
Automatic Testing and Fixing
of Programs with Contracts

Yu Pei

Chair of Software Engineering

Dec. 4, 2013

Design by contract

 Contracts in Eiffel

 Applications

 Specification

 Documentation

 Testing & fixing

2

ARRAYED_CIRCULAR.go_i_th (i: INTEGER)
 -- Move cursor to `i'-th position.
 require
 valid_cursor_index (i)
 ensure
 index = i

Automatic program testing

 Test case

 Input

 Oracle

 AutoTest: Automatic testing programs with contracts

 Precondition of the routine under test as the valid
input filter

 Postcondition of the routine as the oracle

3

The select-prepare-test cycle

4

Example testing process

Select next routine to test

Prepare input objects

Test routine

create {ARRAYED_CIRCULAR [INTEGER]} v1.make

v2 := 1

v1.wipe_out

v4 := v1.has (v3)

v3 := 125

v5 := v1.count

v1.extend (v2)

v1

v2

v3

v4

v5

object pool

Performance evaluation

 Testing results

 Precondition of the routine-under-test is violated

 Invalid test case

 Precondition of the routine-under-test is satisfied

 Successful termination with postcondition satisfied

 Passing test case

 Premature termination or postcondition violation

 Failing test case (detected fault)

 Evaluation criteria

 Number of faults detected

 Code coverage

5

Random+ testing

 Essentials

 Input generation

 Primitive types:
random selection + boundary values

 Reference types:
random selection + constructor calls

 Diversification

 With probability pdiv after each test

 Result

 Find faults in widely used, industrial-grade code

 High fault detection rate in the first a few minutes

6

Select routine C.r

Prepare input

Test C.r

Diversify

pdiv

1-pdiv

Adaptive Random Testing (ART)

 Essentials

 Maintain a list of objects O used
in testing a routine r

 Select the objects with the highest
average distance to O for the next
test of r

 Result

 Takes less time and generated tests, on
average by a factor of 5, to the first fault

7

m

n

m

n

Testing with guided object selection

 Essentials

 Keep track of precondition-satisfying objects

 Use them with higher probability

 Results

 56% of the routines that cannot be tested before are
now tested

 10% more faults detected in the same time

 Routines tested 3.6 times more often

8

ARRAYED_CIRCULAR.swap (i: INTEGER)
 -- Exchange item at `i'-th position
 -- with item at cursor position.
 require
 not off
 valid_index (i)

not off

valid_index

not is_empty

not after

l2

 l1, i1

l1

 l2, i2

l1 l2

l3 l2

v-pool

…

Stateful testing

 Essentials

 Input space and object states in Boolean expressions

 before, after, is_empty, i > 0, …

 Infer preconditions from existing tests

 Boolean expressions that always hold

 Prepare inputs violating the inferred preconditions

 Select objects in the object pool

 Transit objects using object behavioral model

 Result

 68% more faults detected with 7% time overhead

9

ARRAYED_CIRCULAR.swap (i: INTEGER)

is_empty
off
…

put not is_empty
 not off

…

An example fault

10

class ARRAYED_CIRCULAR
 duplicate (n: INTEGER): like Current
 -- Copy of sub-chain beginning at current
 -- position and having min (`n', count) items.
 require n >= 0
 do
 create Result.make (count)
 …
 end

 make (n: INTEGER)
 -- Create a circular with `n' items.
 require n >= 1
 do
 create list.make (n)
 end

 ….

empty_circular.duplicate (2)

create Result.make (0)

make (0)

require 0 >= 1

Program faults and automatic fixing

 Program faults are discrepancies between the
contracts (specification) and the implementation

 Automatic fixing

 AutoFix: assuming contracts, fixing implementation

 SpecFix: assuming implementation, fixing contracts

11

AutoFix

Test Cases
(AutoTest)

Program
With Contracts

Valid
Fixes

SpecFix

AutoFix: fault localization

 State snapshots as candidate fault causes:
 <expression, location, value>

 Compute suspiciousness scores based on heuristics:
A state snapshot is more suspicious, if it

 Appears more often in failing runs than in passing runs

 Is closer to the violation position in the control flow
graph

 Is syntactically more similar to the failing assertion

12

<count = 0, loc, True>
<is_empty, loc, True>
…

AutoFix: fix synthesis

 Fix actions: code necessary for changing the faulty
state snapshot

 Identify relevant objects and generate actions to
either modify them or replace them with others
objects

 Fix schemas: common styles of wiring the fix actions
into the feature body

13

if count = 0 then
 create Result.make (count + 1)
else
 create Result.make (count)
end

replace `count’ with `count + 1’

AutoFix: fix validation and ranking

14

 Validation

 Run the patched program against all passing and
failing tests, requiring

 Failing tests now pass

 Passing tests still pass

 Ranking

 Static metrics, favoring

 Simple textual changes

 Changes close to the failing location

 Changes involving less original statements

 Dynamic metric, favoring

 Behavioral preservation

SpecFix: fix generation

 Possible contract faults

 makepre being too strong

 Preconditions of all open features on the stack being
too weak

15

  contract strengthening

  contract weakening

class ARRAYED_CIRCULAR
 duplicate (n: INTEGER): like Current
 require n >= 0
 do create Result.make (count) … end

 make (n: INTEGER)
 require n >= 1
 do create list.make (n) end

class ARRAYED_LIST
 make (n: INTEGER)
 require n >= 0
 do … end

SpecFix: fix validation and ranking

 Validation

 Valid fixes should

 Turn originally failing tests to either passing or invalid
tests

 Leave originally passing tests as still passing

 Use more tests for validation than for fix generation to
overcome overfitting

 Ranking

 Prefers fixes resulting in more passing tests, or with
weaker contracts

16

Experimental evaluation

17

 AutoFix: 204 randomly detected faults in various
programs were used for evaluation

 86 (or 42%) faults got valid fixes

 51 (or 25%) faults got proper fixes

 SpecFix: 44 faults from real-life Eiffel libraries

 11 (or 25%) faults got proper fixes

 Most of them are preferred by programmers to fixes
that change the implementation

Summary

 Contracts are specifications in the form of
executable code

 AutoTest

 Detects discrepancies between the implementation
and the contracts

 AutoFix

 Corrects the implementation according to the contracts

 SpecFix

 Adjusts the contracts to reflect the implementation

18

To find out more

 http://se.inf.ethz.ch/research/autotest/

 http://se.inf.ethz.ch/research/autofix/

 http://se.inf.ethz.ch/research/specfix/

19

THANKS

20

