m Ziirich

Chair of Software Engineering

Java and C# in depth

Carlo A. Furia, Marco Piccioni, and Bertrand Meyer

C#: Graphical User
Interfaces (GUI)

With material from Christoph Angerer

Windows Presentation Foundation ©
(WPF)

= 2D/3D vector-based graphics, resolution
Independent, rendering using HW acceleration
of graphic cards (Direct 3D)

= Text, typography, documents, multimedia

= Declarative Ul with XAML

= Styles, templates for declarative customization
= Data binding

= Separate behavior with code-behind

= Needs .NET 3.0+

Controls

= WPF classes hosted by a window or
document, having a Ul and behavior

= Created using XAML or code
»= Customizable using ControlTemplate

[Button |

http://wpftutorial.net

ava and C# in depth

Content Model

The type and number of items that constitute the
content of a control

Some controls have just an item and type of
content (e.g. TextBox has a string as Text)

Other controls can contain multiple items of

dlfferent types (eg Button) r:l " Button Content S

Click Me!

XAML

= XML file that allows creating GUIs
declaratively

= XML elements map to objects

= XML attributes map to properties and
events

» Used to generate code connected to the
code-behind file

XAML file for sample app (VS 2012)

File MainWindow.xam|

<Window x:Class="WpfApplicationl.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presen
tation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="MainWindow" Height="350" Width=%“400">

<Grid>

<Button x:Name=“buttonl” Content="Push me!”
HorizontalAlignment="Left” Margin="159,271,0,0"
VerticalAlignment="Top” Width=“75” Click="ButtonClick 1”/>

</Grid>
</Window>

Java and C# in depth

6

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml

Code-behind file for sample app

using System.Windows

namespace WpfApplicationl

// Interaction logic for MainWindow.xaml

public partial class MainWindow : Window{
public MainWindow () {

// Merges UI markup with code in this class,

//sets properties and registers event handlers
InitializeComponent() ;

}

private void ButtonClick 1 (object sender,

RoutedEventArgs

buttonl.Content = "It works!";

} } Java and C# in depth

7

-Ioix]

Push me! |

=

It works!

Java and C# in depth

8

Windows Presentation Foundation ©
(WPF)

* The Window class is used for standalone
applications to create windows and dialogs

* The Application class encapsulates
application-scoped services:

= startup

= |ifetime management
= shared properties

= shared resources

ava and C# in depth

XAML Application file (VS 2012)

File App.xaml

<Application x:Class="WpfApplicationl.App"

xmlns="http://schemas.microsoft.com/winfx/2006
/xaml"

xmlns:x="http://schemas.microsoft.com/winfx/20
06/xaml"

StartupUri="MainWindow.xaml”>

<Application.Resources>

</Application.Resources>
</Application>

Java an d C# in depth
10

http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml

Layout

= Recursive system to size, position and draw a
GUI element

* Measures and arranges a panel’s children
= Uses component negotiation

1. Control tells its parent required size/loc

2. Parent tells control what space it can have
= WPF provides built-in layout panels

11

Sample Layout Panels: Canvas

= Area within which you typl

cally position 2D

graphic elements by explicit relative

coordinates
= Coordinates are relative to

panel sides

= Z-order default of elements I1s as in XAML

] WPF Tutorial | Canvas (e o0 RS

e

http://wpftutorial.net

12

Sample Layout Panels: StackPanel

= Stacks child controls below or beside each
other

= Useful for lists
= Used by ComboBox, ListBox, and Menu
= Controls automatically resize

[0K I [Cancel

[OK J [Caaaaaaaaaaaancel

http://wpftutorial.net

ava and C#

in depth

13

Sample Layout Panels: DockPanel

= Area within which you arrange children
horizontally or vertically, relative to each other

= Child controls are aligned to the panel left,
right, top, bottom and center (last control)

| DockPanel

Dock=Top

Dock=Left

U\ dlsstChildFil=Tee. [1051 |Dock=Right

[

Dock=Bottom

nup://wpftutorial.net

Java an d C# in depth
14

Sample Layout Panels: WrapPanel

= Child controls are positioned sequentially from

left to right

= Controls wrap to the next line when there Is

no more space Iin the line

= Similar to stackPanel but with wrapping

| WPF Tutorial | WrapPanel | = B X |

[Euttcrnlﬂuttonl EuﬂonIButtDnl Buttc:nl ButtunlButton] Euttcn]
Button

5] WPF Tutorial | Wra.. | = | & | % |

[Buttcmlﬂuttonl EuttanlButton] Buﬂcn]
[Buttonlﬂuttc:nl EuttunlButton]

http://wpftutorial.net

Java an d C# in depth
15

Sample Layout Panels: Grid

Child controls are positioned by rows and

columns

A cell can contain multiple controls
A control can span over multiple cells

Controls can overlap

http://wpftutorial.net

EI’

(s

L=

LT

Mame:

E-Mail:

Comment:

5

end

aaaaa

d C# in depth

16

Some Mono GUI toolkits

Gtk# 2.0 http://www.mono-project.com/GtkSharp

multi-platform, binds Gtk+ and GNOME libs,
written in C with OO API, visual designer
(Mono Develop)

Winforms http://www.mono-project.com/WinForms
compatible with Windows.Forms 2.0
Xamarin.Mac http://xamarin.com/mac
to build native Cocoa apps in C#

17

http://www.mono-project.com/GtkSharp
http://www.mono-project.com/GtkSharp
http://www.mono-project.com/GtkSharp
http://www.mono-project.com/GtkSharp
http://www.mono-project.com/WinForms
http://www.mono-project.com/WinForms
http://www.mono-project.com/WinForms
http://www.mono-project.com/WinForms
http://xamarin.com/mac
http://xamarin.com/mac

Dependency Properties

18

Dependency Properties (DPs) in a nutshell ©

= Provide a functionality extension to .NET properties

= Allow computing the property value using the values of
other inputs (e.g. themes, user preferences, data
binding, animations,...)

= Can implement validation, defaults, callbacks, and in
general allow dynamic behavior

* From the user point of view they feel like .NET props

Java and C# in depth

19

Dependency Properties abstractions N

= DPs are backed by type DependencyProperty
= enables registration of DPs
= provides identification and info about the DPs
* as a base class enables objects to use DPs

* DependencyObject enables properties system
* pbase class that hosts the property

= stores the property returned by
DependencyProperty.Register

= provides getXYZ, setXYZ, clearXYZ utility methods
= handles prop changed notifications and callbacks

Java and C# in depth

20

Setting and getting DPs

= While .NET properties read from private members,
DPs are resolved dynamically when calling
GetValue () Inherited from DependencyObject

* DPs are set locally in a dictionary of keys and values
IN a DependencyObject

* the key of an entry is the name of the property
= the value Is the value to set

Java an d C# in depth
21

Dependency Property example

...In class inheriting from DependencyObject ...

public static readonly DependencyProperty
IsRotatingProperty =

DependencyProperty.Register (
"IsRotating", typeof (Boolean),

//resource refs, callbacks, styles,
animations..

) ;
public bool IsRotating{
get { return
(bool) GetValue (IsRotatingProperty); }
set { SetValue (IsRotatingProperty, wvalue);

}}

Java an d C# in depth
22

Dynamic Resolution of DPs

DP values are resolved internally by following the

precedence from top to bottom:
1. Animation

Binding expression

Local value

Custom style trigger

Custom template trigger

Custom style setter

Default style trigger

Default style setter

Inherited value

10. Default value

© 00 NS Ok WD

Java and C# in depth

23

Dependency Property value precedence

= The value you get from a DP was potentially set by
any other property-based input participating in the
property system

= The value precedence (see previous slide) helps to
have predictable interactions

= E.g. apply a style to all buttons’ background props, but
use locally set background for just one button (b1)

= pbl: property set twice, but only the locally set value counts
because has precedence over style setter

= all other buttons: style setter applies

Java an d C# in depth
24

Advantages of Dependency Properties “

= Reduced memory footprint Over 90% of the
properties of a Ul control typically stay at their initial
values. DPs only store modified properties in the
Instance. The default values are stored once within the
DP

= Value inheritance Provide the way to compute the
value of a property based on the value of other inputs
(see previous slide)

= Change notification DPs have a built-in change
notification mechanism using callbacks in the property
metadata

Java and C# in depth

25

Data Binding

= Usage scenario for DPs

= A way to automatically update data between
GUI and business model using DPs

= |t works In either direction, or in both as well

= |t Is the bridge between a binding target and a
binding source

* The Binding class is the core element

* The BindingExpression class maintains
the connection between the source and the
target

h
26

Data Binding components “

Binding Target Binding Source

Object

DependencyObject Binding Object

Dependency
Property ¥ > Property

1

http://msdn.microsoft.com/en-US/library/aa970268#Data_Binding

Main components of the binding
= Binding target object
= Target property (must be a DP)
= Binding source object
= Path to value In the binding source to use

Java and C# in depth

27

Data Binding example

Binding Target Binding Source

DependencyObject Object

Binding Object

Dependency ,
Property + - Property

Target object binding: TextBox
Target object DP: TextBox.Text
Source object binding Person
Path: Person.Name

http://msdn.microsoft.com/en-US/library/aa970268#Data_Binding

Java an d C# in depth
28

Data Binding example XAML

ypically done in XAML using the {Binding}
markup

<!-- Bind the TextBox to the data source
(TextBox.Text to Person.Name) -->

<TextBox Name="personNameTextBox"
Text="{Binding Path=Name}" />

Java an d C# in depth
29

Looking for a Property

In the previous slide we haven't specified where the
text block is going to look for the property

At runtime the text block will look for a DataContext

It will start by checking whether itself has a
DataContext assigned

If not it will progress up the control tree until it
reaches an item that does have a DataContext set

If no data context is found then it simply won't
perform the binding

Java an d C# in depth
30

Data Binding example code behind

public partial class DataBindingWindow
Window {

public DataBindingWindow ()
{
InitializeComponent() ;
// Create Person data source

// Assuming Person has property Name
Person person = new Person() ;

// Make data source available for binding

this.DataContext = person;

1}

Java an d C# in depth
31

Docs and Tutorials

http://msdn.microsoft.com/en-
us/library/ms753192.aspx

http://msdn.microsoft.com/en-
us/library/ms750612.aspx

http://wpftutorial.net/

"33

http://wpftutorial.net/
http://wpftutorial.net/
http://wpftutorial.net/
http://wpftutorial.net/
http://wpftutorial.net/
http://wpftutorial.net/
http://wpftutorial.net/
http://wpftutorial.net/
http://wpftutorial.net/
http://wpftutorial.net/
http://wpftutorial.net/
http://wpftutorial.net/
http://wpftutorial.net/
http://wpftutorial.net/
http://wpftutorial.net/

