
Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Java: reflection

2
Java and C# in depth

Outline

Introductory detour: quines

Basic reflection

 Built-in features

 Introspection

 Reflective method invocation

Dynamic proxies

Reflective code-generation

3
Java and C# in depth

What’s reflection?

A language feature that enables a program to examine itself at

runtime and possibly change its behavior accordingly

Reflection allows inspection of classes, interfaces, fields and

methods at runtime without knowing their names at compile

time

It also allows object creation and method invocation

The usage of metadata is the key to reflection

4
Java and C# in depth

What’s reflection good for?

Consider an application that uses two different classes X and Y

interchangeably to perform similar operations

Without reflection, the application might be hard-coded to call

method names of class X and class Y

Using reflection, the application can invoke methods in classes

X and Y “discovering” them at runtime

Software testing uses reflection a lot (mock objects)

More applications of Reflection at the end of the lecture

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Introductory detour: quines

6
Java and C# in depth

An introductory detour: quines

A quine is a program that outputs its own source code

 named after the philosopher Willard Van Orman Quine

and his studies of self-reference

 it is an example of reflection

In pseudocode, the basic algorithm for a quine is:

 Print the following sentence twice, the second time between quotes.

 “Print the following sentence twice, the second time between quotes.”

Can you write a quine in Java?

7
Java and C# in depth

Java quine

 From: http://www.nyx.net/~gthompso/self_java.txt

 Author: Bertram Felgenhauer

class S{

public static void main(String[]a){

 String s="class S{public static void

main(String[]a){String s=;char c=34;

System.out.println(s.substring(0,52)+c+s+c+s

.substring(52));}}";

 char c=34;

 System.out.println(s.substring(0,52)+c+s+c+s

.substring(52));

}}

http://www.nyx.net/~gthompso/self_java.txt

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Basic mechanisms for reflection

9
Java and C# in depth

Normal vs. reflective at a glance

Creating an instance of MyClass and invoking public method

myMethod is normally straightforward:

MyClass o = new MyClass(); o.myMethod();

Reflection makes things a bit harder:

Class<?> c = Class.forName(“mypkg.MyClass");//1

Object o = c.newInstance();//2

//if the type is known statically we can cast

MyClass o = (MyClass)c.newInstance();//2bis

//2nd argument: formal arg. list for myMethod

Method m=c.getMethod(“myMethod”,(Class<?>)null);//3

//2nd argument: actual arg. list to invoke myMethod

m.invoke(o, (Object[]) null);//4

10
Java and C# in depth

Little quiz: methods with parameters

Let’s assume that myMethod takes a String and an int:

MyClass o = new MyClass(); o.myMethod(“x”, 1);

How does the reflective code change?

Class<?> c = Class.forName(“mypkg.MyClass");

Object o = c.newInstance();

//2nd argument: formal arg. list for myMethod

Method m=c.getMethod(“myMethod”, //what here?);

//2nd argument: actual arg. list to invoke myMethod

m.invoke(o, //what here?);

11
Java and C# in depth

Little quiz: methods with parameters

Let’s assume that myMethod takes a String and an int:

MyClass o = new MyClass(); o.myMethod(“x”, 1);

How does the reflective code change?

Class<?> c = Class.forName(“mypkg.MyClass");

Object o = c.newInstance();

//2nd argument: formal arg. list for myMethod

Method m=c.getMethod(“myMethod”, String.class,
int.class);

//2nd argument: actual arg. list to invoke myMethod

m.invoke(o, new Object[]{new String(“x”),1});

12
Java and C# in depth

Exceptions thrown by reflective code

try{

Class<?> c = Class.forName(“mypkg.MyClass");//1

Object o = c.newInstance();//2

Method m=c.getMethod(“myMethod”,(Class<?>)null);//3

m.invoke(o, (Object[]) null);//4}

//these are only the checked exceptions thrown

catch {ClassNotFoundException e} {////thrown by 1}

catch {InstantiationException e} {//thrown by 2}

catch {IllegalAccessException e} {//thrown by 2,4}

catch {NoSuchMethodException e} {//thrown by 3}

catch {IllegalArgumentdException e} {//thrown by 4}

catch {InvocationTargetException e} {//thrown by 4}

Some unchecked exceptions and errors are also thrown...

13
Java and C# in depth

Built-in reflection

Operator instanceof

 example: overriding equals()

 public boolean equals(Object obj){

 // Querying for a type at runtime

 if (!(obj instanceof IntendedType) {

 return false;

 }

 ...

 }

14
Java and C# in depth

Getting a Class object

 java.lang.Class<T> is the entry point

 represents the meta-info for classes

 How can I get a Class object?

 from an object reference

Class<?> c1 = myObj.getClass();

 from any type (including primitive types)

Class<?> c2 = int.class;

 from a primitive type, through the wrapper

Class<?> c3 = Integer.TYPE;

 from a (fully-qualified) class name

Class<?> c4 = Class.forName(“
ch.ethz.inf.se.java.reflect.myClassName”);

15
Java and C# in depth

Introspecting a class

Class objects provide information about:

 Modifiers: int getModifiers()

 access (visibility) modifiers: abstract, public,

static, final, ... encoded as integers

 Tip: use static method Modifier.toString(int mod)

to get a textual representation

 Generic type parameters:

 TypeVariable<Class<?>>[] getTypeParameters()

 Implemented interfaces: Class[] getInterfaces()

 Inheritance hierarchy: Class[] getClasses()

 Annotations: Annotation[] getAnnotations()

16
Java and C# in depth

Introspecting public class members

Class objects provide information about public members:

 Fields:

 Field[] getFields()

 Field getField(String fieldName)

 Methods:

 Method[] getMethods()

 Method getMethod(String methodName,

 Class<?>…paramTypes)

 Constructors:

Constructor<?>[] getConstructors()

Constructor<?> getConstructor(String

constructorName, Class<?>…paramTypes)

17
Java and C# in depth

Introspecting all class members

 Fields:

 Field[] getDeclaredFields()

 Field getDeclaredField(String fieldName)

 Methods:

 Method[] getDeclaredMethods()

 Method getDeclaredMethod(String methodName,

Class<?>…paramTypes)

 Constructors:

Constructor<?>[] getDeclaredConstructors()

 Constructor<?>

getDeclaredConstructor(Class<?>…paramTypes)

To make a non-visible field accessible via reflection, invoke:
f.setAccessible(true)//what’s the type of f?

18
Java and C# in depth

Reflection and security

 Method setAccessible(boolean flag) in classes

Field and Method toggles runtime access checking

 The security manager of the JVM can disable
setAccessible altogether

 The default security manager allows setAccessible

on members of classes loaded by the same class loader

as the caller

19
Java and C# in depth

Reflection and exceptions

Besides the already mentioned checked exceptions, reflection

may trigger the following un-checked exceptions and errors:

 SecurityException

 NullPointerException

 ExceptionInInitializerError

 LinkageError

While we don’t have to handle these exceptions and errors, we

do have to handle the checked ones, bloating the code even
more

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Dynamic proxies

21
Java and C# in depth

Dynamic proxies

The idea comes from the Proxy design pattern (GoF):

 Allows for object level access control by acting as a pass

through entity or a placeholder object

Dynamically created classes that implement some interfaces

 Typical usage of dynamic proxy objects: intercept calls to

objects of different classes implementing the same

interfaces

 Standard Java approach to Aspect Oriented

Programming (AOP): cross-cutting concerns are

centralized

22
Java and C# in depth

Proxy sequence diagram

:Proxy :InvocationHandler :Method :target

23
Java and C# in depth

java.lang.reflect.Proxy

Java’s dynamic proxy factory:

 The factory produces objects of classes extending
class Proxy

 They also implement the proxied interfaces and

associate an InvocationHandler object

 Object newProxyInstance(ClassLoader loader,

 Class<?>[] interfaces, InvocationHandler h)

 InvocationHandler is an interface to wrap objects

providing methods that can handle method calls to proxy

instances

 The handler object holds a reference to the target object

24
Java and C# in depth

Example: a proxy for shapes

public interface IDrawable {

 public void draw();

}

public class Shape implements IDrawable {

 public void draw(){

 //draw a shape

 }

...

}

25
Java and C# in depth

A factory for shapes

The clients get an IDrawable object:

public class DrawablesFactory{

public static IDrawable getDrawable(){

 Shape s = new Shape();

 return Proxy.newProxyInstance(

 this.getClass().getClassLoader(),

 new Class[]{IDrawable.class},

 new CustomInvocationHandler(s));

}

}

26
Java and C# in depth

Sample invocation handler

class CustomInvocationHandler

 implements InvocationHandler{

 private proxied;

 public CustomInvocationHandler(Shape s){

 proxied = s; }

 public Object invoke(Object proxy, Method m,

Object[] args) throws Throwable{

 // Pre-processing here

 Object result = m.invoke(proxied, args);

 // Post-processing here

 return result;

 }

}

27
Java and C# in depth

Proxy usage: example

/* If the client does not know which

specific type comes from the factory */

IDrawable s =

DrawablesFactory.getDrawable();

/* If the client wants to use other

features of Shape as well*/

Shape s = (Shape)

DrawablesFactory.getDrawable();

s.draw();

28
Java and C# in depth

Dynamic Proxies hints and tips

 You can only proxy for an interface, not for a

class

 Use handlers to process requests

 instanceof can be used on proxy objects

 Casting works with proxy objects

29
Java and C# in depth

What is a Class Loader

 For every class in the system, the JVM maintains a copy of

the class code in the form of an instance of
java.lang.Class

 the class attribute of any Object returns it

 Every class is loaded in the JVM by an instance of
java.lang.ClassLoader

 reflection is really built-in in the JVM

 Within the JVM, a class is uniquely defined by:

 its fully-qualified name (i.e., including the package name)

 and the instance of the class loader that loaded it

 User-defined class loaders may make different usages of

the same class incompatible (if loaded by unrelated class

loaders)

30
Java and C# in depth

Possible usages of class loaders

 Load resources bundled in JARs

 Load, unload, update modules at runtime

 Use different versions of a library at the same time

 Isolate different applications running within the

same VM (static variables could be a problem

otherwise)

 Exercise control over where the code comes from

(e.g. a network)

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Reflective code-generation

32
Java and C# in depth

Reflective code generation

 Basic Java reflection is limited

 Dynamic proxies are more powerful, but their level of

granularity is the method

 We may need to change the behavior of a method at

runtime

 Code generation is a solution

 Class-to-class transformation is an example of code

generation

33
Java and C# in depth

Class-to-class transformation

 Input: a class

 Output: another class, obtained by transforming the input

 Use reflection to examine the input class (no parser

needed)

 Load generated classes dynamically at runtime

34
Java and C# in depth

Generating static HelloWorld (1/2)

class HelloGenerator {

 public static void main(String[] args)

 throws Exception {

 // Step 1: generate class text on file

 PrintWriter pw = new PrintWriter(new

 FileOutputStream(“Hello.java”));

 pw.println(“... class text here ...”);

 // Step 2: compile .java file into bytecode

 Process p = Runtime.getRuntime().exec(

 new String[]{“javac”,”Hello.java”});

 p.waitFor();

 // continues on next slide

35
Java and C# in depth

Generating static HelloWorld (2/2)

 // continues from previous slide

 // If compilation went fine...

 if(p.exitValue() == 0){

 // now the runtime knows about the Hello class

 // Step 3: use dynamically generated class

 Class<?> helloObj = Class.forName(“Hello”);

 Method m = helloObj.getMethod(“main”, String[].class);

 // null target because ‘main’ is static

m.invoke(null, new Object[]{new String[]{}});

 }

 else{ /* handle I/O errors */ }

 }

}

