
Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Java: advanced
object-oriented features

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Packages

3
Java and C# in depth

Packages

Classes are grouped in packages

 A hierarchical namespace mechanism

 Map to file system pathnames

 one public top-level class per file

 one package per directory

 Influence class visibility (according to modifiers)

 Even if a default anonymous package exists, it is
customary to define the package explicitly:

 E.g.:

 ch.ethz.inf.se.java.mypkg

 Tip: notice the useful name convention

4
Java and C# in depth

The statements package and import

 package declares a package

 Classes from external packages generally need to be
imported using import

 Classes from java.lang are automatically imported

 * makes available all classes in a package, but not those
in sub-packages, so that they can be used without
writing their fully-qualified names (as if they were
declared in the current importing package)

 If there is another class with the same name in the current
importing package, you still need a fully-qualified name to
bypass the shadowing by the local declaration

package ch.ethz.inf.se.java.mypkg;

import java.util.Set; // Only class Set

import java.awt.*;

import java.awt.event.*;

5
Java and C# in depth

 static imports

Introduced in Java 5.0

You can use imported static members of a class as if

they were defined (also as static members) in the

current class

import static java.lang.Math.*;

 …

double r = cos(PI * theta);

 When to use: for frequent access to static members of

another class (avoids duplication or improper

inheritance).

 Issue: where does a method come from? (Traceability)

 Tip: do not abuse!

6
Java and C# in depth

Core packages in Java 7.0

 java.lang
(basic language functionalities, fundamental types,
automatically imported)

 java.util (collections and data structures)

 java.io and java.nio
(old/new file operations API. nio improved in Java 7)

 java.math (multi-precision arithmetic)

 java.net (networking, sockets, DNS lookup)

 java.security (cryptography)

 java.sql (database access: JDBC)

 java.awt (native GUI components)

 javax.swing

(platform-independent rich GUI components)

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Abstract classes and interfaces

8
Java and C# in depth

Abstract classes and interfaces

A method may or may not have an implementation

 if it lacks an implementation, it is abstract

A class whose implementation is not complete is also called

abstract

 but even a fully implemented class can be declared

abstract

Interfaces are a form of fully abstract classes

 they enable a restricted form of multiple inheritance

 they can only contain methods (signatures) and
constants (static final fields)

9
Java and C# in depth

Abstract classes and methods

 An abstract class cannot be directly instantiated

 An abstract method cannot be directly executed

 If a class has an abstract method, the class itself

must be abstract

 An abstract class cannot be final

 A static method cannot be abstract

 A constructor cannot be abstract

 Useful for conceptualization and partial implementations

10
Java and C# in depth

Interfaces

 Declared using interface instead of class

 Equivalent to a fully abstract class

 you don’t use the keyword abstract in an interface

 A way to have some of the benefits of multiple

inheritance, with little hassle (e.g., selecting

implementations)

 A class may implement one or more interfaces

 An interface can extend one or more interfaces

11
Java and C# in depth

Interface use

 For typing, implementing an interface is essentially

equivalent to extending a class: polymorphism applies

 All interface methods are implicitly abstract and

public

 All interface attributes are implicitly public, static,

and final (must be set by initializers once and for all)

 Useful for design: specify what, not how

 Tip: use interfaces to have more flexible designs (but

attributes are rarely appropriate in interfaces).

12
Java and C# in depth

Method name clash in multiple interfaces

Two interfaces I1 and I2 may define two methods with the

same name and signature.

If a class C a extends both I1 and I2, it must provide only one

implementation of the method, that applies to both interfaces.

In other words, the two methods are merged.

interface I1 { int checksum(); }

interface I2 { int checksum(); }

class C extends I1, I2 {

 int checksum() {

 return this.hashCode();

 }

}

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

“Special” classes and features

14
Java and C# in depth

The String class

 Sequences of Unicode characters

 Immutable class: no setters

 If initialized upon creation as in:
 String s = “Test”;

 Exists in the “string pool” in the stack

 Uses shared memory

 No duplicates

 java.lang.StringBuilder class provides mutable

strings

15
Java and C# in depth

Object comparison: equals

public boolean equals(Object obj) {

 return (this == obj);

}

 The default semantics compares addresses

 We can provide a different semantics by overriding

 Implementation should be an equivalence relation

 Reflexive, symmetric, transitive

 For any non-null reference variable x it should be:

 x.equals(null) == false

16
Java and C# in depth

Class Object: hash code

public int hashCode()

Returns distinct integers for distinct objects. Its specification:

 required:
o1.equals(o2) implies o1.hashCode() == o2.hashCode()

 as much as possible:
o1.equals(o2) iff o1.hashCode() == o2.hashCode()

Overriding equals() in descendants does not guarantee to

give the right semantics to hashCode() as well.

In general, it may be necessary to explicitly override hashCode(), so

that equal objects have equal hash codes.

17
Java and C# in depth

Class Object: string representation

public String toString() {

 return getClass().getName() + "@" +

 Integer.toHexString(hashCode());

}

 Tip: all descendants should override this method

 Tip: the result should be a concise and informative

representation

18
Java and C# in depth

Arrays

 Arrays are objects

 but with the familiar syntax to access them

 Operator [] to access components

 The only available attribute is length

 All components must a have a “common” type

 a common ancestor in the inheritance hierarchy

 Array components are automatically initialized to defaults

19
Java and C# in depth

Array use

// declaration

int[] iArray;

// definition: size given

iArray = new int[7];

// declaration with definition

Vehicle[] v = new Vehicle[8];

// polymorphic array (Car, Truck --> Vehicle)

v[0] = new Car();

v[1] = new Truck();

// using initializers

double[] dArray = {2.4, 4.5, 3.14, 7.77};

Vehicle[] v1 = {new Car(), new Truck()};

20
Java and C# in depth

Multidimensional arrays

Multidimensional arrays in Java are just arrays of arrays

3-dimensional array, declaration only:

 int [][][] threeDim;

Declaration with initialization:

 // For 0 ≤ i < 4: twoDim[i] == null

 int [][] twoDim = new int[4][];

 // For 0 ≤ i < 4: twoDim[i] is array {0, 0}

 int [][] twoDim = new int[4][2];

Jagged array: different components have different size:

 int [][] jagged = {{3, 4, 5}, {6, 7}};

21
Java and C# in depth

Enumerated types

Denote a finite set of values

 enum TypeName {VALUE_1, ..., VALUE_N};

Within the type system, TypeName is a class that extends

class Enum and has N distinct static constants

 TypeName aValue = TypeName.VALUE_2;

By default, each VALUE_k is printed as its own name; to have

a different representation, override toString()

A variable of enum type can also be null

An enum class can have constructors, attributes, and

methods, with some restrictions w.r.t. a full-fledged class

22
Java and C# in depth

Enumerated type example

enum EventStatus {

 APPROVED("A"), PENDING("P"), REJECTED("R");

 private String shortForm;

// constructor must be private: not directly callable

 private EventStatus(String shortForm) {

 this.shortForm = shortForm;

 }

 public String getShortForm(){

 return shortForm;

 }

}

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Assertions and contracts

24
Java and C# in depth

Contracts

Contracts are specification elements embedded in the program
text. They typically extend the syntax of Boolean expressions
in the language. Here’s an example with Eiffel syntax.
class BankAccount

 balance: INTEGER

 deposit (amount: INTEGER)

 require amount > 0 // precondition

 do balance := balance + amount

 ensure balance > old balance end // postcondition

invariant

 balance >= 0 // class invariant

end

25
Java and C# in depth

Contracts: preconditions

The precondition of a method M specifies requirements that
every call to M must satisfy. It is the caller’s responsibility to
ensure that the precondition is satisfied.

 ba: BankAccount

 create ba // object creation

 ba.deposit (120) // valid call: 120 > 0

 ba.deposit (-8) // invalid call: -8 < 0

26
Java and C# in depth

Contracts: postconditions

The postcondition of a method M specifies conditions that hold
whenever an invocation to M terminates. M’s body is
responsible to ensure that the postcondition is satisfied.

 ba: BankAccount

 create ba // object creation

 // assume ‘balance’ is 20

 ba.deposit (10)

 // postcondition ok: 30 > 20

 ba.deposit (MAX_INTEGER)

 // postcondition violation if balance

 silently overflows into the negatives

27
Java and C# in depth

Contracts: class invariants

The class invariant of a class C constrains the states that
instances of the class can take. The class invariant’s
semantics is a combination of the semantics of pre- and
postcondition: the class invariant must hold upon object
creation, right before every qualified call to public members
of C, and right after every call terminates.

 ba: BankAccount

 create ba // object creation

 // class invariant must hold

 // class invariant must hold

 ba.deposit (10)

 // class invariant must hold

28
Java and C# in depth

Assertions

Java doesn’t natively support contracts, but offers assertions:
checks that can be executed anywhere in the code:

assert boolean-expr [:”message”];

 If evaluates to true, nothing happens

 If evaluates to false, throw AssertionError and display
“message”

 Assertion checking is disabled by default

 Can be enabled at VM level, with different granularities

 java -ea MyClass (-da to disable)

 java -esa MyClass (for system classes assertions)

 java -ea:mypkg... -da:mypkg.subpkg MyClass

(“...” means: do the same for subpackages)

 Available since Java 1.4

29
Java and C# in depth

Contracts as assertions

We can use assertions to render the semantics of contracts:

public class BankAccount {

 int balance = 0;

 void deposit(int amount) {

 int old_balance = balance;

 assert amount > 0 : “Pre violation”;

 balance += amount;

 assert balance > old_balance :“Post violation”;

 }

}

No explicit support for class invariants

 Can we render their semantics with assert?

30
Java and C# in depth

JML: Java Modeling Language

 JML offers full support for contracts, embedded through

Javadoc-like annotations

public class BankAccount {

 int balance = 0;

 /*@ requires amount > 0;

 @ ensures balance > \old(balance);

 @*/

 void deposit(int amount) {

 balance += amount;

 }

 //@ invariant balance >= 0;

}

 JML is not part of the standard Java platform, and hence

requires specific tools to process the annotations

 Documentation and resources: http://www.jmlspecs.org

http://www.jmlspecs.org/

