

Chair of Software Engineering

Concepts of Concurrent Computation

Bertrand Meyer Sebastian Nanz Chris Poskitt

Lecture 3: Synchronization Algorithms

In this lecture you will learn about:

- the mutual exclusion problem, a common framework for evaluating solutions to the problem of exclusive resource access
- solutions to the mutual exclusion problem (Peterson's algorithm, the Bakery algorithm) and their properties
- ways of proving properties for concurrent programs

Chair of Software Engineering

The mutual exclusion problem

Mutual exclusion

• As discussed in the last lecture, race conditions can corrupt the result of a concurrent computation if processes are not properly synchronized

• We want to develop techniques for ensuring mutual exclusion

• *Mutual exclusion*: a form of synchronization to avoid the simultaneous use of a shared resource

• To identify the program parts that need attention, we introduce the notion of a critical section

• *Critical section*: part of a program that accesses a shared resource.

The mutual exclusion problem (1)

• We assume to have *n* processes of the following form:

while true loop
 entry protocol
 critical section
 exit protocol
 non-critical section
end

• Design the entry and exit protocols to ensure:

- Mutual exclusion: At any time, at most one process may be in its critical section
- Freedom from deadlock: If two or more processes are trying to enter their critical sections, one of them will eventually succeed
- *Freedom from starvation*: If a process is trying to enter its critical section, it will eventually succeed

The mutual exclusion problem (2)

while true loop entry protocol critical section exit protocol non-critical section end

- Further important conditions:
 - Processes can communicate with each other only via atomic read and write operations
 - If a process enters its critical section, it will eventually exit from it
 - A process may loop forever or terminate while being in its non-critical section
 - The memory locations accessed by the protocols may not be accessed outside of them

Locks

 Synchronization mechanisms based on the ideas of entryand exit-protocols are called *locks*

• They can typically be implemented as a pair of functions:

```
lock
  do
     entry protocol
  end
unlock
  do
     exit protocol
  end
```

We will use the following statement in pseudo code
 await b

which is equivalent to while not b loop end

- This type of waiting is called *busy waiting* or "*spinning*"
- Busy waiting is inefficient on multitasking systems
- Busy waiting makes sense if waiting times are typically so short that a context switch would be more expensive
- Therefore spin locks (locks using busy waiting) are often used in operating system kernels

• The mutual exclusion problem is quite tricky: in the 1960's many incorrect solutions were published

- We will work along a series of failing attempts until establishing a solution
- We will start with trying to find a solution for only two processes

• First idea: use two variables enter1 and enter2; if enteri is true, it means that process P_i intends to enter the critical section

enter1 := false enter2 := false		
P1	P2	
while true loop1await not enter22enter1 := true3critical section4enter1 := false5non-critical sectionend	<pre>while true loop await not enter1 enter2 := true critical section enter2 := false non-critical section end</pre>	

 \bigcirc

Solution attempt I is incorrect

- The solution attempt fails to ensure mutual exclusion
- The two processes can end up in their critical sections at the same time, as demonstrated by the following execution sequence

P2	1	await not enter1
P1	1	await not enter2
P1	2	enter1 := true
P2	2	enter2 := true
P2	3	critical section
P1	3	critical section

• When analyzing the failure, we see that we set the variable enter *i* only after the await statement, which is guarding the critical section

• Second idea: switch these statements around

enter1 := false enter2 := false			
P1		P2	
	while true loop		while true loop
1	enter1 := true	1	enter2 := true
2	await not enter2	2	await not enter1
3	critical section	3	critical section
4	enter1 := false	4	enter2 := false
5	non-critical section	5	non-critical section
	end		end

Solution attempt II is incorrect

- The solution provides mutual exclusion
- However, the processes can deadlock:

P1	1	enter1 := true
P2	1	enter2 := true
P2	2	await not enter1
P1	2	await not enter2

Solution attempt III

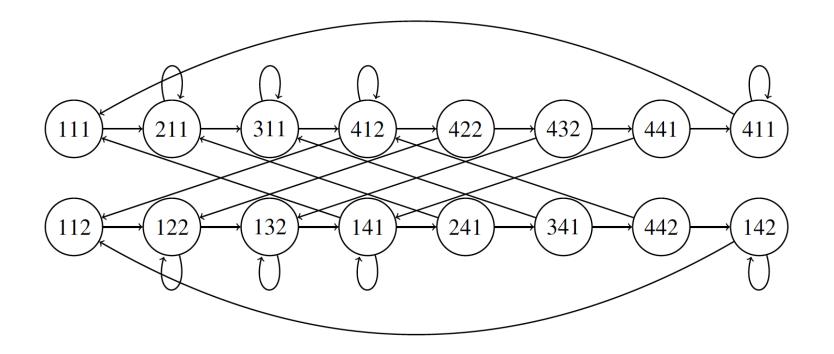
• Third idea: let's try something new, namely a single variable turn that has value *i* if it's P_i's turn to enter the critical section

turn := 1 <i>or</i> turn := 2			
P1		P2	
1 2 3 4	<pre>while true loop await turn = 1 critical section turn := 2 non-critical section end</pre>	1 2 3 4	<pre>while true loop await turn = 2 critical section turn := 1 non-critical section end</pre>

Proving correctness of solution attempt III

 Solution attempt III looks good to us, let's try to prove it correct

• Draw the related transition system; states are labeled with triples (i, j, k): program pointer values $P1 \ge i$ and $P2 \ge j$, and value of the variable turn = k.



• Solution attempt III satisfies mutual exclusion

Proof. Mutual exclusion expressed as LTL formula:

G¬(P1⊳2 ∧ P2⊳2)

Easy to see that this formula holds, as there are no states of the form (2, 2, k).

• Solution attempt III is deadlock-free

Proof. Deadlock-freedom expressed as LTL formula: **G** ((P1 \triangleright 1 \land P2 \triangleright 1) -> **F** (P1 \triangleright 2 \lor P2 \triangleright 2))

We have to examine the states (1, 1, 1) and (1, 1, 2); in both cases, one of the processes is enabled to enter its critical section.

Another setback

- Let's check starvation-freedom
- Expressed as LTL formula: for i = 1, 2

G (P_i⊳1 -> **F** (P_i⊳2))

• Recall: processes may terminate in non-critical section

- A problematic case is (1, 4, 2): variable turn = 2, P1 trying to enter critical section (although not its turn), P2 in non-critical section
- If P2 terminates, turn will never be set to 1: P1 will starve

Chair of Software Engineering

Peterson's algorithm

Peterson's algorithm (for two processes)

 Peterson's algorithm combines the ideas of solution attempts II and III

 If both processes have set their enter-flag to true, then the value of turn decides who may enter the critical section

enter1 := false enter2 := false turn := 1 <i>or</i> turn := 2			
P1	P2		
<pre>while true loop enter1 := true turn := 2 await not enter2 or turn = 1 critical section enter1 := false non-critical section end</pre>	<pre>while true loop enter2 := true turn := 1 await not enter1 or turn = 2 critical section enter2 := false non-critical section end</pre>		

- Peterson's algorithm satisfies mutual exclusion Proof.
- Assume that both P1 and P2 are in their critical section and that P1 entered before P2
- When P1 entered the critical section we have enter1 = true, and P2 must thus have seen turn = 2 upon entering its critical section
- P2 could not have executed line 2 after P1 entered, as this sets turn = 1 and would have excluded P2, as P1 does not change turn while being in the critical section
- However, P2 could not have executed line 2 before P1 entered either because then P1 would have seen enter2 = true and turn = 1, although P2 should have seen turn = 2
- Contradiction

Peterson's algorithm: starvation-freedom

• Peterson's algorithm is starvation-free

Proof.

- Assume P1 is forced to wait in the entry protocol forever
- P2 can eventually do only one of three actions:
 - Be in its non-critical section: then enter2 is false, thus allowing P1 to enter.
 - 2. Wait forever in its entry protocol: impossible because turn cannot be both 1 and 2
 - 3. Repeatedly cycle through its code: then P2 will set turn to 1 at some point and never change it back

Peterson's algorithm for *n* processes

• Up until now, we have only seen a solution to the mutual exclusion problem for two processes; the problem is however posed for n processes

Peterson's algorithm has a direct generalization

```
enter[1] := 0; ...; enter[n] := 0
turn[1] := 0; ...; turn[n - 1] := 0
P<sub>i</sub>
   for j = 1 to n - 1 do
1
2
      enter[i] := j
3
      turn[j] := i
      await (for all k != i : enter[k] < j) or turn[j] != i
4
   end
5
   critical section
   enter[i] := 0
6
   non-critical section
```

Peterson's algorithm for *n* processes

- Every process has to go through n 1 stages to reach the critical section: variable j indicates the stage
- enter[i]: stage the process P_i is currently in
- turn[j]: which process entered stage j last
- Waiting: P_i waits if there are still processes at higher stages, or if there are processes at the same stage unless P_i is no longer the last process to have entered this stage
- Idea for mutual exclusion proof: at most n - j processes can have passed stage j => at most n - (n - 1) = 1 processes can be in the critical section



Chair of Software Engineering

The Bakery algorithm

Fairness again

• Freedom from starvation still allows that processes may enter their critical sections before a certain, already waiting process is allowed access

• We study an algorithm that has very strong fairness guarantees

Bounded waiting

• The following definitions help analyze the fairness with respect to process waiting in mutual exclusion algorithms

- *Bounded waiting*: If a process is trying to enter its critical section, then there is a bound on the number of times any other process can enter its critical section before the given process does so.
- *r-bounded waiting*: If a process tries to enter its critical section then it will be able to enter before any other process is able to enter its critical section r + 1 times.
- This means: bounded waiting = there exists an *r* such that the waiting is *r*-bounded
- First-come-first-served: O-bounded waiting

Relating the definitions

- starvation-freedom ⇒ deadlock-freedom
- starvation-freedom bounded waiting
- bounded waiting
 starvation-freedom
- bounded waiting + deadlock-freedom
 - \Rightarrow starvation-freedom

deadlock-freedom If two or more processes are trying to enter their critical sections, one of them will eventually succeed.

starvation-freedom If a process is trying to enter its critical section, it will eventually succeed.

bounded waiting If a process is trying to enter its critical section, then there is a bound on the number of times any other process can enter its critical section before the given process does so.

Peterson's algorithm: no bounded waiting

• Assume a scenario with three competing processes

P1	2	enter[1] := 1	
P2	2	enter[2] := 1	
P2	3	turn[1] := 2	
P3	2	enter[3] := 1	
P3	3	turn[1] := 3	turn[1] != 2: P2 can proceed
P2		enters + leaves critical section	
P2	2	enter[2] := 1	
P2	3	turn[1] := 2	turn[1] != 3: P3 can proceed
P3		enters + leaves critical section	
			P3 can unblock P2 etc.

• P2 and P3 can overtake P1 unboundedly often

 Still P1 is not starved as it eventually (fairness) executes turn[1] := 1 and can proceed into the critical section

The Bakery algorithm: first attempt

- Idea: ticket systems for customers, at any turn the customer with the lowest number will be served
- number[i]: ticket number drawn by a process P_i
- Waiting: until P_i has the lowest number currently drawn

```
number[1] := 0; ...; number[n] := 0
P<sub>i</sub>
1 number[i] := 1 + max(number[1], ..., number[n])
2 for all j != i do
3 await number[j] = 0 or number[i] < number[j]
end
4 critical section
5 number[i] := 0
6 non-critical section</pre>
```

• Where is the problem?

Problem with the first attempt

- Line 1 may not be executed atomically
- Hence two processes may get the same ticket number
- Then a deadlock can happen in line 3, as none of the processes' ticket numbers is less than the other

A suggestion for a fix

 Replace the comparison number[i] < number[j] by (number[i], i) < (number[j], j)

• The "less than" relation is defined in this case as

(a, b) < (c, d) if (a < c) or ((a = c) and (b < d))

• **Idea:** if two ticket numbers turn out to be the same, the process with the lower identifier gets precedence

• Unfortunately, with the fix we no longer have mutual exclusion:

- P1 and P2 both compute the current maximum as 0
- P2 assigns itself ticket number 1 (number[2] := 1) and proceeds into critical section
- P1 assigns itself ticket number 1 (number[1] := 1) and proceeds into critical section, because (number[1], 1) < (number[2], 2)

The bakery algorithm

• Finally, we indicate with a flag if a process is currently calculating its ticket number

```
number[1] := 0; ...; number[n] := 0
choosing[1] := false, ..., choosing[n] := false
P<sub>i</sub>
1
   choosing[i] := true
   number[i] := 1 + max(number[1], ..., number[n])
2
                                                                        doorway
   choosing[i] := false
3
   for all j != i do
4
       await choosing[j] = false
5
                                                                        bakery
       await number[j] = 0 or (number[i], i) < (number[j], j)</pre>
6
   end
7
   critical section
8
   number[i] := 0
   non-critical section
9
```

Lemma 1. If processes P_i and P_k are in the bakery and P_i entered the bakery before P_k entered the doorway, then number[i] < number[k].

Lemma 2. If process P_i is in its critical section and process P_k is in the bakery then (number[i], i) < (number[k], k). For P_i choosing[k] = false when reading it in line 5 If we have the situation of Lemma 1, we are finished. If P_k had left the doorway before P_i read number[k], it was reading its current value. Since process P_i went on into the critical section, it must

have found (number[i], i) < (number[k], k).

• The Bakery algorithm satisfies mutual exclusion. Proof. Follows from Lemma 2.

• The Bakery algorithm is deadlock-free.

Proof. Some waiting process P_i has the minimum value of (number[i], i) among all the processes in the bakery. This process must eventually complete the for loop and enter the critical section.

• The Bakery algorithm is first-come-first-served. Proof. Follows from Lemmas 1 and 2. • Drawback of the Bakery algorithm: values of the ticket numbers can grow unboundedly

- Assume P1 gets ticket number 1 and proceeds to its critical section.
- Then process P2 gets ticket number 2, lets P1 exit from its critical section and enters its own critical section.
- As P1 tries to re-enter its critical section it draws ticket number 3.
- In this manner two processes could alternatingly draw ticket numbers until the maximum size of an integer on the system is reached.

Space bounds for synchronization algorithms

- Size and number of shared memory locations is an important measure to compare synchronization algorithms
- For Peterson's algorithm, we count 2n 1 registers (bounded by n), and in the case of the Bakery algorithm 2n registers (unbounded in size)
- Large overhead: can we do better?
- One can prove in general a lower bound: mutual exclusion problem for n processes satisfying mutual exclusion and global progress needs to use n shared one-bit registers
- The bound is tight (Lamport's one bit algorithm)

- The mutual exclusion problem makes the assumption that memory accesses are executed atomically
- This might not be a valid assumption on multiprocessor systems, leading to inconsistencies
- The Bakery algorithm can help here as well: each memory location is only written by a single process, hence conflicting write operations cannot occur

- Having only atomic read and write to implement locks makes efficient implementation difficult
- Where available, locks can be built from more complex atomic primitives

```
test-and-set (x, value)

do

temp := *x

*x := value

result := temp

end
```

• Note that x in this pseudo-code is treated as a reference

Other atomic primitives (2)

• Using more powerful primitives, concise solutions to the mutual exclusion problem can be obtained:

Ь	b := false	
P _i		
	await not test-and-set(b, true)	
	critical section b := false	
	non-critical section	

```
fetch-and-add (x, value)
  do
     temp := *x
     x := x + value
     result := temp
  end
compare-and-swap (x, old, new)
  do
     if *x = old then
       *x := new; result := true
     else
       result := false
     end
  end
```