
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

Assignment 4: Monitors

ETH Zurich

1 Queues

1.1 Background

There is a given generic queue class called Queue<T>, where T is the generic type of the queue
elements. You only know that Queue<T> follows FIFO rules on a single-threaded execution,
and offers the methods enqueue, dequeue, and size . No assumptions can be made about the
thread safety of these operations.

1.2 Tasks

1. Implement a bounded concurrent queue using Queue in Java or a suitable pseudocode.
The following operations must be implemented:

• void enqueue(T v), which enqueues the value v on the queue.

• T dequeue(), which dequeues a value and returns it to the caller.

• A constructor which takes the queue bound (> 0) as an argument.

You are to implement this using a signal-and-continue monitor and two condition variables,
one condition variable for “not empty” and one for “not full”. These condition variables
only provide two operations: signal and wait. Recall that signal only awakens a single
thread.

2. Imagine in the previous situation that a single condition variable is used for both the “not
empty” and “not full” conditions. With a single condition variable, can you guarantee
that a waiting enqueue (dequeue) operation is only awakened when the queue is not full
(empty)?

If yes, how? If not, what problem does this pose when only signal is available?

1

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

1.3 Master Solution

1.3.1 Task 1

Solution in a sort of pseudo-Java (which allows ConditionVariables to be attached to the sur-
rounding monitor instead of a particular Lock).

class ConcQueue<T> {
Queue<T> q;

ConditionVariable not empty;
ConditionVariable not full ;
int bound;

ConcQueue(int bound)
{

this .q = new Queue<T>();
this .not empty = new ConditionVariable();
this . not full = new ConditionVariable();
this .bound = bound;

}

synchronized
enqueue(T v)
{
while (q.size () == bound)

not full .wait() ;

q.enqueue(v);

not empty.signal() ;
}

synchronized
T dequeue()
{

T result ;

while (q.size () == 0)
not empty.wait();

result = q.dequeue();

not full . signal () ;

return result ;
}
}

1.3.2 Task 2

No, a single condition variable cannot distinguish between different semantic conditions.

2

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

This poses the problem that a signal could be “lost” by it waking up a thread that didn’t
require that condition to be true instead of a thread that did require that condition to be true.

2 A barrier with a monitor

2.1 Background

A barrier is a form of synchronization that determines a point in the execution of a program
which all threads in a group have to reach before any of them may move on.

2.2 Task

1. Develop a monitor class that implements a barrier for n threads using the signal-and-
continue signaling discipline. Your monitor class should have a feature join; to join a
barrier a thread can call barrier . join. You may assume that the threads are numbered
from 1 to n and that the identifier of the current thread can be queried with current thread
. id.

2. What difference does it make if your solution uses the signal-and-wait signaling discipline?
Give two execution sequences, one for each signaling discipline, to show the difference. In
particular, mention when threads acquire/release the lock on the monitor and mention
when the threads enter/leave the queues of the condition variables and the monitor. You
can assume that there are only three threads, i.e. n = 3.

For example, an execution sequence could look like this:

(a) Thread 1: Acquire the lock on the monitor.

(b) Thread 1: Release the lock on the monitor.

(c) Thread 1: Continue with the post-synchronization workload.

(d) ...

2.3 Solution

monitor class BARRIER
2
create

4 make

6 feature −− Initialization
make (a number of threads)

8 −− Create the barrier with ’a number of threads’.
do

10 number of threads := a number of threads
occupancy := 0

12 create is full .make (1, number of threads)
end

14
feature −− Basic operations

16 join
−− Join the barrier.

18 do
if occupancy + 1 < number of threads then

3

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

20 occupancy := occupancy + 1
is full [current thread . id]. wait

22 else
across is full as l cursor loop

24 if not l cursor .item.is empty then
l cursor .item. signal

26 end
end

28 end
end

30
feature {NONE} −− Implementation

32 number of threads: INTEGER −− The number of threads.
occupancy: INTEGER −− How many threads have joined the barrier?

34 is full : ARRAY [CONDITION VARIABLE] −− An array with one condition variable for
each thread. Each joining thread that does not complete the barrier uses its condition
variable to wait for the barrier to become full. The last thread uses the condition
variables to signal the other threads that the barrier is now full .

end

The signal-and-continue discipline permits the following execution:
1. Thread 1: Add thread 1 to the queue of the monitor. Acquire the lock on the monitor.

Remove thread 1 from the queue of the monitor.

2. Thread 1: Set occupancy to 1.

3. Thread 1: Release the lock on the monitor. Add thread 1 to the queue of its condition
variable.

4. Thread 2: Add thread 2 to the queue of the monitor. Acquire the lock on the monitor.
Remove thread 2 from the queue of the monitor.

5. Thread 2: Set occupancy to 2.

6. Thread 2: Release the lock on the monitor. Add thread 2 to the queue of its condition
variable.

7. Thread 3: Add thread 3 to the queue of the monitor. Acquire the lock on the monitor.
Remove thread 3 from the queue of the monitor. All threads have reached the barrier.

8. Thread 3: Remove thread 1 from the queue of its condition variable. Add thread 1 to the
queue of the monitor.

9. Thread 3: Remove thread 2 from the queue of its condition variable. Add thread 2 to the
queue of the monitor.

10. Thread 3: Release the lock on the monitor.

11. Thread 3: Continue with the post-synchronization workload.

12. Thread 1: Acquire the lock on the monitor. Remove thread 1 from the queue of the
monitor.

13. Thread 1: Release the lock on the monitor.

14. Thread 1: Continue with the post-synchronization workload.

4

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

15. Thread 2: Acquire the lock on the monitor. Remove thread 2 from the queue of the
monitor.

16. Thread 2: Release the lock on the monitor.

17. Thread 2: Continue with the post-synchronization workload.

The signal-and-wait discipline permits the following execution:

1. Thread 1: Add thread 1 to the queue of the monitor. Acquire the lock on the monitor.
Remove thread 1 from the queue of the monitor.

2. Thread 1: Set occupancy to 1.

3. Thread 1: Release the lock on the monitor. Add thread 1 to the queue of its condition
variable.

4. Thread 2: Add thread 2 to the queue of the monitor. Acquire the lock on the monitor.
Remove thread 2 from the queue of the monitor.

5. Thread 2: Set occupancy to 2.

6. Thread 2: Release the lock on the monitor. Add thread 2 to the queue of its condition
variable.

7. Thread 3: Add thread 3 to the queue of the monitor. Acquire the lock on the monitor.
Remove thread 3 from the queue of the monitor. All threads have reached the barrier.

8. Thread 3: Add thread 3 to the queue of the monitor. Remove thread 1 from the queue of
its condition variable. Transfer the lock on the monitor to thread 1.

9. Thread 1: Release the lock on the monitor.

10. Thread 1: Continue with the post-synchronization workload.

11. Thread 3: Acquire the lock on the monitor.

12. Thread 3: Add thread 3 to the queue of the monitor. Remove thread 2 from the queue of
its condition variable. Transfer the lock on the monitor to thread 2.

13. Thread 2: Release the lock on the monitor.

14. Thread 2: Continue with the post-synchronization workload.

15. Thread 3: Acquire the lock on the monitor.

16. Thread 3: Release the lock on the monitor.

17. Thread 3: Continue with the post-synchronization workload.

3 Signal and continue vs. signal and wait

3.1 Background

Listing 1 shows a monitor class that defines three parts of a job.

5

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

Listing 1: three part job class with signal and wait

monitor class THREE PART JOB

feature
first part done : CONDITION VARIABLE

do first and third part
do

first part
first part done . signal −− ‘‘Signal and Wait’’ signaling discipline
third part

end

do second part
do

first part done .wait
second part

end
end

The condition variable first part done is used to ensure that the first and the third part are
executed by one thread t1 and that the second part is executed by another thread t2 in between
the first and the third part. This is the correctness specification.

3.2 Task

1. Assume that the condition variable implements the “Signal and Wait” discipline. Is the
code correct? If the code is correct, justify why it works. If the code is not correct, show
a sequence of actions that illustrates the problem.

2. Assume now that the condition variable implements the “Signal and Continue” discipline
instead. Is the code correct? If the code is correct, justify why it works. If the code is not
correct, show a sequence of actions that illustrates the problem.

3. If the program is not correct with the “Signal and Continue” discipline, rewrite the program
so that it is correct. To do this, use the “Signal and Continue” condition variables.

3.3 Solution

1. The code is not correct. It works if t2 gets the monitor first. If t1 gets the monitor first,
then t1 proceeds without synchronization. Once t2 gets the monitor, it blocks and ends
up in a deadlock.

2. The code is not correct. If t1 gets the monitor first, then t1 proceeds without synchro-
nization. Once t2 gets the monitor, it blocks and ends up in a deadlock. If t2 gets the
monitor first, then t2 blocks and lets t1 proceeds without synchronization; only after t1 is
done will t2 continue.

3. The following code reproduces the correct behavior with the “Signal and Continue” sig-
naling discipline:

Listing 2: three part job class with signal and continue

monitor class THREE PART JOB

6

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

feature
first part done : CONDITION VARIABLE

monitor returned: CONDITION VARIABLE
entered first : BOOLEAN −− Initially set to ‘False ’

do first and third part
do

first part
first part done . signal −− ‘‘Signal and Continue’’ signaling discipline
entered first := True

monitor returned.wait
third part

end

do second part
do

if not entered first then
first part done .wait

end
second part
monitor returned.signal −− ‘‘Signal and Continue’’ signaling discipline

end
end

4 Smoke Signals

4.1 Background

This task, originally proposed by Patil [2], was a response to Dijkstra’s semaphores.

4.2 Task

There is a table with 3 smokers, and a dealer. The smokers continually smoke and make
cigarettes. Each smoker also has an infinite amount of one type of supply (papers, tobacco,
matches) to make a cigarette. The smokers cannot accumulate supplies that are not their own.
They smoke a single cigarette, then try to acquire the required supplies to make a new one, ad
infinitum.

The dealer is responsible for non-deterministically selecting two smokers, taking one of each
of their supplies, and placing them on the table. He then notifies the third smoker that he/she
may take these supplies and make another cigarette when he is finished his current cigarette (if
he has one). When the dealer sees the table is again empty, he will repeat the action of placing
supplies on the table.

Try to formulate the dealer and each smoker as a separate process. You may use either
monitors or semaphores to solve the problem.

4.3 Solution

We present a solution using semaphores. There are 4 semaphores: one for the table, initialized
to 1, and one for each smoker placed in an array of semaphores. All smoker semaphores are
initialized to 0.

The dealer process continually performs the following actions:

7

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

table.down
select the smoker, k, to not take supplies from
smoker[k].up

Each smoker process, i, continually performs the following actions:

smoker[i].down
sleep (make cigarette time)
table.up
sleep (smoke time)

5 Unisex bathroom

5.1 Background

This task has been adapted from Foundations of Multithreaded, Parallel, and Distributed Pro-
gramming [1]. In an office there is a unisex bathroom with n toilets. The bathroom is open to
both men and women, but it cannot be used by men and women at the same time.

5.2 Task

1. Develop a Java program that simulates the above scenario using Java built-in monitors.
Your solution should be deadlock and starvation free.

2. Justify why your solution is starvation free.

5.3 Solution

The program and the justifications can be found in the source that comes with this solution.

References

[1] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison Wesley, 1999.

[2] Sahus Patil. Limitations and capabilities of Dijkstra’s semaphore primitives for coordination
among processes. MIT, 1971.

8

	Queues
	Background
	Tasks
	Master Solution
	Task 1
	Task 2

	A barrier with a monitor
	Background
	Task
	Solution

	Signal and continue vs. signal and wait
	Background
	Task
	Solution

	Smoke Signals
	Background
	Task
	Solution

	Unisex bathroom
	Background
	Task
	Solution

