
Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

C#: exceptions
and genericity

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Exceptions

3
Java and C# in depth

Exceptions

Exceptions are objects

 They are all descendants of System.Exception

 Raise with a throw ExceptionObject instruction

 throw new AnExceptionClass(“ErrorInfo”);

 In C#, all exceptions are “unchecked” (using Java

terminology)

 May be handled, if desired

 If the current block does not have an exception handler,

the call stack is searched backward for an exception

handler

 If none is found, the unhandled exception terminates the

current execution thread

4
Java and C# in depth

Exception handlers

The scope of the exception handler is denoted by a try block

Every try block is immediately followed by zero or more catch blocks,

zero or one finally block, or both. At least one of catch blocks and

finally block is required (otherwise, the try would be useless)

 public int foo(int b) {

 try { if (b > 3) {

 throw new System.Exception();

 }

 } catch (System.Exception e) { b++; }

 finally { b++; }

 return b;

 }

5
Java and C# in depth

Exception handlers: catch blocks

catch blocks can be exception-specific:

 catch (ExceptionType name) { /* handler */ }

 Targets exceptions whose type conforms to
ExceptionType

 ExceptionType must be a descendant of

System.Exception

 name behaves as a local variable inside the handler block

 A catch block of type T cannot follow a catch block of

type S if T ≤ S (otherwise the T-type block would be

shadowed)

 From within a catch block the exception being handled

can be re-thrown with throw (no arguments)

6
Java and C# in depth

Exception handlers: catch/finally blocks

When an exception of type T is thrown within a try block:

 control is transferred to the first (in textual order) catch block whose
type T conforms to, if one exists

 then, the control is then transferred to the finally block (if it

exists)

 finally, execution continues after the try block

When no conforming catch exists or an exception is re-thrown inside the

handler:

 After executing the finally block, the exception propagates to the

next available enclosing handler

When a try block terminates without exceptions:

 the control is transferred to the finally block (if it exists)

 then, execution continues after the try block

7
Java and C# in depth

Exception handlers: catch/finally blocks

A finally block is always executed after the try block even if no

exceptions are thrown

 Typically used to free resources

Control-flow breaking instruction (return , break , continue) inside a

finally block are restricted.

 return statements cannot occur in finally blocks

 goto, break, and continue statements can occur in finally

blocks only if they do not transfer control outside the finally

block itself

These restrictions disallow tricky cases that are allowed in Java

8
Java and C# in depth

Invalid finally blocks

Valid Java code but invalid C# code:

 public int foo() {

 try { return 1; }

 finally { return 2; }

 }

 public void foo() {

 int b = 1;

 while (true) {

 try { b++; throw new Exception(); }

 finally { b++; break; }

 } b++;

 }

(Examples from Martin Nordio)

9
Java and C# in depth

Exceptions vs. assertions (contracts)

Exceptions and assertions have partially overlapping

purposes: dealing with “special” behaviors

 invalid input

 errors in computations

 runtime failures (e.g., I/O or network errors)

 ...

10
Java and C# in depth

Exceptions vs. assertions

The following guidelines are useful to choose when to use

exceptions rather than assertions:

 exceptions define the actions to be taken in case of exceptional

behavior, to restore a normal behavior

 they define a “special” behavior that requires special handling

 an exception occurring is a possible, if unusual, behavior

 exceptions may occur even in correct programs

 assertions constitute a specification of what the implementation

should achieve

 they define a contract

 an assertion violation is always an implementation error

 if the program is correct, checking assertions should be

completely useless

11
Java and C# in depth

Exceptions vs. assertions: examples

A BankAccount class defines a public method FracBonus

to add a fractional bonus to the Balance:

void FracBonus(int frac)

 // add 1/frac to Balance

Valid inputs: frac > 0

Exception or assertion?

12
Java and C# in depth

Exceptions vs. assertions: examples

A BankAccount class defines a public method FracBonus

to add a fractional bonus to the Balance:

void FracBonus(int frac)

 // add 1/frac to Balance

Valid inputs: frac > 0

Exception or assertion?

assertion:

this is a requirement imposed on clients of the method

13
Java and C# in depth

Exceptions vs. assertions: examples

Using exceptions:

 In class BankAccount:
void FracBonus(int frac) {

 if (frac <= 0)

 throw new Exception(“Wrong input”);

 Bonus = Bonus * 1/frac;

}

 In clients of BankAccount:
BankAccount ba;

int x;

// ...

try { ba.FracBonus(x) }

 catch (Exception e) {

 if (e.Message == “Wrong input”) {

 x = -x + 1; ba.FracBonus(x);

 } }

14
Java and C# in depth

Exceptions vs. assertions: examples

Using assertions:

 In class BankAccount:
void FracBonus(int frac) {

 Assert(frac > 0);

 Bonus = Bonus * 1/frac;

}

 In clients of BankAccount:
BankAccount ba;

int x;

// ...

if (!(x > 0)) { x = -x + 1; }

ba.FracBonus(x);

15
Java and C# in depth

Exceptions vs. assertions: examples

A BankAccount class defines a public method

LoadBalance to read a new value of Balance from file:

void LoadBalance(String fileName);

 // read a new value

 // of Balance from fileName

Valid inputs:

 fileName is the name of an existing file

 the file can be opened correctly

 the content reads as an integer

 ...

Exception or assertion?

16
Java and C# in depth

Exceptions vs. assertions: examples

A BankAccount class defines a public method

LoadBalance to read a new value of Balance from file:

Valid inputs:

 fileName is the name of an existing file

 the file can be opened correctly

 the content reads as an integer

 ...

Exception or assertion?

 exception:

an invalid input is a runtime error that requires extra

measures but doesn’t depend on the implementation

being incorrect

17
Java and C# in depth

Exceptions vs. assertions: examples
Using assertions:

 In class BankAccount:
void LoadBalance(string fileName) {

 Assert(fileName != null);

 Assert(fileName != “”);

 Assert(System.IO.File.Exists(fileName));

 TextReader tr = new StreamReader(fileName);

 int result;

 bool ok = Int32.TryParse(tr.ReadLine(),out result);

 Assert(ok);

 return result; }

 In clients of BankAccount:
BankAccount ba; string fn;

// read file name from user into fn

// redo the checks and notify user if they go wrong

if (fn == “”) {

 Console.WriteLine(“Invalid filename”); }

// ...

18
Java and C# in depth

Exceptions vs. assertions: examples

Using exceptions:

 In class BankAccount:
void LoadBalance(string fileName) {

 TextReader tr = new StreamReader(fileName);

 return Convert.ToInt32(tr.ReadLine());

 }

 In clients of BankAccount:
BankAccount ba;

string fn;

// read file name from user into fn

// catch assertions and notify user accordingly

try { ba.LoadBalance(fn) }

 catch (ArgumentException e) {

 Console.WriteLine(“Invalid filename”); }

 // ...

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Genericity in C#

20
Java and C# in depth

Generics

C#’s genericity mechanism, available since C# 2.0

Most common use:

 Use (and implement) generic type-safe containers

 List<String> safeBox = new List<String>();

 Compile-time type-checking is enforced

More sophisticated uses:

 Custom generic classes and methods

 Bounded genericity
 public T test <T> (T x) where T:Interface1, Interface2

21
Java and C# in depth

Generic classes

A generic class is a class parameterized w.r.t. one or more

generic types.

 public <T> class Cell {

 public T Val { get; set;}

}

To instantiate a generic class we must provide an actual type
for the generic parameters.

 Cell<String> c = new Cell<String>();

22
Java and C# in depth

Generic classes

The generic parameters of a generic class may constrain the

valid actual types.

 public class Cell<T> where T:S { ... }

The following is valid only if X is a subtype of S:

 Cell<X> c = new Cell<X>();

The constrains may involve multiple types.

 public class C<T> where T: A, IB

The following is valid only if Y is a subtype of both A and IB:

 C<Y> c = new C<Y>();

23
Java and C# in depth

Type inference: implicit types

When creating an instance of a generic class, the compiler is

often able to infer the generic type from the context. In such
cases, we can omit the type and use var instead.

 var c = new Cell<String>();

is equivalent to:

 Cell<String> c = new Cell<String>();

In general, var can be used for every variable declaration

where the compiler can figure out the types.

 var x = new String[12];

 var y = 12;

 var z = 12.4 + 5 + “OK”; // String “17.4OK”

24
Java and C# in depth

Generic methods

A generic method is a method parameterized w.r.t. one or

more generic types.

 public U downcast <U> (T x) where U:T {

 return (U) x;

 }

Notice the different position of the generic parameter:

 C#: public T foo <T> (T x);

 Java: public <T> T foo (T x);

25
Java and C# in depth

Generic methods

Clients must provide actual types for the generic parameters

only when the compiler cannot infer them from context.

public U downcast <U> (T x) where U:T

Person p = new Person();

Employee e = downcast(p); // error: which type

// among all subtypes of Employee?

Employee e = downcast<Employee>(p); // OK

var e = downcast<Employee>(p); // OK

public static void a2c <G> (G[] a, IList<G> c)

a2c(new String[8], new List<String>()); // OK

26
Java and C# in depth

Generics: features and limitations

Unlike Java, genericity is supported natively by .NET bytecode

Hence, basically all limitations of Java generics disappear:

 Can instantiate generic parameter with value types

 At runtime you can tell the difference between List<Integer>

and List<String>

 Exception classes can be generic classes

 Can instantiate a generic type parameter

 provided a clause where T : new() constrains the parameter to

have a default constructor

 Can get the default value of a generic type parameter
 T t = default (T);

 Arrays with elements of a generic type parameter can be

instantiated

 A static member can reference a generic type parameter

 Another consequence is that raw types (unchecked generic types without any

type argument) don’t exist in C#

27
Java and C# in depth

Generics and inheritance

 Let S be a subtype of T (i.e. S ≤ T)

In general, there is no inheritance relation between:

 SomeGenericClass<S> and SomeGenericClass<T>

In particular: the former is not a subtype of the latter

However, let AClass be a non-generic type:

 S<AClass> is a subtype of T<AClass>

There’s no C# equivalent of Java’s wildcards, but C#’s full-

fledged genericity mechanisms normally provide alternative

ways to achieve the same designs

However, C# doesn’t have lower-bounded genericity

28
Java and C# in depth

Why subtyping with generics is tricky

Consider a method of class F:

public static void foo(List<Vehicle> x){

 // add a Truck to the end of list ’x’

 x.Add(new Truck());

}

If List<Car> were a subtype of List<Vehicle>, this would

be valid code:

 var cars = new List<Car>();

 cars.Add(new Car());

 F.foo(cars);

But now a List<Car> would contain a Truck, which is not a Car!

29
Java and C# in depth

Replacing wildcards in C#: example

Consider the following hierarchy of classes:

What should be the signature of a method drawShapes that

takes a list of Shape objects and draws all of them?

 DrawShapes(List<Shape> shapes)

 this doesn’t work on a List<Circle>, which is not a

subtype of List<Shape>

Shape

Circle Rectangle

30
Java and C# in depth

Replacing wildcards in C#: example

What should be the signature of a method drawShapes that

takes a list of Shape objects and draws all of them?

First solution: use a helper class with bounded genericity

 class DrawHelper <T> where T: Shape {

 public static void DrawShapes(List<T> shapes)

 }

Client usage:
 DrawHelper<Shape>.DrawShapes(listOfShapes);

 DrawHelper<Circle>.DrawShapes(listOfCircles);

The compiler may be able to infer the generic type argument

from context.

31
Java and C# in depth

Replacing wildcards in C#: example

What should be the signature of a method drawShapes that

takes a list of Shape objects and draws all of them?

Second solution: use a generic method inside Shape

 public static void DrawShapes <T> (List<T> shapes)

 where T:Shape

Client usage:
 Shape.DrawShapes<Shape>(listOfShapes);

 Shape.DrawShapes<Circle>(listOfCircles);

The compiler may be able to infer the generic type argument from context.

32
Java and C# in depth

Replacing wildcards in C#: example

What should be the signature of a method drawShapes that

takes a list of Shape objects and draws all of them?

Third solution: use an out generic parameter, which declares

that objects of generic type will only be read (and hence

passing a collection of a subtype is type safe). Typically done
using the IEnumerable<out T> interface.

 public static void DrawShapes

 (IEnumerable<Vehicle> shapes)

Client usage:
 DrawShapes(listOfShapes);

 DrawShapes(listOfCircles);

Conversion from List to IEnumerable is implicit, but the signature

guarantees that DrawShapes only reads the list while iterating.

33
Java and C# in depth

Covariant generic parameters

If S is subtype of T (i.e. S ≤ T) and generic interface I is

declared as covariant: IC<out G>, then:

 IC<S> is a subtype of IC<T>

 That is: instances of classes implementing IC<S> can be

attached to references of type IC<T>

Covariant out generic parameters have restrictions that

conservatively ensure type safety:

 they can only be used in interfaces and delegates

 they can only be use as return types (not as argument

type)

 they cannot be used as genericity constraint

34
Java and C# in depth

Contravariant generic parameters

Consider a method SameArea that takes a list of Circles

and counts how many have the same area as a given Circle:

 public static int SameArea

 (IEnumerable<Circle> clist, Circle c,

 IEqualityComparer<Circle> cmp)

A comparator of areas of generic shapes should also work to

compare the area of circles. In fact, the
IEqualityComparer<in T> interface allows us to pass a

comparator for a supertype of Circle.

Client usage:

 IEqualityComparer<Shape> shapeComparer = ...

 SameArea(listOfCircles, circle, shapeComparer);

35
Java and C# in depth

Contravariant generic parameters

If S is subtype of T (i.e. S ≤ T) and generic interface I is

declared as contravariant: IC<in G>, then:

 IC<T> is a subtype of IC<S>

 That is: instances of classes implementing IC<T> can be

attached to references of type IC<S>

Contravariant in generic parameters have restrictions that

conservatively ensure type safety:

 they can only be used in interfaces and delegates

 they can only be used as argument type (not as return
types), and not for out or ref arguments

(Contravariant genericity may be unintuitive to use in general.)

36
Java and C# in depth

Collections
A classic example of separating interface from implementation

Some library interfaces from Systems.Collections.Generic:

 ICollection<E>

 int Count;

 number of elements in the collection

 void add(E item)

 bool remove(E item)

 returns whether the collection actually changed

 IEnumerator<E> GetEnumerator()

 IEnumerator<E>

 bool MoveNext()

 Moves to the next element; returns false if the

enumerator has passed the end of the collection

 E Current

 returns the current element in the enumeration

37
Java and C# in depth

Collections: some implementations

 List: indexed, dynamically growing

 LinkedList: doubly-linked list

 HashSet: unordered, rejects duplicates

 TreeSet: ordered, rejects duplicates

 Dictionary: key/value associations

 SortedDictionary: key/value associations, sorted keys

