Assignment 12: CCS advanced concepts

ETH Zurich

1 Strong Bisimulation

Consider the following labelled transition system:

Show that $P \sim Q$ by finding a strong bisimulation \mathcal{R} such that $P \mathcal{R} Q$.

1.1 Solution

A strong bisimulation \mathcal{R} is given by the following relation:

$$
\mathcal{R}=\left\{(P, Q),\left(P_{1}, Q_{1}\right),\left(P_{3}, Q_{2}\right),\left(P_{4}, Q_{2}\right),\left(P_{2}, Q_{3}\right),\left(P_{4}, Q_{4}\right)\right\}
$$

2 Weak Bisimulation

Suppose we have the following definitions of processes

$$
\begin{aligned}
\mathrm{S} & \stackrel{\text { def }}{=} a \cdot \bar{b} \cdot \mathrm{~S} \\
\mathrm{~T} & \stackrel{\text { def }}{=} \\
\mathrm{ST} & \stackrel{\text { def }}{=}(\mathrm{S} \mid \mathrm{T}) \backslash\{a, b\}
\end{aligned}
$$

Further we have

$$
\begin{aligned}
\mathrm{U} & \stackrel{\text { def }}{=} e \cdot x \cdot y \cdot \mathrm{U} \\
\mathrm{~V} & \stackrel{\text { def }}{=} \bar{x} \cdot \bar{y} \cdot \mathrm{~V} \\
\mathrm{UV} & \stackrel{\text { def }}{=}(\mathrm{U} \mid \mathrm{V}) \backslash\{x, y\}
\end{aligned}
$$

Your task is to

1. Represent ST and UV as LTSs.
2. Show that ST and UV are weakly bisimilar.
3. Suppose we further have $\mathrm{UV}^{\prime} \stackrel{\text { def }}{=}(\mathrm{U} \mid \mathrm{V}) \backslash\{y\}$. Show that ST and UV^{\prime} are not weakly bisimilar.

2.1 Solution

1.

2. The weak bisimulation here is $\{S T, S T 2, S T 3\} \times\{U V, U V 2, U V 3\}$. An alternative weak bisimulation relation is $\{(U V, S T),(U V, S T 2),(U V 2, S T 3),(U V 3, S T 3)\}$.
3. This is no longer a weak bisimulation. Due to the exposure of $x, U V^{\prime}$ can now make transitions that are impossible in $S T$.

3 In a nutshell

3.1 Background

Consider the labeled transition system describing the behavior of a process P :

$$
\mathrm{P} \underset{\bar{b}}{\stackrel{b}{\rightleftarrows}} \mathrm{P}_{1} \underset{\bar{b}}{\stackrel{b}{\rightleftarrows}} \mathrm{P}_{2}
$$

Furthermore, consider the CCS process Q defined by the following equations:

$$
\begin{array}{lll}
\mathrm{Q} & \stackrel{\text { def }}{=} & \left(\mathrm{Q}_{1} \mid \mathrm{Q}_{2}\right) \backslash\{a\} \\
\mathrm{Q}_{1} & \stackrel{\text { def }}{=} & a \cdot \bar{b} \cdot \mathrm{Q}_{1} \\
\mathrm{Q}_{2} & \stackrel{\text { def }}{=} & b \cdot \bar{a} \cdot \mathrm{Q}_{2}
\end{array}
$$

3.2 Tasks

1. Draw a labeled transition system that describes the behavior of process Q .
2. (a) Are the processes P and Q strongly bisimilar?
(b) Are the processes P and Q weakly bisimilar?

Justify your answers: if yes, give a strong (weak) bisimulation \mathcal{R} such that $\mathrm{P} \mathcal{R} \mathrm{Q}$; if no, argue why not.

3.3 Master solution

1.

2. (a) The processes P and Q are not strongly bisimilar: if $(P, Q) \in \mathcal{R}$ then must also be $\left(P_{1}, Q^{\prime}\right) \in \mathcal{R}$; however, P_{1} has an outgoing b transition, which cannot be matched by Q^{\prime}.
(b) The processes P and Q are weakly bisimilar: $\mathcal{R}=\left\{(P, Q),\left(P_{1}, Q^{\prime}\right),\left(P_{2}, Q^{\prime \prime}\right),\left(P_{1}, Q^{\prime \prime \prime}\right)\right\}$.

