
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

Assignment 7: Lock-free approaches

ETH Zurich

1 Stack

1.1 Background

Figure 1 shows a history for three threads. Each time line corresponds to one thread. All the
threads work on a single stack s. The query s.top (i) expects an element i to be on top of stack
s. Note that s.top (i) does not remove the top item. The command s.push (i) pushes an element
i on top of the stack s.

Figure 1: History

1.2 Task

1. Is the history shown in figure 1 linearizable? Justify your answer.

2. Is the history shown in figure 1 sequentially consistent? Justify your answer.

1.3 Solution

1. The history is not linearizable. The call to s.push(1) must happen before s.top(1), because
s.top(1) expects an element i on top of the stack. The call to s.push(0) must not happen
before the call to s.top(1) took effect. The earliest point when s.top(1) can take effect is
at the start of its time span. This is however already too late for s.push(0) to take effect.

2. The history is sequentially consistent. An equivalent legal sequential history is given by:

(a) Thread 2 s.push(1)

(b) Thread 2 s:void

(c) Thread 3 s.top(1)

(d) Thread 3 s:1

(e) Thread 1 s.push(0)

(f) Thread 1 s:void

(g) Thread 3 s:top(0)

(h) Thread 3 s:0

1

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

2 Non-linearizable queue

2.1 Background

This task has been adapted from [2]. The AtomicInteger class is a container for an integer value.
One of its methods is boolean compareAndSet(int expect, int update). This method compares
the object’s current value to expect. If the values are equal, then it atomically replaces the
object’s value with update and returns true. Otherwise, it leaves the object’s value unchanged,
and returns false. This class also provides int get() which returns the object’s actual value.

Consider the following FIFO queue implementation. It stores its items in an array items, which,
for simplicity, we will assume has unbounded size. It has two AtomicInteger fields. head is the
index of the next slot from which to remove an item. tail is the index of the next slot in which
to place an item.

class IQueue<T> {
AtomicInteger head = new AtomicInteger(0);
AtomicInteger tail = new AtomicInteger(0);
T[] items = (T[]) new Object[Integer.MAX VALUE];

public void enq(T x) {
int slot ;
do {

slot = tail .get() ;
} while (! tail .compareAndSet(slot, slot + 1));
items[slot] = x;
}

public T deq() throws EmptyException {
T value;
int slot ;

do {
slot = head.get() ;
value = items[slot];
if (value == null) {
throw new EmptyException();
}
} while (!head.compareAndSet(slot, slot + 1));
return value;
}
}

2.2 Task

Give an example showing that this implementation is not linearizable.

2.3 Solution

The problem is that the two consecutive operations tail .compareAndSet(slot, slot + 1) and
items[slot] = x do not happen atomically. The problem is illustrated in the following execution.

1. Thread 1 calls q.enq(e1) with a matching element e1.

2

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

2. Thread 1 executes tail .compareAndSet(slot, slot + 1) and exits the loop.

3. Thread 2 calls q.enq(e2) with a matching element e2.

4. Thread 2 executes tail .compareAndSet(slot, slot + 1), exits the loop and executes items
[slot] = x.

5. Thread 2 finishes the call to q.enq(e2).

6. Thread 3 calls q.deq().

7. Thread 3 executes slot = head.get() and value = items[slot] . The slot is the one set by
thread 1. Note that thread 1 did not set the value for this slot yet.

8. Thread 3 throws an exception because value is null.

9. Thread 1 executes items[slot] = x.

10. Thread 1 finished the call to q.enq(e1).

The execution is depicted in the following history.

1. Thread 1 q.enq(e1)

2. Thread 2 q.enq(e2)

3. Thread 2 q:void

4. Thread 3 q.deq()

5. Thread 3 q:EmptyException()

6. Thread 1 q:void

The history is not linearizable. In the history above the call by thread 2 precedes the
call by thread 3. This precedence relation must be preserved in any equivalent sequential
history. Furthermore such a history can not have any other dequeue operations other than the
one by thread 3. Therefore any such history would be invalid because a dequeue operation
after a enqueue operation must not throw an empty exception in the absence of other dequeue
operations.

3 Binary search tree

3.1 Background

Listing 1 shows the class of a binary search tree. The class defines a feature insert to add a
value to a tree and a feature has to check whether the tree contains a value.

Listing 1: Non-linearizable binary search tree

class BINARY SEARCH TREE
2
create

4 make

6 feature −− Initialization
make (a value: INTEGER)

8 −− Initialize this node with ’a value ’.

3

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

do
10 left := Void

right := Void
12 value := a value

end
14

feature −− Access
16 left : BINARY SEARCH TREE

−− The left sub tree.
18 right : BINARY SEARCH TREE

−− The right sub tree.
20 value : INTEGER

−− The value.
22

feature −− Basic operations
24 insert (a new value: INTEGER)

−− Insert ’a new value’ into the tree .
26 require

tree does not have new value : not has (a new value)
28 do

if a new value < Current.value then
30 if not left = Void then

left . insert (a new value)
32 else

left := create {BINARY SEARCH TREE}.make (a new value)
34 end

else
36 if not right = Void then

right . insert (a new value)
38 else

right := create {BINARY SEARCH TREE}.make (a new value)
40 end

end
42 end

44 has (a value : INTEGER): BOOLEAN
−− Does the tree have ’a value’?

46 do
if a value = Current.value then

48 Result := True
else

50 if a value < Current.value then
if not left = Void then

52 Result := left.has (a value)
else

54 Result := False
end

56 else
if not right = Void then

58 Result := right.has (a value)
else

60 Result := False

4

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

end
62 end

end
64 end

end

3.2 Task

1. Devise an execution sequence that demonstrates that the binary search tree from Listing
1 is not linearizable; provide a corresponding history and explain why this history is non-
linearizable.

2. Using the feature compare and swap, develop a linearizable version of the binary search
tree class. Provide only the changed features.

The feature compare and swap ($entity, test value , new value) sets the value of an entity
to new value if and only if the entity currently has the value test value ; the feature call
returns whether or not the test was successful. Here, the $ operator returns the address
of the entity.

3.3 Solution

3.3.1 Task 1

Consider the following execution based on an entity n of type BINARY SEARCH TREE:

1. Thread 1: Calls create n.make (10) and finishes.

2. Thread 1: Calls n. insert (5). Continues until left := create {BINARY SEARCH TREE
}.make (a new value).

3. Thread 2: Calls n. insert (4) and finishes.

4. Thread 1: Executes left := create {BINARY SEARCH TREE}.make (a new value). This
overrides the value set by thread 2.

5. Thread 3: Executes n.has (4). Returns that the element could not be found.

The following history represents this execution:

1. Thread 1: create n.make (10)

2. Thread 1: n:void

3. Thread 1: n.insert (5)

4. Thread 2: n.insert (4)

5. Thread 2: n:void

6. Thread 1: n:void

7. Thread 3: n.has (4)

8. Thread 3: n:False

There are only two possible equivalent sequential histories that preserve the order relation.
One of the histories lets the first thread insert its value first:

5

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

1. Thread 1: create n.make (10)

2. Thread 1: n:void

3. Thread 1: n.insert (5)

4. Thread 1: n:void

5. Thread 2: n.insert (4)

6. Thread 2: n:void

7. Thread 3: n.has (4)

8. Thread 3: n:False

The other one lets the second thread insert its value first:

1. Thread 1: create n.make (10)

2. Thread 1: n:void

3. Thread 2: n.insert (4)

4. Thread 2: n:void

5. Thread 1: n.insert (5)

6. Thread 1: n:void

7. Thread 3: n.has (4)

8. Thread 3: n:False

Both histories are illegal because the value 4 should not be reported as missing. Hence the
implementation is not linearizable.

3.3.2 Task 2

Listing 2: Linearizable binary search tree

insert (a new value: INTEGER)
2 −− Insert ’a new value’ into the tree .

require
4 tree does not have new value : not has (a new value)

local
6 l cached sub tree : BINARY SEARCH TREE −− The cached sub tree.

do
8 if a new value < Current.value then

l cached sub tree := left
10 if not l cached sub tree = Void then

left . insert (a new value)
12 else

if not compare and swap ($left, l cached sub tree , create {
BINARY SEARCH TREE}.make (a new value)) then

14 left . insert (a new value)
end

16 end

6

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

else
18 l cached sub tree := right

if not l cached sub tree = Void then
20 right . insert (a new value)

else
22 if not compare and swap ($right, l cached sub tree , create {

BINARY SEARCH TREE}.make (a new value)) then
right . insert (a new value)

24 end
end

26 end
end

The binary search tree is linearizable. When an insert operation runs in parallel to a number
of insert operations, then the tree will contain the values of all these insert operations. When
a has operation runs in parallel to a number of insert operations then the has operation might
return true or false for the values of these insert operations. When the has operation runs after
a number of insert operations then the has operation returns true for the values of these insert
operations. For all other values the has operation returns false.

We now take a look at a history, by going from left to right; we look at the operations in
the order in which they start. If multiple operations start at the same time, we look at these
operations in a random order. As we go through the history, we construct a new sequential
history, starting from an empty one.
• If the current operation is an insert operation then we add the insert operation to the end

of the sequential history.

• If the current operation is a has operation that returns true for a value from an already
added insert operation then we add the has operation to the end of the sequential history.

• If the current operation is a has operation that returns true for a value from a not yet
added insert operation then the has operation must have run in parallel to a matching insert
operation. In this case, we stall the has operation and add it after the insert operation
as soon as we add the insert operation. This preserves the order relation because the
insert operation ran in parallel to the has operation and hence we can choose the ordering
between the two in the sequential history.

• If the current operation is a has operation that returns false and there is no insert operation
that inserts this value then we add the has operation to the end of the sequential history.

• If the current operation is a has operation that returns false and there is an insert operation
that inserts this value then either this insert operation must have run in parallel to the
has operation or it must have run after the has operation.

– In case the insert operation ran in parallel to the has operation, we have to distinguish
two situations. One one hand, it could be that the insert operation has already been
added, in which case we add the has operation in front of the insert operation. This
preserves the order relation because the insert operation ran in parallel to the has
operation and hence we can choose the ordering between the two in the sequential
history. On the other hand, it could be that the insert operation has not been added,
in which case we add the has operation to the end of the sequential history.

– In case the insert operation ran after the has operation, we add the has operation to
the end of the sequential history.

7

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

Because we add operations in the order in which they started with the only exception of
operations that ran in parallel, the history produced in this way is an equivalent sequential
history that preserves the order relation. The history is legal because no has operation returns
true for a value that has not been added or false for a value that has been added. Hence, the
binary search tree implementation is linearizable.

4 Practical sequential consistency

4.1 Background

One of the implicit simplifying assumptions behind many of the example programs presented
in the course has been that sequential consistency is being followed. Recall that sequential
consistency essentially means that the relative ordering of operations between threads does not
have to be maintained, but the per-thread ordering of operations should be kept. However, this
assumption is invalidated quite easily by both compilers and hardware without careful attention.

Compilers are free to reorder the instructions given in the program text, given that it does
not change the output of the sequential program.

For example:

1 a := 1
b := 2

can be rewritten to

b := 2
2 a := 1

if the compiler thinks it would be faster, as the output of the sequential program is the same in
either case.

4.2 Task

Consider this one-shot Peterson locking algorithm:

enter1 := true
2 turn := 2

if not enter2 or turn = 1 then
4 critical section

enter1 := false
6 end

How does this locking algorithm break if the compiler (or CPU) can reorder reads and writes
to independent variables? To see how, it may help to rewrite the algorithm so that intermediate
expressions are computed and stored into temporary variables, for example, turning a + 1 = b
into

tmp1 := a + 1
2 tmp2 := tmp1 = b

It may also help to review the proof of mutual exclusion given in slides for lecture 3.

4.3 Solution

Because the accesses to enter1 and enter2 are to independent locations, these can be reordered.
For the first processor (similarly for the second) the program could be rewritten as

8

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

tmp := not enter2
2 enter1 := true

turn := 2
4 if tmp or turn = 1 then

critical section
6 enter1 := false

end

Now, both processes will calculate tmp as True, since initially both entry variables are False.
Therefore, both will enter the critical section at the same time, violating mutual exclusion.

5 Atomic update of multiple values

5.1 Background

A online game with thousands of players features a daily high score. The high score consists
of the player’s name and the score he or she achieved. Profiling determined that the current
lock-based implementation is a bottleneck.

5.2 Task

You are asked to provide a prototype of a lock-free solution, pseudo-code is sufficient. You can
use an integer for the score. Provide a routine to update the high score if the new score is better
and a routine to retrieve the current high score. If you need additional data structures, describe
them as well.

You are free to use the compare and swap-routine from task 3.2.

5.3 Solution

−− A class providing the mechanisms for the daily high score
2 class HIGH SCORE

feature {NONE}
4 −− The name and score of the player having achieved the highest score today. A tuple is

used to be able to set it atomically.
data: TUPLE[name: STRING, score: INTEGER]

6 feature retrieve: TUPLE[STRING, INTEGER]
−− Retrieve the name and score of the player currently havig the highest score.

8 do
−−Atomic retrieval of the current high score. Creating a copy to ensure changes to

the Result are not propagated.
10 Result := data.copy

end
12 feature update (a name: STRING; a score: INTEGER)

−− Checks the current high score and replaces it with the new score by the player
named ‘a name’ if ‘a score ’ is greater than the current high score.

14 local
l data , l new data: like data

16 l success : BOOLEAN
do

18 from
l success := False

20 until

9

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

l success
22 loop

−− Atomic retrieval of the current high score.
24 l data := data

l success := l data . score >= a score or else
26 compare and swap (data, l data, [a name, a score])

end
28 end

end

References

[1] CAS-Based Lock-Free Algorithm for Shared Deques. 9th Euro-Par Conference on Parallel
Processing. Maged M. Michael 2003.

[2] Maurice Herlihy und Nir Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann, 2008.

6 Money transaction system

6.1 Background

A money transaction system handles many transactions concurrently. A status monitor displays
the total turnover and total number of transactions. Updating these numbers is a sequential
bottleneck and should be done as quickly as possible, hence a lock-free solution is desired. Every
query of these numbers should return a consistent result, so that the accurate average can be
computed.

In finance, precision is very important. This can only be guaranteed by using a big decimal
type for the total turnover. A BigDecimal is not a basic type, but supports all the common
operations.

In order to avoid problems with an over-eager optimizing compiler or virtual machine, all
variables that are modified concurrently should be marked with the volatile keyword.

6.2 Task

Your task is to implement this status monitor by providing the necessary data structure(s), a
method updateTotal to add a transaction and a method fetchLatest to retrieve a consistent copy
of the current state.

The framework provides you with compare-and-set routines for all (basic and reference) types
of variables. This routine is implemented using the atomic operations of the processor and as
such is always compiled inline. The following pseudocode demonstrates its function:

boolean cas(target, oldvalue , newvalue) {
// target , oldvalue and newvalue have to be of the same type.
synchronized {

if (target == oldvalue) {
// This change is propagated outside the current scope.
target = newvalue;
return true;

}
return false;

}
}

10

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz, Dr. C. Poskitt

Concepts of Concurrent Computation – Assignments
Spring 2014

6.3 Solution

public class TransactionsTotal {
volatile TransactionsTotalData data = new TransactionsTotalData();

class TransactionsTotalData {
long transactions;
BigDecimal turnover;

}
}

public class TransactionAgent {
private TransactionsTotal total ;
//Called at the end of a transaction
protected void updateTotal (BigDecimal turnover) {

//Update total by adding a transaction with the given turnover
do {

TransactionsTotalData old = counter.data;
TransactionsTotalData data = new TransactionsTotalData();
data. transactions = old.transactions + 1;
data.turnover = old.turnover + turnover;

} while (!cas (counter.data, old , data)) ;
}

}

//Class to fetch current transactions total
public class TransactionsTotalFetcher {

// The following two variables are used to store the retrieved total after calling
// fetchLatest()
private long transactions;
private BigDecimal turnover;
private TransactionsTotal total ;
//Return the number of transactions
public long getTransactions() {

return transactions;
}
public BigDecimal getTurnover() {

return turnover;
}
public void fetchLatest() {

//Update attributes to match current state
CounterData data = counter.data;
transacitons = data.transactions ;
turnover = data.turnover;

}
}

11

	Stack
	Background
	Task
	Solution

	Non-linearizable queue
	Background
	Task
	Solution

	Binary search tree
	Background
	Task
	Solution
	Task 1
	Task 2

	Practical sequential consistency
	Background
	Task
	Solution

	Atomic update of multiple values
	Background
	Task
	Solution

	Money transaction system
	Background
	Task
	Solution

