ A A

ft

BEST CORRECT APPROXIMATION: [= q o fory

IN PRACTICE: f% Is LESS PRECISE THAN fU“ AND
INTRODUCES OVER-APPROXIMATION

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

AssTRACT STATES
CoNcRETE AND ABSTRACT DoOMAINS

Y - SET OF ALL STATES
V/ - SET OF ALL VARIABLES
ConcreTe Domain: C = (p(X), <)

AssTrAcT DomaN: A = (p(V X V), C)

@ AN ABSTRACT ELEMENT R € A REPRESENTS THOSE CONCRETE STATES WHOSE
REACHABILITY INFORMATION IS OVER-APPROXIMATED BY THE PAIRS OF VARIABLES IN R
@ WE WRITE 8~ b To DENOTE (&, b)

@ CoNcREeTizATION MAP:

v(R) ={oc€eX|VYa,beV.aw’b = awb € R}

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2018 23/30

L
CONSTRAINT-BASED STATIC ANALYSIS - EXAMPLE

ABsTRACT CoNsTRAINT GRrAPH (ACG= (V, E)) GIVES RISE TO AN
OVER-APPROXIMATION OF THE REACHABILITY INFORMATION
AT EACH POINT OF A PROGRAM P.

THE CFG OF P GIVES RISE TO THE NODES AND ARCS OF THE ACG,
I.E., THERE IS A NODE FOR EVERY BYTECODE AND THERE IS AN ARC BETWEEN 2 NODES
IF THEIR CORRESPONDING BYTECODES ARE ADJACENT IN THE CFG

EACH NODE IS DECORATED BY AN ABSTRACT ELEMENT,
I.E., BY A SET OF ORDERED PAIRS OF VARIABLES REPRESENTING AN
OVER-APPROXIMATION OF THE REACHABILITY INFORMATION AT THAT POINT.

ARCS PROPAGATE APPROXIMATIONS OF THE REACHABILITY OF THEIR SOURCES,
I.E., THEY REPRESENT ABSTRACT SEMANTICS OF BYTECODES.

THE REACHABILITY INFORMATION OF THE INITIAL NODE, CORRESPONDING TO THE
BEGINNING OF THE MAIN METHOD IS 0, AND IT IS PROPAGATED THROUGH THE ACG.

D. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2018 24/30

CONSTRAINT—BASED STATIC ANALYSIS - EXAMPLE

Student
call java.lang.Object. (init)() : void

load 0 ListStudent.

load 1 Student
/ putfield ListStudent.head: Student

v
\ load 0 ListStudent
load 2 ListStudent.

putfield ListStudent.tail: ListStudent]

¥

catch
throw java.lang. Throwable

ikoli¢ (ETH - Software Verificatior achability Analysis of Program Variables

ea

y Analysis of Program Variables ABSTRACT SEMANTICS

CONSTRAINT-BASED STATIC ANALYSIS - EXAMPLE

’ NODE C ‘m NODE A NODE B
catch call ListStudent. (init)(Student, ListStudent) : void store 4 Student
14y
410 ‘ NODE 1 ‘ t16
4 load 0 ListStudent '
1 By 1

load 0 ListStudent
call java.lang.Object. (init)()

NODE 2
call java.lang.Object. (init)() :
NODE 13

NODE 10
exit@(init)

exception@(init)

load 0 ListStudent.

load 1 Student
/ putfield ListStudent head: Student £16
+
throw java.lang. Throwable
\ load 0 ListStudent 110

load 2 ListStudent
putfield ListStudent.tail: ListStudent|

v NODE 11
‘ return void ‘ catch

17
NODE 12
throw java.lang. Throwable

load 2 ListStudent
3
NODE 8
putfield ListStudent.tail: ListStudent|
%6
NODE 9
return void

(ETH - Software Verificatiof Reachability Analysis of Prog Variables

November 61, 2013 24/30

Rea

y Analysis of Program Variables

ABSTRACT SEMANTICS

CONSTRAINT-BASED STATIC ANALYSIS - EXAMPLE

load 0 ListStudent
call java.lang.Object. (ini

’ NODE C e NODE A NODE B
catch call ListStudent. (init)(Student, ListStudent) : void store 4 Student
14y
410 ‘ NODE 1 ‘ t16
4 load 0 ListStudent '
1 By 1

NODE 13

exception@(init)

load 0 ListStudent
load 1 Student

load 2 ListStudent
putfield ListStudent.tail: ListStudent|

/ putfield ListStudent head: Student £16
v
\ load 0 ListStudent 110

v NODE 11 ®
‘ return void ‘ catch
07
NODE 12 load 2 ListStudent

Reachability Analysis of Prog

throw java.lang. Throwable

NODE 2
call java.lang.Object. (init)() :

NODE 10
exit@(init)

23

NODE 8
putfield ListStudent.tail: ListStudent|
16
NODE 9
return void

Variables November Sth, 2013 24/30

CONSTRAINT—BASED STATIC ANALYSIS - EXAMPLE

NODE 4
load 1 Student

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

Reachability Analysis of Program Variables

PROPAGATION RULES - EXAMPLE

INITIAL APPROXIMATION

TYPE ENVIRONMENT

[
lo a4 lo, lo ~ S0, ll R ll, =

Ip [4O T b JTSo]
5 v i !

l2“">l2, 50 ~ lp, So ~ 8o

e

7
s
-
ke

NODE 4

load 1 Student

#3

v

utfield ListStudent.head: Student|

LJ NODE 5

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

L
PROPAGATION RULES - EXAMPLE

INITIAL APPROXIMATION TYPE ENVIRONMENT
lo ~ lo, lo ~ S0, [1 ~ 1,| it oot sremenaens
ly ~ g, o ~ lo, S0 ~ 5o /'/

‘\; ‘/
NODE 4

load 1 Student

#3

v
NODE 5
utfield ListStudent.head: Student|

N
N
N
AN
N

[Ta O o Jse T s
istStudentStudentlistStudent|ListStudentStudent]
TYPE ENVIRONMENT

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2013 25/30

Reachability Analysis of Program Variables ABSTRACT SEMANTICS

PROPAGATION RULES - EXAMPLE

INITIAL APPROXIMATION

TYPE ENVIRONMENT

h [L T 1o %0]
i i

[
lo ~ lo, lo ~ 80, Iy ~ 11| Gristesems |

7

s

e

ly ~ o, 89 ~ lo, 5o ~ 5o e

L

NODE 4
load 1 Student

e IF [y ~ a AT NODE
THEN $1 ~» a AT NODE 5

e IF a ~> Il; AT NODE
THEN a ~> S; AT NODE 5

® Iy ~ 51,51 ~ 11,81 ~ 51

47

47

PROPAGATION RULE

#3

A

/

NODE 5

utfield ListStudent.head: Student|
N

N
N
N
AN
BN

[To T &G T To J7se T s3]
iststudenﬁtudenﬂ istStudent]| istStuden@tudent
TYPE ENVIRONMENT

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2018

25/30

L
PROPAGATION RULES - EXAMPLE

INITIAL APPROXIMATION TYPE ENVIRONMENT
lo ~ Lo, lo ~ S0, [~ Iy, | st oo
ly ~ I3, 80 ~ lo, S0 ~ 5o /'/
~ .
NODE 4

load 1 Student

#3

\ 4
NODE 5
utfield ListStudent.head: Student|
./(/' \\\;
N
lo ~ lo, lo ~ sg, l1 ~ 11, o
N
li ~ s1, Iy ~ 1o, 50 ~ 1) N
50 ~ S0, 81~ L, 81~ s T T T2 s

FINAL APPROXIMATION TYPE ENVIRONMENT

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2018

25/30

Reachability Analysis of Program Variables ABSTRACT SEMANTICS

PROPAGATION RULES - EXAMPLE

INITIAL APPROXIMATION TYPE ENVIRONMENT
lo ~ l(), l() ~ S0, ll ~ ll, Li T — @5
li ~ 51, Iy ~ 1y, 89 ~ lp) s
50 ~ S0, 51~ l1, 51 ~ 59 ,/'/
~ '/
L: NODE 5 ‘
utfield ListStudent.head: Student|

46

\ A
NODE 6
load 0 ListStudent

November 61, 2013 25/30

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

Reachability Analysis of Program Variables ABSTRACT SEMANTICS

PROPAGATION RULES - EXAMPLE

INITIAL APPROXIMATION

TYPE ENVIRONMENT

ZO l07 lO S0, ll S l17 [Li 2 mldlmli - 1!'1 S EEI uféml
li ~ 51, lo ~ 1o, 50 ~ 1o 7
7/
S0~ 80, 51~ 11, 81~ 59 ,/'
/

>

NODE 5
utfield ListStudent.head: Student|

46

A

/

NODE 6
load 0 ListStudent

b. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables

el
[l [O T T]
TYPE ENVIRONMENT

November 6t, 2013

25/30

Reachability Analysis of Program Variables ABSTRACT SEMANTICS

PROPAGATION RULES - EXAMPLE

INITIAL APPROXIMATION

TYPE ENVIRONMENT

ZO ~ l07 lO ~> 50, ll s ll, [Li o mldlmli - 1!'1 S EEItuSdintl

li ~ 51, lo ~ 1o, 50 ~ 1o
S0~ 80, 51~ 11, 81~ 59

>

~
K
r
,/’

utfield ListStudent.head: Student‘

L} NODE 5

® IF a~>b AT NODE 5
AND a, b {50, 51},
THEN a~>b AT NODE 6

® IF a~> Sg AND s1 ~ b AT NODE 5
AND a,b¢ {so, s1},
THEN a~>b AT NODE 6 /

PROPAGATION RULE

46

NODE 6

load 0 ListStudent ‘

>~
Tg

b. Nikoli¢ (ETH - Software Verification)

[l [O T T]
TYPE ENVIRONMENT

November 6t, 2013

Reachability Analysis of Program Variables

25/30

L
PROPAGATION RULES - EXAMPLE

INITIAL APPROXIMATION TYPE ENVIRONMENT
T T T 50
0 ~ l(), iﬁ:ﬁ:$§ ll ~ ll, Li I ggltuiincl
sy, Iy lz,
'/
6) =% '17 T .| K4
~. K4
NODE 5
utfield ListStudent.head: Student|
® IF a~>b AT NODE 5 PROPAGATION RULE

AND a, b {50, 51},
THEN a~>b AT NODE 6

® IF a~> Sg AND s1 ~ b AT NODE 5
AND a,b¢ {so, s1},

THEN a~>b AT NODE 6 /

NODE 6
load 0 ListStudent

>~
[a1 B]
lowlo, l1*">l1, lQle‘
TYPE ENVIRONMENT

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2018 25/30

Reachability Analysis of Program Variables ABSTRACT SEMANTICS

PROPAGATION RULES - EXAMPLE

INITIAL APPROXIMATION TYPE ENVIRONMENT
lo ~ l(), l(] ~> S0 ll ~ ll, Li o f..ldl..fla - “n S EEI tu‘ilintl
ly ~ Slyﬁw S0 ~ lo, s
7/
50 ~ Sp,| S1 ll S1 ™ S 7
~. K4
NODE 5

utfield ListStudent.head: Student|

® IF a~>b AT NODE 5 PROPAGATION RULE

AND a, b {50, 51},
THEN a~>b AT NODE 6

#6
® IF a~> Sg AND s1 ~ b AT NODE 5
AND a, b€ {so, s1},
THEN @ ~+b AT NODE 6 /
NODE 6
load 0 ListStudent

~
l , [l [O T T]
0

TYPE ENVIRONMENT

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2018 25/30

Reachability Analysis of Program Variables ABSTRACT SEMANTICS

PROPAGATION RULES - EXAMPLE

INITIAL APPROXIMATION

TYPE ENVIRONMENT

li ~ 51, lo ~ 1o, 50 ~ 1o
S0~ 80, 51~ 11, 81~ 59

>

ZO ~ l07 lO ~> 50, ll s ll, [Li o mldlmli - 1!'1 S EEItuSdintl

~
K
r
,/’

L} NODE 5

utfield ListStudent.head: Student‘

A

46

’ NODE 6

load 0 ListStudent ‘

-

T 5

lo—~lo, lo = I, by~ I, I~ I

Tg
Eiststuden TetStudent

FINAL APPROXIMATION

b. Nikoli¢ (ETH - Software Verification)

Reachability Analysis of Program Variables

TYPE ENVIRONMENT

November 6t, 2013

25/30

Reachability Analysis of Program Variables SOoUNDNESS

SOUNDNESS OF OUR APPROACH

LET iNS AND 0 € ¥ BE A BYTECODE INSTRUCTION AND A STATE REACHED BY AN EXECUTION
OF THE Main METHOD OF A PROGRAM, AND LET Rins € A BE THE REACHABILITY
APPROXIMATION COMPUTED BY OUR ANALYSIS AT . THEN,

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2018 26/30

EXPERIMENTAL EVALUATION

Reachability Analysis of Program Variables

EXPERIMENTAL EVALUATION WITH JULIA - SHARING vS. REACHABILITY

Suneys iy Ayljigeyoeas g
%0006 %0008 %00'0L %00'09 %0005 %00'0F %000E %00'0Z %00'0T %00°0

%7907+
%6'0T+ NN
wezerr W -0
PATZ TN opnemERe
%987+ NN
w2 ’c+ NG /-icoquookouck
%8601+ N .
%€£97+ MM
%5667 NN\, -
AN\
TR INNNNNN - T
BN L
%205 NI
%ee's NG -0
%S e O
%0767+ I
%29’ NG -
%66’ N =1~/
AN R
%707 MR : H H F
OIRGEINN\\\ _________[RJ
%ov'z+ N -~
%267+ NN >7:>!'L
%69+ Y

1842UI0033N1g

JawiawIy)

awoy

hogaar

nyopnsuado

awnid

aueyos

1ML

SUNIWUTE VETICUTION IMUUe eusy

27/30

November 6t, 2013

- Software Verification)

B. Nikoli¢ (ETH

EXPERIMENTAL EVALUATION WITH JULIA - IMPACT ON OTHER ANALYSES
REACHABILITY

ANALYSIS

SIDE-EFFECTS

ANALYSIS

FIELD INITIALIZAT.

ANALYSIS

D. Nikoli¢ (ETH - Software Verification)

U ll . n
software verification made easy
=}

®
=

Reachability Analysis of Program Variables

= ST E
EXPERIMENTAL EVALUATION WITH JULIA - IMPACT ON OTHER ANALYSES

REACHABILITY
ANALYSIS

SIDE-EFFECTS
ANALYSIS

FIELD INITIALIZAT.
ANALYSIS

45.07%

the ratio of pairs of variables (v, w) such that the

analysis concludes that v might reach w, over the

total number of pairs of variables of reference type:
the lower the ratio, the higher the precision

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

JULIN

software verification made easy [)

November 6t, 2013

28/30

= ST E
EXPERIMENTAL EVALUATION WITH JULIA - IMPACT ON OTHER ANALYSES

REACHABILITY SIDE-EFFECTS FIELD INITIALIZAT.
ANALYSIS ANALYSIS ANALYSIS

45.07% |=23.47%

which parameters p of a n?lethod might be affected
by its execution: the method might update a field of
an object reachable from p:
the lower the numbers, the better the precision

JULIN

software verification made easy

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2013

28/30

=rEEru LT
EXPERIMENTAL EVALUATION WITH JULIA - IMPACT ON OTHER ANALYSES

REACHABILITY
ANALYSIS

SIDE-EFFECTS
ANALYSIS

FIELD INITIALIZAT.
ANALYSIS

45.07%

—23.47%

+3.46%

the number of fields of reference type proven to be

always initialized before being read, in all
constructors of their defining class:
the higher the numbers, the better the precision

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

JUuLin

software verification made easy

November 6t, 2013

28/30

Reachability Analysis of Program Variables

EXPERIMENTAL EVALUATION WITH JULIA -

IMPACT ON OTHER ANALYSES

REACHABILITY SIDE-EFFECTS FIELD INITIALIZAT.
ANALYSIS ANALYSIS ANALYSIS
45.07% |—23.47%| +3.46%
NULLNESS

; ANALYSIS
runtime | —7.77%
warnings | —3.38%

b. Nikoli¢ (ETH - Software Verification)

-,JUl..in

oftware verification mad

Reachability Analysis of Program Variables

£ 9Dae

Have We Actevep Oun Goats?
STATIC ANALYSIS - MAIN ISSUES

STATIC ANALYSIS OF REAL LIFE SOFTWARE IS EXTREMELY DIFFICULT:

COMPLEX SEMANTICS OF CURRENT PROGRAMMING LANGUAGES
MEMORY-RELATED PROPERTIES REQUIRED

SIDE-EFFECTS OF METHOD CALLS

INSTRUCTIONS’ EXCEPTIONAL BEHAVIORS

LIBRARIES HEAVILY USED

ANNOTATIONS HELP, BUT...

FORMALIZATION VS. IMPLEMENTATION

PROOF OF SOUNDNESS IS DIFFICULT

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2018

29/30

Have We Actevep Oun Goats?
STATIC ANALYSIS - MAIN ISSUES

STATIC ANALYSIS OF REAL LIFE SOFTWARE IS EXTREMELY DIFFICULT:

COMPLEX SEMANTICS OF CURRENT PROGRAMMING LANGUAGES

MEMORY-RELATED PROPERTIES REQUIRED‘ REACHABILITY,SHARING,ALIASING,SIDE-EFFECTS ‘

SIDE-EFFECTS OF METHOD CALLS] ACG’s SE ARCS DEAL WITH THEM \

INSTRUCTIONS’ EXCEPTIONAL BEHAVIORS \ ACG’s EXGEPTIONAL ARCS DEAL WITH THEM \

LIBRARIES HEAVILY USED | oUuR CFG INCLUDES THEM \

ANNOTATIONS HELP, BUT... ‘ WE DO NOT USE ANNOTATIONS ‘

FORMALIZATION VS. IMPLEMENTATION

PROOF OF SOUNDNESS IS DIFFICULT ’ OUR FRAMEWORK SIMPLIFIES THESE PROOFS

B. Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables November Sth, 2018 29/30

Conclusion

QUESTIONS?

Nikoli¢ (ETH - Software Verification) Reachability Analysis of Program Variables

	Introduction
	Our Goals

	Constraint-Based Static Analyses of Java Bytecode Programs
	A General Idea of the Approach
	Julia Static Analyzer - www.juliasoft.com

	Reachability Analysis of Program Variables
	Intuitive definition
	Related Work
	Application
	Operational semantics of the target language
	Formal definition of reachability
	Static analysis
	Abstract interpretation-based static analysis
	Abstract states
	Abstract semantics
	Soundness
	Experimental evaluation

	Conclusion
	Have We Achieved Our Goals?

