ETHZ D-INFK Concepts of Concurrent Computation — Assignments
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt Spring 2014

Assignment 2: Synchronization algorithms

ETH Zurich
1 Mutual Exclusion
1.1 Background
Consider the following algorithm for a process P; in a set of processes Py, ..., Py:
turn := 0
Vie{l,...,n}: claimed[i] := false
P;
claimed[i] := true
2 while 35 €{1,...,n}\ {4} : claimed[j] = true loop
claimed[i] := false
4 await (turn = 0 or turn = i)
turn = 1
6 claimed[i] := true
end
8 critical section
claimed[i] := false
10 turn :=0
non-critical section

1.2 Task
Answer the following questions:

1. Does the algorithm enforce mutual exclusion? If so, justify your answer with an informal
proof. If not, provide a sequence of actions to illustrate how mutual exclusion could be
violated.

2. Does the algorithm guarantee the absence of deadlocks? If so, justify your answer with
an informal proof. If not, provide a sequence of actions to illustrate how a deadlock could
occur.

3. Does the algorithm guarantee the absence of starvation? If so, justify your answer with
an informal proof. If not, provide a sequence of actions to illustrate how starvation could
occur.



ETHZ D-INFK Concepts of Concurrent Computation — Assignments
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt Spring 2014

1.3 Solution
The algorithm is described in [2].

1. The algorithm satisfies mutual exclusion. The proof works by deriving a contradiction. We
assume that there is more than one process in the critical section. One of these processes
P, must have executed claimed|[z] := true first and then checked that the loop condition
is false before entering the critical section. Another process P, must have set claimed[y
]| = true after P, checked that the loop condition is false. This means, that P, must
have checked that the loop condition is false, after P, set claimed[z] := true. This is a
contradiction, because the loop condition could not have been false. Hence, the algorithm
satisfies mutual exclusion.

2. The algorithm guarantees the absence of deadlocks. The proof works by deriving a con-
tradiction. We assume that there is a deadlock and all processes are trapped in the loop.
As each process P; was entering the loop, it must have executed claimed[i] := false. If
the process was quick enough, turn was still set to its initial value. In this case it did
not have to wait and it went on with turn = i. If the process was not quick enough it
had to wait. We put all the quick processes in a set s and we use P, to denote the last
process who set turn = z. Each of the processes P; in s went on with claimed[j] := true
and then went through another loop iteration, thus setting claimed[j] := false. Every
process except P, will have waited at this point and for every process Pi except for P,
we know that claimed[i] = false. This means that process P, went on with turn := z
and claimed|z] := true and then P, left the loop. This is a contradiction. Hence, the
algorithm guarantees the absence of deadlocks.

3. The algorithm does not guarantee the absence of starvation. The following trace with two
processes P, and P, shows the problem:

Process P,: claimed[z] := true

Process Py: claimed[y] := true

Process P,: Check loop condition and enter loop.

Process P,: claimed]z] := false

Process P,: Check loop condition and enter critical section.

Process P,: Execute critical section.

Process Py: claimed[y] := false

Process Py,: turn := 0

(j) Process P,: claimed[y] := true

(k) Process P,: Checks the wait condition and continues.
(1) Process P,: turn := x

(m) Process P,: claimed[z] := true

Process P,: Check loop condition and enter loop.
Process P,: claimed[z] := false

)
)
)
)
)
)
)
)
(i) Process P,: Execute non-critical section.
)
)
)
)
)
)
) Process P,: Check loop condition and enter critical section.
)



ETHZ D-INFK Concepts of Concurrent Computation — Assignments
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt Spring 2014

2 Yet Another Lock: Proofs

2.1 Background

This task is taken from The Art of Multiprocessor Programming [1]. Consider the following
protocol to achieve n-thread mutual exclusion.

turn := 0
busy := false
P;
do {
2 do {
turn =1
4 } while (busy)

busy := true
6 } while (turn != 1)
critical section
8 busy := false
non-critical section

2.2 Task

For each of the following questions either provide a proof, or display an execution where it fails.
1. Does the protocol satisfy mutual exclusion?
2. Is the protocol starvation-free?

3. Is the protocol deadlock-free?

2.3 Solution

1. The protocol satisfies mutual exclusion. The property can be prooved by deriving a contra-
diction starting from the assumption that more than one thread is in the critical section.
In such a case every thread ¢ must have gone through the following sequence of actions.

(a) Set turn = i.

(b)

c) Set busy = true.

(d)

Verify that busy is false.

Verify that turn is 1.

One of the threads in the critical section must have started the sequence first. This thread
is denoted by ¢. While thread i was going through the sequence, no other thread could
have set turn. Otherwise thread ¢ could not have completed the sequence before entering
the critical section. Therefore no other thread could have started its sequence, because
setting turn is at the start of every thread’s sequence. Therefore every other thread must
have started its sequence after thread ¢ was done with its sequence. This means that all
the other threads must have seen busy set to true before starting their sequence. Based
on this, no other thread could have completed its sequence. This is a contradiction.

2. The protocol is not free of starvation as can be shown with the following execution.

(a) Thread ¢ attempts to enter the critical section. It enters the inner loop and sets turn
to 1.



ETHZ D-INFK Concepts of Concurrent Computation — Assignments
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt Spring 2014

(b) Thread j attempts to enter the critical section. It enters the inner loop and sets turn
to 7.

(c) Thread j leaves the inner loop, sets busy to true, leaves the outer loop and enters
the critical section.

(d) Thread i continues to execute the inner loop.

(e) Thread j leaves the critical section. It sets busy to false and enters the non-critical
section.

(f) Thread j attempts to enter the critical section again. It enters the inner loop and
sets turn to 1.

(g) The initial situation is restored and therefore thread j can once more overrun thread
i.

3. The protocol is not free of deadlocks as can be shown with the following execution.

(a) Thread i attempts to enter the critical section. It enters the inner loop and sets turn
to <.

(b) Thread j attempts to enter the critical section. It enters the inner loop and sets turn
to j.

(¢) Thread j leaves the inner loop and sets busy to true.

(d) Thread i continues to execute the inner loop and sets turn to i.

(e) Thread j continues to execute the outer loop. Thread j cannot leave the outer loop
as turn is set to 4. Therefore thread j enters the inner loop again while busy remains
true.

(f) Both threads continuously execute the inner loop, because busy will remain true
forever.

3 Tree-based mutual exclusion

3.1 Background

This question assumes a “tree-based mutual exclusion” (TBME) algorithm which is based on
the following idea: The algorithm can be represented by a binary tree where each internal (non-
leaf) node represents a critical section shared by its descendants. The threads are at the leaves
of the tree. The root of the tree is the main critical section shared by all the threads.

To enter the main critical section, a thread starts at its leaf in the tree. The thread is re-
quired to traverse the path from its leaf up to the root, entering all the critical sections on
its path. Upon exiting the critical section, the thread traverses this path in reverse, this time
leaving all the critical sections on its path. Figure 1 illustrates this process. If thread 1 wants
to enter the main critical section, it must first enter critical section B. After having successfully
entered critical section B, thread 1 must enter critical section A, and so on.

At each internal node, there is a maximum of two threads competing against each other to
enter the node’s critical section. Therefore, a mutual exclusion algorithm for two threads (e.g.
Peterson’s algorithm for 2 threads) can be used to implement the critical section of an internal
node.



ETHZ D-INFK Concepts of Concurrent Computation — Assignments
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt Spring 2014

main critical
section

critical section A

critical section B

thread 1 thread 2 thread 3 thread 4 thread 5

critical section C

Figure 1: tree-based mutual exclusion algorithm example

3.2 Task

1. What is the main advantage of the TBME algorithm over the Peterson algorithm for n
threads?

2. Provide a Java implementation of the TBME algorithm using the Peterson algorithm for
2 threads.

3.3 Solution

The main advantages of the TBME algorithm over the Peterson algorithm for n threads are:

e In the TBME algorithm for n threads, a thread only needs to go through O(log(n)) steps
in order to enter the critical section. In the Peterson algorithm for n threads, a thread
needs to go through O(n) steps.

e The TBME algorithm has O(log(n))-bounded waiting.

e The TBME algorithm can be used with any mutual exclusion algorithm for 2 threads.

An implementation is given by the source code of this solution.

References

[1] Maurice Herlihy und Nir Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann, 2008.

[2] Alain J. Martin. A New Generalization of Dekker’s Algorithm for Mutual Exclusion. Tech-
nical Report 1985.5195-tr-85. California Institute of Technology, 1985.



	Mutual Exclusion
	Background
	Task
	Solution

	Yet Another Lock: Proofs
	Background
	Task
	Solution

	Tree-based mutual exclusion
	Background
	Task
	Solution


