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Last week: synchronisation, but lacking 
the simplicity

• we looked at various solutions to the mutual 
exclusion problem

• algorithms were limited to the simplest tools - 
atomic read and write to shared memory

   => difficult to implement; complex
   => reliance on busy waiting
   => no encapsulation of synchronisation variables
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Today’s lecture: semaphores

• we will discuss semaphores, an important 
synchronisation primitive

• conceptually simple, although their implementations 
require stronger atomic operations

• widespread use in operating systems

• invented by Dijkstra in 1965
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Next on the agenda
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1. general and binary semaphores

2. implementing semaphores

3. beyond the mutual exclusion problem

4. simulating general semaphores



General semaphores
(aka “counting semaphores”)

• a general semaphore is an object consisting of:

   (1) an integer variable count such that count ≥ 0

   (2) two atomic operations: down and up

• if a process calls down when count > 0, then count is 
decremented by 1 (otherwise it first waits)

• if a process calls up, then count is incremented by 1
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General semaphores
(in Eiffel-like pseudocode)
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class SEMAPHORE
feature
   count : INTEGER

   down
     do-atomic
        await count > 0
         count := count - 1
     end

   up
     do-atomic
        count := count +1
     end
end



General semaphores
(in Eiffel-like pseudocode)
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class SEMAPHORE
feature
   count : INTEGER

   down
     do-atomic
        await count > 0
         count := count - 1
     end

   up
     do-atomic
        count := count +1
     end
end

will discuss how to ensure atomicity
and how to avoid busy wait later!



Mutual exclusion for two processes

• create a semaphore s and initialise s.count to 1; then:

   s.down
   critical section
   s.up
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Mutual exclusion for two processes

• create a semaphore s and initialise s.count to 1; then:

   s.down
   critical section
   s.up
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one process at a time;
or one hot desk!
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Mutual exclusion for two processes

• or in the style of last week’s mutual exclusion problems:
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Mutual exclusion for two processes (1) 

•  Providing mutual exclusion with semaphores: initialize 
s.count to 1, and enclose the critical section as follows 

s.down 
critical section 
s.up 

•  Presented in the style of the mutual exclusion problem: 

count := 1 
P1 P2 
 
1 
 
2 
3 
4 
 

while true loop 
    await count > 0 
    count := count − 1 
    critical section 
    count := count + 1 
    non-critical section 
end 

 
1 
 
2 
3 
4 
 

while true loop 
    await count > 0 
    count := count − 1 
    critical section 
    count := count + 1 
    non-critical section 
end 



Mutual exclusion for two processes

• mutual exclusion and deadlock freedom can be 
proven

   => remember the atomicity of down and up!

• solution does not satisfy starvation freedom

   => a different implementation later will fix this
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The general semaphore invariant

• general semaphores are characterised by the following 
invariant -- important for proofs!

• given some semaphore, let:

   => k denote its initial value with k ≥ 0
   => count denote its current value
   => #down denote the number of completed down operations
   => #up denote the number of completed up operations

• then the following equations are invariant:

(1)  count ≥ 0
(2)  count = k + #up - #down



Binary semaphores

• in the previous example, s.count is always either 0 or 1

• such a semaphore is called a binary semaphore and 
can be implemented using a Boolean variable
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   b : BOOLEAN

   down
     do-atomic
        await b
         b := false
     end

   up
     do-atomic
        b := true
     end



Binary semaphores

• in the previous example, s.count is always either 0 or 1

• such a semaphore is called a binary semaphore and 
can be implemented using a Boolean variable
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   b : BOOLEAN

   down
     do-atomic
        await b
         b := false
     end

   up
     do-atomic
        b := true
     end

This is deceptively similar to the 
previous weeks’ early, and wrong 
attempts at providing mutual 
exclusion.  What’s different?



Next on the agenda
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1. general and binary semaphores

2. implementing semaphores

3. beyond the mutual exclusion problem

4. simulating general semaphores



Avoiding busy waiting

• busy-wait semaphores are not ideal

   => they are not starvation free
   => inefficient in the context of multitasking

• more preferable would be for processes to block 
themselves when having to wait

   => thus freeing processing resources as early as possible

• idea: keep track of blocked processes, “waking them” 
upon up calls on the semaphore
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Efficiency: blocking of processes 

•  A process can be in the following states: 
•  new : being created. 
•  running: instructions are being executed. 
•  blocked: currently waiting for an event. 
•  ready: ready to be executed, but not been assigned 

a processor yet. 
•  terminated: finished executing. 

blocked 

running ready 

Context switch 

new terminated 

s.down s.up 

Avoiding busy waiting
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Efficiency: blocking of processes 

•  A process can be in the following states: 
•  new : being created. 
•  running: instructions are being executed. 
•  blocked: currently waiting for an event. 
•  ready: ready to be executed, but not been assigned 

a processor yet. 
•  terminated: finished executing. 

blocked 

running ready 

Context switch 

new terminated 

s.down s.up 

Avoiding busy waiting

if s.count < 1



Implementing the scheme

• to avoid starvation, we will track blocked processes in 
a collection blocked

• we equip blocked with the following operations, which 
will be integrated into down and up

   => add(P)
   => remove
   => is_empty

• if blocked is implemented as a set, we call the 
semaphore weak; if as a FIFO queue, then strong
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-- insert process P into collection
-- select, remove, and return an item from the collection
-- true if collection empty; false otherwise



Weak semaphore

• a weak semaphore is a blocking semaphore in which 
the collection blocked is implemented as a set

   => remove will pick and remove a random element
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   down
     do-atomic
        if count > 0 then
            count := count - 1
        else
           blocked.add(P)
           P.state := blocked
        end
     end

   up
     do-atomic
       if blocked.is_empty then
            count := count + 1
        else
           Q := blocked.remove
           Q.state := ready
        end
     end



Weak semaphore

• a weak semaphore is a blocking semaphore in which 
the collection blocked is implemented as a set

   => remove will pick and remove a random element
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   down
     do-atomic
        if count > 0 then
            count := count - 1
        else
           blocked.add(P)
           P.state := blocked
        end
     end

   up
     do-atomic
       if blocked.is_empty then
            count := count + 1
        else
           Q := blocked.remove
           Q.state := ready
        end
     end

-- add current process P to blocked
-- block P (instead of busy wait)



Weak semaphore

• a weak semaphore is a blocking semaphore in which 
the collection blocked is implemented as a set

   => remove will pick and remove a random element
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   down
     do-atomic
        if count > 0 then
            count := count - 1
        else
           blocked.add(P)
           P.state := blocked
        end
     end

   up
     do-atomic
       if blocked.is_empty then
            count := count + 1
        else
           Q := blocked.remove
           Q.state := ready
        end
     end

-- select and remove some process Q from blocked
-- unblock Q so that it can access the resource
   (Question: why is count left unchanged?)



Mutual exclusion for two processes

• weak semaphores provide starvation-freedom in the 
two process scenario

   => why?

• what about mutual exclusion for n processes?
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Mutual exclusion for n processes

• create a semaphore s and initialise s.count to 1; then:

   s.down
   critical section
   s.up
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for each process

• starvation is possible for n > 2 with weak semaphores 
because we select a process from blocked at random

• solution is to use a strong semaphore, in which blocked 
is implemented as a FIFO queue



Strong semaphores provide a solution to the 
mutual exclusion problem with n processes

(how to prove)

• mutual exclusion -- show that

where #cs is the number of processes in critical sections

• starvation freedom -- apply proof by contradiction

   => begin by assuming that a process in blocked is starved

34

#cs + count = 1



A note on atomicity

• operations down and up are typically built in software using 
lower-level primitives (e.g. synchronisation algorithms)

• alternatively:

   => using test-and-set instructions (atomic read and write)
   => disabling interrupts (only realistic on a single processing unit)
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A note on Java

• java.util.concurrent.Semaphore

   http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.html

• constructors

   => Semaphore(int k)
   => Semaphore(int k, boolean b)

• operations

   => acquire()
   => release()

36

-- a weak semaphore
-- a strong semaphore if b true

-- corresponds to down
-- corresponds to up

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.html


Next on the agenda

37

1. general and binary semaphores

2. implementing semaphores

3. beyond the mutual exclusion problem

4. simulating general semaphores



The k-exclusion problem

• in the k-exclusion problem, we allow up to k processes 
to simultaneously be in their critical sections

   => mutual exclusion is the k = 1 instance

• use a general semaphore corresponding to the number 
of processes allowed to be in their critical sections

38
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The k-exclusion problem 

•  In the k-exclusion problem, we allow up to k processes to 
be in their critical sections at the same time 
•  A solution is easily obtained with general semaphores 
•  The value of a semaphore corresponds intuitively to the 
number of processes that are still allowed to proceed into 
a critical section 
 

s.count := k 
Pi 

 
1 
2 
3 
4 
 

while true loop 
    s.down 
    critical section 
    s.up 
    non-critical section 
end 



The k-exclusion problem

• in the k-exclusion problem, we allow up to k processes 
to simultaneously be in their critical sections

   => mutual exclusion is the k = 1 instance

• use a general semaphore corresponding to the number 
of processes allowed to be in their critical sections

39
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The k-exclusion problem 

•  In the k-exclusion problem, we allow up to k processes to 
be in their critical sections at the same time 
•  A solution is easily obtained with general semaphores 
•  The value of a semaphore corresponds intuitively to the 
number of processes that are still allowed to proceed into 
a critical section 
 

s.count := k 
Pi 

 
1 
2 
3 
4 
 

while true loop 
    s.down 
    critical section 
    s.up 
    non-critical section 
end 

1 2 k

...

...



Barriers

• semaphores can be used to control the ordering of 
events in a system

• a barrier is a form of synchronisation that determines 
a point in a program’s execution that all processes in a 
group have to reach before any of them may move on

  => important for concurrent iterative algorithms



Barriers

• semaphores can be used to control the ordering of 
events in a system

• a barrier is a form of synchronisation that determines 
a point in a program’s execution that all processes in a 
group have to reach before any of them may move on

  => important for concurrent iterative algorithms
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Barriers (2) 

•  A simple barrier for two processes: 

•  Semaphore s1 provides the barrier for P2, and semaphore 
s2 provides the barrier for P1 

s1.count := 0 
s2.count := 0 
P1 P2 
1 
2 
3 
4 

code before the barrier 
s1.up 
s2.down 
code after the barrier 

1 
2 
3 
4 

code before the barrier 
s2.up 
s1.down 
code after the barrier 



Barriers

• semaphores can be used to control the ordering of 
events in a system

• a barrier is a form of synchronisation that determines 
a point in a program’s execution that all processes in a 
group have to reach before any of them may move on

  => important for concurrent iterative algorithms
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Barriers (2) 

•  A simple barrier for two processes: 

•  Semaphore s1 provides the barrier for P2, and semaphore 
s2 provides the barrier for P1 

s1.count := 0 
s2.count := 0 
P1 P2 
1 
2 
3 
4 

code before the barrier 
s1.up 
s2.down 
code after the barrier 

1 
2 
3 
4 

code before the barrier 
s2.up 
s1.down 
code after the barrier 

s1 is the barrier for P2;  s2 is the barrier for P1
 -- why are they initialised to 0?



The producer-consumer problem
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Buffer

Producers Consumers
243

46

71

97

store (buffer, int)

consume (buffer)



The producer-consumer problem
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Buffer

Producers Consumers
243

46

71

97

store (buffer, int)

consume (buffer)

require
   buffer.not_full! require

   buffer.not_empty !



The producer-consumer problem

• a good solution would:

  => ensure that every data item produced is eventually consumed
  => be deadlock-free
  => be starvation-free

• need a semaphore for mutual exclusion (the buffer)

• but additional semaphore(s) for condition synchronisation

   => e.g. consumer should block until the buffer is non-empty
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Solution for an unbounded buffer
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Solution of the producer-consumer problem (2) 

 
 
 
 
 
 
 
•  To see that the algorithm is correct, prove that 
not_empty.count = #items_in_buffer is an invariant that 
holds at the beginning and end of each loop 
•  Deadlock-freedom is also satisfied, and with a strong 
semaphore also starvation-freedom 

mutex.count := 1 
not_empty.count := 0 
Produceri Consumeri 

 
1 
2 
3 
4 
5 

while true loop 
    d := produce 
    mutex.down 
    b.append(d) 
    mutex.up 
    not_empty.up 
end 

 
1 
2 
3 
4 
5 

while true loop 
    not_empty.down 
    mutex.down 
    d := b.remove 
    mutex.up 
    consume(d) 
end 



Solution for an unbounded buffer
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Solution of the producer-consumer problem (2) 

 
 
 
 
 
 
 
•  To see that the algorithm is correct, prove that 
not_empty.count = #items_in_buffer is an invariant that 
holds at the beginning and end of each loop 
•  Deadlock-freedom is also satisfied, and with a strong 
semaphore also starvation-freedom 

mutex.count := 1 
not_empty.count := 0 
Produceri Consumeri 

 
1 
2 
3 
4 
5 

while true loop 
    d := produce 
    mutex.down 
    b.append(d) 
    mutex.up 
    not_empty.up 
end 

 
1 
2 
3 
4 
5 

while true loop 
    not_empty.down 
    mutex.down 
    d := b.remove 
    mutex.up 
    consume(d) 
end 

observe that not_empty.count = #items_in_buffer



Solution for an unbounded buffer
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Solution of the producer-consumer problem (2) 

 
 
 
 
 
 
 
•  To see that the algorithm is correct, prove that 
not_empty.count = #items_in_buffer is an invariant that 
holds at the beginning and end of each loop 
•  Deadlock-freedom is also satisfied, and with a strong 
semaphore also starvation-freedom 

mutex.count := 1 
not_empty.count := 0 
Produceri Consumeri 

 
1 
2 
3 
4 
5 

while true loop 
    d := produce 
    mutex.down 
    b.append(d) 
    mutex.up 
    not_empty.up 
end 

 
1 
2 
3 
4 
5 

while true loop 
    not_empty.down 
    mutex.down 
    d := b.remove 
    mutex.up 
    consume(d) 
end 

observe that not_empty.count = #items_in_buffer

blocks until not_empty.count > 0



Solution for a bounded buffer
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Solution for bounded buffers 

 
 
 
 
 
 
 
 
 
•  To take care of the case that the buffer can also be 
completely filled, a semaphore not_full is introduced, 
making the solution more symmetric 

mutex.count := 1 
not_empty.count := 0 
not_full.count := k 
Produceri Consumeri 

 
1 
2 
3 
4 
5 

while true loop 
    d := produce 
    not_full.down 
    mutex.down 
    b.append(d) 
    mutex.up 
    not_empty.up 
end 

 
1 
2 
3 
4 
5 

while true loop 
    not_empty.down 
    mutex.down 
    d := b.remove 
    mutex.up 
    not_full.up 
    consume(d) 
end 

where k is the size of the buffer



Dining philosophers problem
(a solution that can deadlock)

• multiple semaphores must be used with care -- they are 
prone to deadlock!
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Dining philosophers problem: solution attempt 

•  Dining philosophers problem: n philosophers 
•  Solution attempt: 

•  Semaphore s[i] corresponds to the availability of the ith 
fork 
•  Problem? 

s[1].count := 1, ..., s[n].count := 1 
Philosopheri 

 
1 
2 
3 
4 
5 
6 
 

while true loop 
    think 
    s[i].down 
    s[(i mod n) + 1].down 
    eat 
    s[(i mod n) + 1].up 
    s[i].up 
end 

1 

2 

3 4 

5 1 2 

3 

4 

5 
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Dining philosophers problem: solution attempt 

•  Dining philosophers problem: n philosophers 
•  Solution attempt: 

•  Semaphore s[i] corresponds to the availability of the ith 
fork 
•  Problem? 

s[1].count := 1, ..., s[n].count := 1 
Philosopheri 

 
1 
2 
3 
4 
5 
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while true loop 
    think 
    s[i].down 
    s[(i mod n) + 1].down 
    eat 
    s[(i mod n) + 1].up 
    s[i].up 
end 

1 

2 

3 4 

5 1 2 

3 

4 

5 

circular waiting!

!



Dining philosophers problem
(a fix!)

• assume that philosopher n picks up the left fork before 
the right fork

• this breaks the circle of resource requests; there will 
always be one philosopher who can acquire both forks 
and release them again
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Dining philosophers problem: a fix 

•  Asymmetric solution: one philosopher picks up forks in a 
different order 
 

•  Hence the circular wait condition (Coffman) is broken: no 
deadlock 

Philosophern 

 
1 
2 
3 
4 
5 
6 
 

while true loop 
    think 
    s[1].down 
    s[n].down 
    eat 
    s[n].up 
    s[1].up 
end 



Next on the agenda
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1. general and binary semaphores

2. implementing semaphores

3. beyond the mutual exclusion problem

4. simulating general semaphores



General semaphores are superfluous

• while conceptually useful, general semaphores 
(theoretically) are not necessary -- they can be 
implemented through binary semaphores alone



General semaphores are superfluous
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Implementing general semaphores by binary ones 

mutex.count := 1  -- binary semaphore 
delay.count := 1    -- binary semaphore 
count := k 
 
general_down 
    do 
        delay.down 
        mutex.down 
        count := count − 1 
        if count > 0 then 
            delay.up 
        end 
        mutex.up 
    end 

 
 
 
 
general_up 
    do 
        mutex.down 
        count := count + 1 
        if count = 1 then 
            delay.up 
        end 
        mutex.up 
    end 
 



General semaphores are superfluous

41 

Implementing general semaphores by binary ones 

mutex.count := 1  -- binary semaphore 
delay.count := 1    -- binary semaphore 
count := k 
 
general_down 
    do 
        delay.down 
        mutex.down 
        count := count − 1 
        if count > 0 then 
            delay.up 
        end 
        mutex.up 
    end 

 
 
 
 
general_up 
    do 
        mutex.down 
        count := count + 1 
        if count = 1 then 
            delay.up 
        end 
        mutex.up 
    end 
 

protects count

value of the general semaphore

not called when count = 0



Next on the agenda
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1. general and binary semaphores

2. implementing semaphores

3. beyond the mutual exclusion problem

4. simulating general semaphores



Summary

• semaphores are conceptually simple but powerful tools 
for solving synchronisation problems

• choice of implementation can affect starvation-freedom

• applications beyond mutual exclusion: k-exclusion, 
barriers, condition synchronisation

• but: correct usage is still far from trivial

• essential reading: Chapter 4 of the CCC textbook
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