
Automatic Testing and Fixing
of Programs with Contracts

Yu Pei

Chair of Software Engineering

Dec. 4, 2013

Design by contract

 Contracts in Eiffel

 Applications

 Specification

 Documentation

 Testing & fixing

2

ARRAYED_CIRCULAR.go_i_th (i: INTEGER)
 -- Move cursor to `i'-th position.
 require
 valid_cursor_index (i)
 ensure
 index = i

Automatic program testing

 Test case

 Input

 Oracle

 AutoTest: Automatic testing programs with contracts

 Precondition of the routine under test as the valid
input filter

 Postcondition of the routine as the oracle

3

The select-prepare-test cycle

4

Example testing process

Select next routine to test

Prepare input objects

Test routine

create {ARRAYED_CIRCULAR [INTEGER]} v1.make

v2 := 1

v1.wipe_out

v4 := v1.has (v3)

v3 := 125

v5 := v1.count

v1.extend (v2)

v1

v2

v3

v4

v5

object pool

Performance evaluation

 Testing results

 Precondition of the routine-under-test is violated

 Invalid test case

 Precondition of the routine-under-test is satisfied

 Successful termination with postcondition satisfied

 Passing test case

 Premature termination or postcondition violation

 Failing test case (detected fault)

 Evaluation criteria

 Number of faults detected

 Code coverage

5

Random+ testing

 Essentials

 Input generation

 Primitive types:
random selection + boundary values

 Reference types:
random selection + constructor calls

 Diversification

 With probability pdiv after each test

 Result

 Find faults in widely used, industrial-grade code

 High fault detection rate in the first a few minutes

6

Select routine C.r

Prepare input

Test C.r

Diversify

pdiv

1-pdiv

Adaptive Random Testing (ART)

 Essentials

 Maintain a list of objects O used
in testing a routine r

 Select the objects with the highest
average distance to O for the next
test of r

 Result

 Takes less time and generated tests, on
average by a factor of 5, to the first fault

7

m

n

m

n

Testing with guided object selection

 Essentials

 Keep track of precondition-satisfying objects

 Use them with higher probability

 Results

 56% of the routines that cannot be tested before are
now tested

 10% more faults detected in the same time

 Routines tested 3.6 times more often

8

ARRAYED_CIRCULAR.swap (i: INTEGER)
 -- Exchange item at `i'-th position
 -- with item at cursor position.
 require
 not off
 valid_index (i)

not off

valid_index

not is_empty

not after

l2

 l1, i1

l1

 l2, i2

l1 l2

l3 l2

v-pool

…

Stateful testing

 Essentials

 Input space and object states in Boolean expressions

 before, after, is_empty, i > 0, …

 Infer preconditions from existing tests

 Boolean expressions that always hold

 Prepare inputs violating the inferred preconditions

 Select objects in the object pool

 Transit objects using object behavioral model

 Result

 68% more faults detected with 7% time overhead

9

ARRAYED_CIRCULAR.swap (i: INTEGER)

is_empty
off
…

put not is_empty
 not off

…

An example fault

10

class ARRAYED_CIRCULAR
 duplicate (n: INTEGER): like Current
 -- Copy of sub-chain beginning at current
 -- position and having min (`n', count) items.
 require n >= 0
 do
 create Result.make (count)
 …
 end

 make (n: INTEGER)
 -- Create a circular with `n' items.
 require n >= 1
 do
 create list.make (n)
 end

 ….

empty_circular.duplicate (2)

create Result.make (0)

make (0)

require 0 >= 1

Program faults and automatic fixing

 Program faults are discrepancies between the
contracts (specification) and the implementation

 Automatic fixing

 AutoFix: assuming contracts, fixing implementation

 SpecFix: assuming implementation, fixing contracts

11

AutoFix

Test Cases
(AutoTest)

Program
With Contracts

Valid
Fixes

SpecFix

AutoFix: fault localization

 State snapshots as candidate fault causes:
 <expression, location, value>

 Compute suspiciousness scores based on heuristics:
A state snapshot is more suspicious, if it

 Appears more often in failing runs than in passing runs

 Is closer to the violation position in the control flow
graph

 Is syntactically more similar to the failing assertion

12

<count = 0, loc, True>
<is_empty, loc, True>
…

AutoFix: fix synthesis

 Fix actions: code necessary for changing the faulty
state snapshot

 Identify relevant objects and generate actions to
either modify them or replace them with others
objects

 Fix schemas: common styles of wiring the fix actions
into the feature body

13

if count = 0 then
 create Result.make (count + 1)
else
 create Result.make (count)
end

replace `count’ with `count + 1’

AutoFix: fix validation and ranking

14

 Validation

 Run the patched program against all passing and
failing tests, requiring

 Failing tests now pass

 Passing tests still pass

 Ranking

 Static metrics, favoring

 Simple textual changes

 Changes close to the failing location

 Changes involving less original statements

 Dynamic metric, favoring

 Behavioral preservation

SpecFix: fix generation

 Possible contract faults

 makepre being too strong

 Preconditions of all open features on the stack being
too weak

15

 contract strengthening

 contract weakening

class ARRAYED_CIRCULAR
 duplicate (n: INTEGER): like Current
 require n >= 0
 do create Result.make (count) … end

 make (n: INTEGER)
 require n >= 1
 do create list.make (n) end

class ARRAYED_LIST
 make (n: INTEGER)
 require n >= 0
 do … end

SpecFix: fix validation and ranking

 Validation

 Valid fixes should

 Turn originally failing tests to either passing or invalid
tests

 Leave originally passing tests as still passing

 Use more tests for validation than for fix generation to
overcome overfitting

 Ranking

 Prefers fixes resulting in more passing tests, or with
weaker contracts

16

Experimental evaluation

17

 AutoFix: 204 randomly detected faults in various
programs were used for evaluation

 86 (or 42%) faults got valid fixes

 51 (or 25%) faults got proper fixes

 SpecFix: 44 faults from real-life Eiffel libraries

 11 (or 25%) faults got proper fixes

 Most of them are preferred by programmers to fixes
that change the implementation

Summary

 Contracts are specifications in the form of
executable code

 AutoTest

 Detects discrepancies between the implementation
and the contracts

 AutoFix

 Corrects the implementation according to the contracts

 SpecFix

 Adjusts the contracts to reflect the implementation

18

To find out more

 http://se.inf.ethz.ch/research/autotest/

 http://se.inf.ethz.ch/research/autofix/

 http://se.inf.ethz.ch/research/specfix/

19

THANKS

20

