rici
Chair of Software Engineering

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

C#: exceptions
and genericity

m Ziirich

Chair of Software Engineering

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Exceptions

: “)
Exceptions

Exceptions are objects
= They are all descendants of System.Exception

= Raise with a throw ExceptionObject Instruction

throw new AnExceptionClass (“ErrorInfo”) ;
= In C#, all exceptions are “unchecked” (using Java
terminology)
= May be handled, if desired

= |If the current block does not have an exception handler,
the call stack is searched backward for an exception
handler

* If none is found, the unhandled exception terminates the
current execution thread

Java and C# in depth

3

Exception handlers X

The scope of the exception handler is denoted by a try block

Every try block is immediately followed by zero or more catch blocks,
zero or one £inally block, or both. At least one of catch blocks and
finally block is required (otherwise, the try would be useless)

public int foo(int b) ({
try { if (b > 3) {
throw new System.Exception() ;
}
} catch (System.Exception e) { b++; }

finally { b++; }
return b;

Java and C# in depth 4

Exception handlers: catch blocks X

catch blocks can be exception-specific:
catch (ExceptionType name) { /* handler */ }

= Targets exceptions whose type conforms to
ExceptionType

* ExceptionType must be a descendant of
System.Exception

= name behaves as a local variable inside the handler block

» A catch block of type T cannot follow a catch block of
type s if T < S (otherwise the T-type block would be
shadowed)

= From within a catch block the exception being handled
can be re-thrown with throw (no arguments)

Java and C# in depth

5

Exception handlers: catch/finally blocks

When an exception of type T is thrown within a try block:

= control is transferred to the first (in textual order) catch block whose
type T conforms to, if one exists

= then, the control is then transferred to the £inally block (if it
exists)
= finally, execution continues after the try block

When no conforming catch exists or an exception is re-thrown inside the
handler:
= After executing the £inally block, the exception propagates to the
next available enclosing handler

When a try block terminates without exceptions:
= the control is transferred to the £inally block (if it exists)
= then, execution continues after the try block

Java and C# in depth

Exception handlers: catch/finally blocks

A finally block is always executed after the try block even if no
exceptions are thrown

= Typically used to free resources

Control-flow breaking instruction (return, break, continue) inside a
finally block are restricted.

= return statements cannot occurin £inally blocks

= goto, break, and continue statements can occurin £inally
blocks only if they do not transfer control outside the £inally
block itself

These restrictions disallow tricky cases that are allowed in Java

Java and C# in depth

Invalid £inally blocks

Valid Java code but invalid C# code:
public int foo () {
try { return 1; }
finally { return 2; }

public void foo () ({
int b = 1;
while (true) {
try { b++; throw new Exception(); }
finally { b++; break; }
} b++;
}

(Examples from Martin Nordio)

Java and C# in depth

8

Exceptions vs. assertions (contracts)

Exceptions and assertions have partially overlapping
purposes: dealing with “special” behaviors

= invalid input
= errors in computations
= runtime failures (e.g., I/O or network errors)

Java an d C# in depth

Exceptions vs. assertions

The following guidelines are useful to choose when to use
exceptions rather than assertions:

= exceptions define the actions to be taken in case of exceptional
behavior, to restore a normal behavior

= they define a “special” behavior that requires special handling
= an exception occurring is a possible, if unusual, behavior
= exceptions may occur even in correct programs

= assertions constitute a specification of what the implementation
should achieve

= they define a contract

= an assertion violation is always an implementation error

= If the program is correct, checking assertions should be
completely useless

Java and C# in depth

10

Exceptions vs. assertions: examples

A BankAccount class defines a public method FracBonus
to add a fractional bonus to the Balance:

void FracBonus (int frac)
// add 1/frac to Balance

Valid inputs: £frac > 0

Exception or assertion?

Java and C# in depth
11

Exceptions vs. assertions: examples

A BankAccount class defines a public method FracBonus
to add a fractional bonus to the Balance:

void FracBonus (int frac)
// add 1/frac to Balance

Valid inputs: £frac > 0
Exception or assertion?

assertion:
this Is a requirement imposed on clients of the method

Java and C# in depth
12

Exceptions vs. assertions: examples

Using exceptions:

In class BankAccount:
void FracBonus (int frac) {
if (frac <= 0)
throw new Exception (“Wrong input”);
Bonus = Bonus * 1l/frac;

}

In clients of BankAccount:
BankAccount ba;
int x;
// ...
try { ba.FracBonus (x) }
catch (Exception e) {
if (e.Message == “Wrong input”) {
X = -Xx + 1; ba.FracBonus (x);

b}

Java and C# in depth

13

Exceptions vs. assertions: examples

Using assertions:

» |n class BankAccount:
void FracBonus (int frac) {
Assert (frac > 0);
Bonus = Bonus * 1/frac;

= |n clients of BankAccount:
BankAccount ba;
int x;
// ...
if ('(x>0)) { x=-x+1; }
ba.FracBonus (x) ;

Java and C# in depth
14

Exceptions vs. assertions: examples

A BankAccount class defines a public method
LoadBalance to read a new value of Balance from file:

void LoadBalance (String fileName) ;
// read a new value
// of Balance from fileName

Valid inputs:
= fileName Is the name of an existing file
= the file can be opened correctly
= the content reads as an integer

Exception or assertion? o sngComdntn

Exceptions vs. assertions: examples

A BankAccount class defines a public method

LoadBalance toread a new value of Balance from file:

Valid inputs:
= fileName Is the name of an existing file
= the file can be opened correctly
= the content reads as an integer

Exception or assertion?

= exception:
an invalid input is a runtime error that requires extra
measures but doesn’t depend on the implementation

being incorrect Jova and C# in depth

16

Exceptions vs. assertions: examples

Using assertions:

* |n class BankAccount:
void LoadBalance(string fileName) {
Assert(fileName !'= null);
Assert(fileName !'= “7);
Assert (System.IO.File.Exists (fileName)) ;
TextReader tr = new StreamReader (fileName) ;
int result;
bool ok = Int32.TryParse (tr.ReadLine () ,out result);
Assert (ok) ;
return result; }

= |n clients of BankAccount:
BankAccount ba; string fn;
// read file name from user into fn
// redo the checks and notify user if they go wrong
if (fn == V") {
Console.Writeline (“Invalid filename”); }

//

Java and C# in depth
17

Exceptions vs. assertions: examples

Using exceptions:

= |n class BankAccount:

void LoadBalance(string fileName) {
TextReader tr = new StreamReader (fileName) ;
return Convert.ToInt32 (tr.ReadLine()) ;

= |n clients of BankAccount:
BankAccount ba;
string £fn;
// read file name from user into fn
// catch assertions and notify user accordingly
try { ba.LoadBalance(fn) }
catch (ArgumentException e) {

Console.Writeline (“Invalid filename”); }

//

Java and C# in depth

18

m Ziirich

Chair of Software Engineering

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Genericity in C#

Generics

C#'s genericity mechanism, available since C# 2.0

Most common use:

= Use (and implement) generic type-safe containers
List<String> safeBox = new List<String>();

= Compile-time type-checking is enforced

More sophisticated uses:
= Custom generic classes and methods

= Bounded genericity
public T test <T> (T x) where T:Interfacel, Interface2

Java and C# in depth

20

. “
Generic classes

A generic class Is a class parameterized w.r.t. one or more
generic types.

public <T> class Cell {
public T Val { get; set;}

To Instantiate a generic class we must provide an actual type
for the generic parameters.

Cell<String> c¢ = new Cell<String>() ;

Java and C# in depth
21

. “)
Generic classes

The generic parameters of a generic class may constrain the
valid actual types.

public class Cell<T> where T:S { ... }

The following is valid only if X Is a subtype of S:
Cell<X> c¢ = new Cell<X>();

The constrains may involve multiple types.
public class C<T> where T: A, IB

The following is valid only if Y is a subtype of both A and IB:
C<Y> c new C<Y>() ;

Java and C# in depth

22

Type inference: implicit types O

When creating an instance of a generic class, the compiler is

often able to infer the generic type from the context. In such
cases, we can omit the type and use var Instead.

var ¢ = new Cell<String>() ;

IS equivalent to:
Cell<String> c = new Cell<String>();

In general, var can be used for every variable declaration
where the compiler can figure out the types.

var x = new String[1l2];
var y = 12;
var z = 12.4 + 5 + “OK”; // String “17.40K”

Java and C# in depth

23

. “
Generic methods

A generic method is a method parameterized w.r.t. one or
more generic types.

public U downcast <U> (T x) where U:T {

return (U) x;

Notice the different position of the generic parameter:
= C#: public T foo <T> (T x);
= Java. public <T> T foo (T x);

Java and C# in depth
24

Generic methods

©

Clients must provide actual types for the generic parameters
only when the compiler cannot infer them from context.

public U downcast <U> (T x) where U:T
Person p = new Person() ;

Employee e = downcast(p); // error: which type
// among all subtypes of Employee?

Employee e = downcast<Employee>(p); // OK
var e = downcast<Employee>(p); // OK

public static void a2c <G> (G[] a, IList<G> c)
a2c (new String[8], new List<String>()); // OK

Java and C# in depth

25

Generics: features and limitations

Unlike Java, genericity is supported natively by .NET bytecode

Hence, basically all limitations of Java generics disappear:

Can instantiate generic parameter with value types

At runtime you can tell the difference between List<Integer>
and List<String>

Exception classes can be generic classes

Can instantiate a generic type parameter

» provided a clause where T : new /() constrains the parameter to
have a default constructor

Can get the default value of a generic type parameter
T t = default (T);

Arrays with elements of a generic type parameter can be
Instantiated

A static member can reference a generic type parameter

= Another consequence is that raw types (unchecked generic types without any
type argument) don’t exist in C# Java and C# in depth

26

Generics and inheritance

= Let S beasubtypeof T (i.e.S<T)

In general, there is no inheritance relation between:
SomeGenericClass<S> and SomeGenericClass<T>

In particular: the former is not a subtype of the latter

However, let AClass be a non-generic type:
= S<AClass> Is a subtype of T<AClass>

There’s no C# equivalent of Java’'s wildcards, but C#'s full-
fledged genericity mechanisms normally provide alternative
ways to achieve the same designs

However, C# doesn’t have lower-bounded genericityJ

ava and C# in depth

27

Why subtyping with generics is tricky

Consider a method of class F:

public static void foo (List<Vehicle> x) {
// add a Truck to the end of list ’'x’
X .Add (new Truck());

If List<Car> were a subtype of List<Vehicle>, this would
be valid code:

var cars = new List<Car>() ;

cars.Add (new Car())

F.foo(cars) ;
But now a List<Car> would contain a Truck, which is not a Car!

Java and C# in depth

0.

28

Replacing wildcards in C#: example 7

Consider the following hierarchy of classes:

> Shape j«—
Circle Rectangle

What should be the signature of a method drawShapes that
takes a list of Shape objects and draws all of them?

= DrawShapes (List<Shape> shapes)

= this doesn’t work on a List<Circle>, which is not a
subtype of List<Shape>

Java and C# in depth

29

Replacing wildcards in C#: example 7

What should be the signature of a method drawShapes that
takes a list of Shape objects and draws all of them?

First solution: use a helper class with bounded genericity

class DrawHelper <T> where T: Shape {
public static wvoid DrawShapes(List<T> shapes)

}

Client usage:
DrawHelper<Shape>.DrawShapes (1listOfShapes) ;
DrawHelper<Circle>.DrawShapes (1listOfCircles) ;

The compiler may be able to infer the generic type argument
from context.

Java and C# in depth

30

Replacing wildcards in C#: example

©

What should be the sighature of a method drawShapes that
takes a list of Shape objects and draws all of them?

Second solution: use a generic method inside Shape

public static void DrawShapes <T> (List<T> shapes)
where T:Shape

Client usage:
Shape .DrawShapes<Shape> (listOfShapes) ;

Shape.DrawShapes<Circle>(listOfCircles) ;

The compiler may be able to infer the generic type argument from context.

Java and C# in depth

31

Replacing wildcards in C#: example

©

What should be the sighature of a method drawShapes that
takes a list of Shape objects and draws all of them?

Third solution: use an out generic parameter, which declares

that objects of generic type will only be read (and hence

passing a collection of a subtype is type safe). Typically done
using the IEnumerable<out T> Interface.

public static void DrawShapes
(IEnumerable<Vehicle> shapes)

Client usage:
DrawShapes (1listOfShapes) ;

DrawShapes (1listOfCircles) ;

Conversion from List to IEnumerable is implicit, but the signature
guarantees that DrawShapes only reads the list while iterating

"Java and C# in depth

32

Covariant generic parameters

If S is subtype of T (i.e. S <T) and generic interface I is
declared as covariant: IC<out G>, then:

IC<S> Iis a subtype of I1C<T>

That is: instances of classes implementing IC<S> can be
attached to references of type I1C<T>

Covariant out generic parameters have restrictions that
conservatively ensure type safety:

= they can only be used in interfaces and delegates

= they can only be use as return types (not as argument
type)

= they cannot be used as genericity constraint

Java and C# in depth

33

. . “
Contravariant generic parameters

Consider a method SameArea that takes a list of Circles
and counts how many have the same area as a given Circle:

public static int SameArea
(IEnumerable<Circle> clist, Circle c,

IEqualityComparer<Circle> cmp)

A comparator of areas of generic shapes should also work to
compare the area of circles. In fact, the

IEqualityComparer<in T> Iinterface allows us to pass a
comparator for a supertype of Circle.

Client usage:

IEqualityComparer<Shape> shapeComparer = ...
SameArea (listOfCircles, circle, shapeComparer) ;

Java and C# in depth
34

©

Contravariant generic parameters

If S is subtype of T (i.e. S <T) and generic interface I is
declared as contravariant: IC<in G>, then:

IC<T> is a subtype of I1C<S>

That is: instances of classes implementing IC<T> can be
attached to references of type 1C<S>

Contravariant in generic parameters have restrictions that
conservatively ensure type safety:

= they can only be used in interfaces and delegates

= they can only be used as argument type (not as return
types), and not for out or ref arguments

(Contravariant genericity may be unintuitive to use in general.)

Java and C# in depth

35

Collections

©

A classic example of separating interface from implementation
Some library interfaces from Systems.Collections.Generic:
= ICollection<E>
= int Count;
* number of elements in the collection
" void add(E item)
" bool remove (E item)
» returns whether the collection actually changed
" TEnumerator<E> GetEnumerator ()
» TEnumerator<kE>
" bool MoveNext ()

= Moves to the next element; returns false Iif the
enumerator has passed the end of the collection

" E Current

» returns the current element in the enumeratiof, ... c: i seu

36

Collections: some implementations

List: indexed, dynamically growing

LinkedList: doubly-linked list

HashSet: unordered, rejects duplicates

TreeSet: ordered, rejects duplicates

Dictionary: key/value associations

SortedDictionary: key/value associations, sorted keys

Java an d C# in depth
37

