
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

Assignment 3: Semaphores

ETH Zurich

1 Interleaving with Semaphores

1.1 Background

This task is also taken from Foundations of Multithreaded, Parallel, and Distributed Program-

ming [1].

1.2 Task

Given the following processes and code, give the possible outputs of the interleavings:
s.count := 0
r.count := 1
x := 0
P1 P2 P3

s.down r.down r.down
r.down x := x * (x + 1) x := x + 2
x := x * 2 r.up r.up
r.up s.up

2 Barriers

2.1 Background

Consider a programwith three types of threads: A, B and C. A barrier synchronizes one A-thread
and two B-threads, which pass the barrier together as an A-B-B-group. C-threads only wait at
the barrier if the number of A-B-B-groups that have already passed the barrier is smaller than
or equal to the number of C-threads that have already passed the barrier.

For example, this would be a valid execution:

1. B-thread arrives at the barrier and waits

2. A-thread arrives at the barrier and waits

3. A-thread arrives at the barrier and waits

4. B-thread arrives at the barrier and waits

5. One A-thread and two B-threads pass the barrier

6. C-thread arrives at the barrier and immediately passes

7. B-thread arrives at the barrier and waits

8. C-thread arrives at the barrier and waits

9. B-thread arrives at the barrier and waits

10. One A-thread and two B-threads, as well as one C-thread pass the barrier

1



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

2.2 Task

Write synchronization code for threads of type A, B and C that enforces these constraints using
semaphores. Your solution may not rely on the number of running threads. You may use Eiffel,
Java, or appropriate pseudocode.

You will probably find it helpful to use integer counters for keeping track of the number
of waiting threads of type A and B, and a semaphore for each type of thread A, B and C (in
addition to further variables and semaphores that might be needed).

Note that you have to initialize all variables and semaphores with the proper values first.

3 Unisex bathroom

3.1 Background

This task has been adapted from Foundations of Multithreaded, Parallel, and Distributed Pro-

gramming [1]. In an office there is a unisex bathroom with n toilets. The bathroom is open to
both men and women, but it cannot be used by men and women at the same time.

3.2 Task

1. Develop a Java program that simulates the above scenario using semaphores from the Java
concurrency library. Your solution should be deadlock free, but it does not have to be
starvation free.

2. Justify why your solution is deadlock free.

References

[1] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison Wesley, 1999.

2


	Interleaving with Semaphores
	Background
	Task

	Barriers
	Background
	Task

	Unisex bathroom
	Background
	Task


