
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

Assignment 6: SCOOP type system

ETH Zurich

1 Subtyping

1.1 Background

Have a look at the attributes shown in listing 1.

Listing 1: Attributes

1 px: PROCESSOR
py: PROCESSOR

3
a: separate X

5 b: separate <px> X
c: separate <py> X

7 d: X
e: detachable separate X

9 f : detachable separate <px> X
g: detachable X

1.2 Task

Decide whether the following attachments are valid or not. Justify your answer.

1. a := b

2. a := d

3. b := a

4. b := c

5. b := d

6. d := a

7. d := b

8. a := e

9. e := a

1



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

1.3 Solution

1. The assignment a := b is valid. All type components of b are conformant to the type
components of a.

2. The assignment a := d is valid. All type components of d are conformant to the type
components of a.

3. The assignment b := a is invalid. The > processor tag does not conform to the explicit
processor tag.

4. The assignment b := c is invalid. The two explicit processor tags are not conformant to
each other. The two explicit processor tags denote different processors.

5. The assignment b := d is invalid. The non-separate processor tag does not conform to the
explicit processor tag. The explicit processor tag denotes a processor different than the
current processor.

6. The assignment d := a is invalid. The > processor tag does not conform to the non-
separate processor tag. Statically the > processor tag can denote any processor.

7. The assignment d := b is invalid. The explicit processor tag does not conform to the non-
separate processor tag. The explicit processor tag denotes a processor different than the
current processor.

8. The assignment a := e is invalid. A detachable type does not conform to an attached
type.

9. The assignment e := a is valid. All type components of a are conformant to the type
components of e.

2 Valid targets

2.1 Background

Have a look at listing 2.

Listing 2: Enclosing Feature

p: PROCESSOR
2
r (a: detachable separate X; b: separate <p> X; c: separate X)

4 local
d: separate <p> X

6 e: separate <c.handler> X
f : separate X

8 do
...

10 end

Imagine that the class X has a function g: X and a procedure do something.

2



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

2.2 Task

Decide for each of the following feature calls, whether the calls are valid or not when they appear
in feature r of listing 2.

1. c.do something

2. c.g.do something

3. e := c; e.do something

4. f := c; f .do something

5. a.do something

6. d := b; d.do something

2.3 Solution

1. The call c.do something is valid. The target c is attached and it appears as a formal
argument in the enclosing routine.

2. The call c.g.do something is valid. The expression c has an implicit type (!, c.handler , X).
The result type combiner yields (!, c.handler , X) as the type of c.g. Thus the target c.g is
attached and has a qualified explicit processor tag denoting an attached formal argument
of the enclosing routine.

3. The call e.do something is valid. The target e is attached and has a qualified explicit
processor tag denoting an attached formal argument of the enclosing routine.

4. The call in f := c; f .do something is invalid. The entity f is separate and does not
correspond to any of the attached formal arguments in the enclosing routine. At runtime
the entity f will be attached to a controlled object. Therefore an object test would help
to make the call valid.

5. The call a.do something is invalid. The target a is not attached.

6. The call d.do something is valid. The target d is attached and it has the same same
unqualified explicit processor tag as one of the attached formal arguments in the enclosing
routine.

3 Separate generics or generic separate?

3.1 Background

The interplay between generics and separate types are important to understand, and enforce a
good understanding of the type system.

3.2 Task

Consider the differences between:

• separate LIST [BOOK]

• LIST [separate BOOK]

Explain the distinction using the object/processor diagram.

3



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

3.3 Solution

A separate list of books:

A list of separate books:

4 Basic library: type combiner

4.1 Background

Consider the classes in listing 3. These classes belong to a basic library implementation.

Listing 3: Basic Library

class LIST[G]
2 feature

last : G
4 −− Last element.

6 put(a element: G)

4



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

−− Add the element to the list.
8 do

...
10 end

end
12

class LIBRARY
14 feature

books : LIST[separate BOOK] −− Books.
16 end

4.2 Task

What is the result type of books . last from the perspective of the library? What is the type of
an actual argument in the call books .put (...) from the perspective of the library? Justify your
answer.

4.3 Solution

The type of the target books is (!, •,LIST [(!,>,BOOK )]). The result type of last is (!,>,BOOK ).
As a result one gets (!, •,LIST [(!,>,BOOK )]) ∗ (!,>,BOOK ) = (!,>,BOOK ). The type of the
formal argument of put is (!,>,BOOK ). Thus the combination yields (!, •,LIST [(!,>,BOOK )])⊗
(!,>,BOOK ) = (!,>,BOOK ).

5 Stack library: type combiner

5.1 Background

Consider the alternative stack based library implementation shown in listing 4.

Listing 4: Stack Library

class LIST[G]
2 feature

last : G −− Last element.
4 end

6 class STACK[G]
feature

8 top : G −− Top element.
end

10
class LIBRARY

12 feature
books : LIST[STACK[separate BOOK]] −− Books.

14 end

5.2 Task

What is the result type of books . last .top from the perspective of the library? Justify your
answer.

5



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

5.3 Solution

The result type can be determined by applying the result type combiner several times as shown
in the following.

(!, •,LIST [B]) ∗
B︷ ︸︸ ︷

(!, •,STACK [A]) ∗
A︷ ︸︸ ︷

(!,>,BOOK ) =

(!, •,STACK [A]) ∗
A︷ ︸︸ ︷

(!,>,BOOK ) = (!,>,BOOK )

6


	Subtyping
	Background
	Task
	Solution

	Valid targets
	Background
	Task
	Solution

	Separate generics or generic separate?
	Background
	Task
	Solution

	Basic library: type combiner
	Background
	Task
	Solution

	Stack library: type combiner
	Background
	Task
	Solution


