
Concepts of Concurrent Computation
Spring 2014

Lecture 4: Semaphores

Bertrand Meyer
Sebastian Nanz
Chris Poskitt

Chair of
Software Engineering

1

Last week: synchronisation, but lacking
the simplicity

• we looked at various solutions to the mutual
exclusion problem

• algorithms were limited to the simplest tools -
atomic read and write to shared memory

 => difficult to implement; complex
 => reliance on busy waiting
 => no encapsulation of synchronisation variables

2

Short diversion: hot desks

3

2

Short diversion: hot desks

3

2desk please!

Short diversion: hot desks

4

1merci!

Short diversion: hot desks

4

1

merci!

Short diversion: hot desks

5

1

Short diversion: hot desks

5

1desk please!

Short diversion: hot desks

6

0super duper!

Short diversion: hot desks

6

0

super duper!

Short diversion: hot desks

7

0

Short diversion: hot desks

7

0gotta wait!

Short diversion: hot desks

8

0gotta wait!

all done!

Short diversion: hot desks

8

0gotta wait! all done!

Short diversion: hot desks

9

1gotta wait! all done!

Short diversion: hot desks

9

1gotta wait!

Short diversion: hot desks

10

0woohoo!

Short diversion: hot desks

10

0

woohoo!

Short diversion: hot desks

11

0
a semaphore

Today’s lecture: semaphores

• we will discuss semaphores, an important
synchronisation primitive

• conceptually simple, although their implementations
require stronger atomic operations

• widespread use in operating systems

• invented by Dijkstra in 1965

12

Next on the agenda

13

1. general and binary semaphores

2. implementing semaphores

3. beyond the mutual exclusion problem

4. simulating general semaphores

General semaphores
(aka “counting semaphores”)

• a general semaphore is an object consisting of:

 (1) an integer variable count such that count ≥ 0

 (2) two atomic operations: down and up

• if a process calls down when count > 0, then count is
decremented by 1 (otherwise it first waits)

• if a process calls up, then count is incremented by 1

14

General semaphores
(in Eiffel-like pseudocode)

15

class SEMAPHORE
feature
 count : INTEGER

 down
 do-atomic
 await count > 0
 count := count - 1
 end

 up
 do-atomic
 count := count +1
 end
end

General semaphores
(in Eiffel-like pseudocode)

16

class SEMAPHORE
feature
 count : INTEGER

 down
 do-atomic
 await count > 0
 count := count - 1
 end

 up
 do-atomic
 count := count +1
 end
end

will discuss how to ensure atomicity
and how to avoid busy wait later!

Mutual exclusion for two processes

• create a semaphore s and initialise s.count to 1; then:

 s.down
 critical section
 s.up

17

Mutual exclusion for two processes

• create a semaphore s and initialise s.count to 1; then:

 s.down
 critical section
 s.up

18

one process at a time;
or one hot desk!

1

Mutual exclusion for two processes

• or in the style of last week’s mutual exclusion problems:

19

9

Mutual exclusion for two processes (1)

•  Providing mutual exclusion with semaphores: initialize
s.count to 1, and enclose the critical section as follows

s.down
critical section
s.up

•  Presented in the style of the mutual exclusion problem:

count := 1
P1 P2

1

2
3
4

while true loop
 await count > 0
 count := count − 1
 critical section
 count := count + 1
 non-critical section
end

1

2
3
4

while true loop
 await count > 0
 count := count − 1
 critical section
 count := count + 1
 non-critical section
end

Mutual exclusion for two processes

• mutual exclusion and deadlock freedom can be
proven

 => remember the atomicity of down and up!

• solution does not satisfy starvation freedom

 => a different implementation later will fix this

20

The general semaphore invariant

• general semaphores are characterised by the following
invariant -- important for proofs!

• given some semaphore, let:

 => k denote its initial value with k ≥ 0
 => count denote its current value
 => #down denote the number of completed down operations
 => #up denote the number of completed up operations

• then the following equations are invariant:

(1) count ≥ 0
(2) count = k + #up - #down

Binary semaphores

• in the previous example, s.count is always either 0 or 1

• such a semaphore is called a binary semaphore and
can be implemented using a Boolean variable

22

 b : BOOLEAN

 down
 do-atomic
 await b
 b := false
 end

 up
 do-atomic
 b := true
 end

Binary semaphores

• in the previous example, s.count is always either 0 or 1

• such a semaphore is called a binary semaphore and
can be implemented using a Boolean variable

23

 b : BOOLEAN

 down
 do-atomic
 await b
 b := false
 end

 up
 do-atomic
 b := true
 end

This is deceptively similar to the
previous weeks’ early, and wrong
attempts at providing mutual
exclusion. What’s different?

Next on the agenda

24

1. general and binary semaphores

2. implementing semaphores

3. beyond the mutual exclusion problem

4. simulating general semaphores

Avoiding busy waiting

• busy-wait semaphores are not ideal

 => they are not starvation free
 => inefficient in the context of multitasking

• more preferable would be for processes to block
themselves when having to wait

 => thus freeing processing resources as early as possible

• idea: keep track of blocked processes, “waking them”
upon up calls on the semaphore

25

26

14

Efficiency: blocking of processes

•  A process can be in the following states:
•  new : being created.
•  running: instructions are being executed.
•  blocked: currently waiting for an event.
•  ready: ready to be executed, but not been assigned

a processor yet.
•  terminated: finished executing.

blocked

running ready

Context switch

new terminated

s.down s.up

Avoiding busy waiting

27

14

Efficiency: blocking of processes

•  A process can be in the following states:
•  new : being created.
•  running: instructions are being executed.
•  blocked: currently waiting for an event.
•  ready: ready to be executed, but not been assigned

a processor yet.
•  terminated: finished executing.

blocked

running ready

Context switch

new terminated

s.down s.up

Avoiding busy waiting

if s.count < 1

Implementing the scheme

• to avoid starvation, we will track blocked processes in
a collection blocked

• we equip blocked with the following operations, which
will be integrated into down and up

 => add(P)
 => remove
 => is_empty

• if blocked is implemented as a set, we call the
semaphore weak; if as a FIFO queue, then strong

28

-- insert process P into collection
-- select, remove, and return an item from the collection
-- true if collection empty; false otherwise

Weak semaphore

• a weak semaphore is a blocking semaphore in which
the collection blocked is implemented as a set

 => remove will pick and remove a random element

29

 down
 do-atomic
 if count > 0 then
 count := count - 1
 else
 blocked.add(P)
 P.state := blocked
 end
 end

 up
 do-atomic
 if blocked.is_empty then
 count := count + 1
 else
 Q := blocked.remove
 Q.state := ready
 end
 end

Weak semaphore

• a weak semaphore is a blocking semaphore in which
the collection blocked is implemented as a set

 => remove will pick and remove a random element

30

 down
 do-atomic
 if count > 0 then
 count := count - 1
 else
 blocked.add(P)
 P.state := blocked
 end
 end

 up
 do-atomic
 if blocked.is_empty then
 count := count + 1
 else
 Q := blocked.remove
 Q.state := ready
 end
 end

-- add current process P to blocked
-- block P (instead of busy wait)

Weak semaphore

• a weak semaphore is a blocking semaphore in which
the collection blocked is implemented as a set

 => remove will pick and remove a random element

31

 down
 do-atomic
 if count > 0 then
 count := count - 1
 else
 blocked.add(P)
 P.state := blocked
 end
 end

 up
 do-atomic
 if blocked.is_empty then
 count := count + 1
 else
 Q := blocked.remove
 Q.state := ready
 end
 end

-- select and remove some process Q from blocked
-- unblock Q so that it can access the resource
 (Question: why is count left unchanged?)

Mutual exclusion for two processes

• weak semaphores provide starvation-freedom in the
two process scenario

 => why?

• what about mutual exclusion for n processes?

32

Mutual exclusion for n processes

• create a semaphore s and initialise s.count to 1; then:

 s.down
 critical section
 s.up

33

for each process

• starvation is possible for n > 2 with weak semaphores
because we select a process from blocked at random

• solution is to use a strong semaphore, in which blocked
is implemented as a FIFO queue

Strong semaphores provide a solution to the
mutual exclusion problem with n processes

(how to prove)

• mutual exclusion -- show that

where #cs is the number of processes in critical sections

• starvation freedom -- apply proof by contradiction

 => begin by assuming that a process in blocked is starved

34

#cs + count = 1

A note on atomicity

• operations down and up are typically built in software using
lower-level primitives (e.g. synchronisation algorithms)

• alternatively:

 => using test-and-set instructions (atomic read and write)
 => disabling interrupts (only realistic on a single processing unit)

35

A note on Java

• java.util.concurrent.Semaphore

 http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.html

• constructors

 => Semaphore(int k)
 => Semaphore(int k, boolean b)

• operations

 => acquire()
 => release()

36

-- a weak semaphore
-- a strong semaphore if b true

-- corresponds to down
-- corresponds to up

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.html

Next on the agenda

37

1. general and binary semaphores

2. implementing semaphores

3. beyond the mutual exclusion problem

4. simulating general semaphores

The k-exclusion problem

• in the k-exclusion problem, we allow up to k processes
to simultaneously be in their critical sections

 => mutual exclusion is the k = 1 instance

• use a general semaphore corresponding to the number
of processes allowed to be in their critical sections

38

26

The k-exclusion problem

•  In the k-exclusion problem, we allow up to k processes to
be in their critical sections at the same time
•  A solution is easily obtained with general semaphores
•  The value of a semaphore corresponds intuitively to the
number of processes that are still allowed to proceed into
a critical section

s.count := k
Pi

1
2
3
4

while true loop
 s.down
 critical section
 s.up
 non-critical section
end

The k-exclusion problem

• in the k-exclusion problem, we allow up to k processes
to simultaneously be in their critical sections

 => mutual exclusion is the k = 1 instance

• use a general semaphore corresponding to the number
of processes allowed to be in their critical sections

39

26

The k-exclusion problem

•  In the k-exclusion problem, we allow up to k processes to
be in their critical sections at the same time
•  A solution is easily obtained with general semaphores
•  The value of a semaphore corresponds intuitively to the
number of processes that are still allowed to proceed into
a critical section

s.count := k
Pi

1
2
3
4

while true loop
 s.down
 critical section
 s.up
 non-critical section
end

1 2 k

...

...

Barriers

• semaphores can be used to control the ordering of
events in a system

• a barrier is a form of synchronisation that determines
a point in a program’s execution that all processes in a
group have to reach before any of them may move on

 => important for concurrent iterative algorithms

Barriers

• semaphores can be used to control the ordering of
events in a system

• a barrier is a form of synchronisation that determines
a point in a program’s execution that all processes in a
group have to reach before any of them may move on

 => important for concurrent iterative algorithms

28

Barriers (2)

•  A simple barrier for two processes:

•  Semaphore s1 provides the barrier for P2, and semaphore
s2 provides the barrier for P1

s1.count := 0
s2.count := 0
P1 P2
1
2
3
4

code before the barrier
s1.up
s2.down
code after the barrier

1
2
3
4

code before the barrier
s2.up
s1.down
code after the barrier

Barriers

• semaphores can be used to control the ordering of
events in a system

• a barrier is a form of synchronisation that determines
a point in a program’s execution that all processes in a
group have to reach before any of them may move on

 => important for concurrent iterative algorithms

28

Barriers (2)

•  A simple barrier for two processes:

•  Semaphore s1 provides the barrier for P2, and semaphore
s2 provides the barrier for P1

s1.count := 0
s2.count := 0
P1 P2
1
2
3
4

code before the barrier
s1.up
s2.down
code after the barrier

1
2
3
4

code before the barrier
s2.up
s1.down
code after the barrier

s1 is the barrier for P2; s2 is the barrier for P1
 -- why are they initialised to 0?

The producer-consumer problem

43

Buffer

Producers Consumers
243

46

71

97

store (buffer, int)

consume (buffer)

The producer-consumer problem

44

Buffer

Producers Consumers
243

46

71

97

store (buffer, int)

consume (buffer)

require
 buffer.not_full! require

 buffer.not_empty !

The producer-consumer problem

• a good solution would:

 => ensure that every data item produced is eventually consumed
 => be deadlock-free
 => be starvation-free

• need a semaphore for mutual exclusion (the buffer)

• but additional semaphore(s) for condition synchronisation

 => e.g. consumer should block until the buffer is non-empty

45

Solution for an unbounded buffer

46

34

Solution of the producer-consumer problem (2)

•  To see that the algorithm is correct, prove that
not_empty.count = #items_in_buffer is an invariant that
holds at the beginning and end of each loop
•  Deadlock-freedom is also satisfied, and with a strong
semaphore also starvation-freedom

mutex.count := 1
not_empty.count := 0
Produceri Consumeri

1
2
3
4
5

while true loop
 d := produce
 mutex.down
 b.append(d)
 mutex.up
 not_empty.up
end

1
2
3
4
5

while true loop
 not_empty.down
 mutex.down
 d := b.remove
 mutex.up
 consume(d)
end

Solution for an unbounded buffer

47

34

Solution of the producer-consumer problem (2)

•  To see that the algorithm is correct, prove that
not_empty.count = #items_in_buffer is an invariant that
holds at the beginning and end of each loop
•  Deadlock-freedom is also satisfied, and with a strong
semaphore also starvation-freedom

mutex.count := 1
not_empty.count := 0
Produceri Consumeri

1
2
3
4
5

while true loop
 d := produce
 mutex.down
 b.append(d)
 mutex.up
 not_empty.up
end

1
2
3
4
5

while true loop
 not_empty.down
 mutex.down
 d := b.remove
 mutex.up
 consume(d)
end

observe that not_empty.count = #items_in_buffer

Solution for an unbounded buffer

48

34

Solution of the producer-consumer problem (2)

•  To see that the algorithm is correct, prove that
not_empty.count = #items_in_buffer is an invariant that
holds at the beginning and end of each loop
•  Deadlock-freedom is also satisfied, and with a strong
semaphore also starvation-freedom

mutex.count := 1
not_empty.count := 0
Produceri Consumeri

1
2
3
4
5

while true loop
 d := produce
 mutex.down
 b.append(d)
 mutex.up
 not_empty.up
end

1
2
3
4
5

while true loop
 not_empty.down
 mutex.down
 d := b.remove
 mutex.up
 consume(d)
end

observe that not_empty.count = #items_in_buffer

blocks until not_empty.count > 0

Solution for a bounded buffer

49

35

Solution for bounded buffers

•  To take care of the case that the buffer can also be
completely filled, a semaphore not_full is introduced,
making the solution more symmetric

mutex.count := 1
not_empty.count := 0
not_full.count := k
Produceri Consumeri

1
2
3
4
5

while true loop
 d := produce
 not_full.down
 mutex.down
 b.append(d)
 mutex.up
 not_empty.up
end

1
2
3
4
5

while true loop
 not_empty.down
 mutex.down
 d := b.remove
 mutex.up
 not_full.up
 consume(d)
end

where k is the size of the buffer

Dining philosophers problem
(a solution that can deadlock)

• multiple semaphores must be used with care -- they are
prone to deadlock!

50

37

Dining philosophers problem: solution attempt

•  Dining philosophers problem: n philosophers
•  Solution attempt:

•  Semaphore s[i] corresponds to the availability of the ith
fork
•  Problem?

s[1].count := 1, ..., s[n].count := 1
Philosopheri

1
2
3
4
5
6

while true loop
 think
 s[i].down
 s[(i mod n) + 1].down
 eat
 s[(i mod n) + 1].up
 s[i].up
end

1

2

3 4

5 1 2

3

4

5

37

Dining philosophers problem: solution attempt

•  Dining philosophers problem: n philosophers
•  Solution attempt:

•  Semaphore s[i] corresponds to the availability of the ith
fork
•  Problem?

s[1].count := 1, ..., s[n].count := 1
Philosopheri

1
2
3
4
5
6

while true loop
 think
 s[i].down
 s[(i mod n) + 1].down
 eat
 s[(i mod n) + 1].up
 s[i].up
end

1

2

3 4

5 1 2

3

4

5

Dining philosophers problem
(a solution that can deadlock)

• multiple semaphores must be used with care -- they are
prone to deadlock!

51

37

Dining philosophers problem: solution attempt

•  Dining philosophers problem: n philosophers
•  Solution attempt:

•  Semaphore s[i] corresponds to the availability of the ith
fork
•  Problem?

s[1].count := 1, ..., s[n].count := 1
Philosopheri

1
2
3
4
5
6

while true loop
 think
 s[i].down
 s[(i mod n) + 1].down
 eat
 s[(i mod n) + 1].up
 s[i].up
end

1

2

3 4

5 1 2

3

4

5

37

Dining philosophers problem: solution attempt

•  Dining philosophers problem: n philosophers
•  Solution attempt:

•  Semaphore s[i] corresponds to the availability of the ith
fork
•  Problem?

s[1].count := 1, ..., s[n].count := 1
Philosopheri

1
2
3
4
5
6

while true loop
 think
 s[i].down
 s[(i mod n) + 1].down
 eat
 s[(i mod n) + 1].up
 s[i].up
end

1

2

3 4

5 1 2

3

4

5

circular waiting!

!

Dining philosophers problem
(a fix!)

• assume that philosopher n picks up the left fork before
the right fork

• this breaks the circle of resource requests; there will
always be one philosopher who can acquire both forks
and release them again

38

Dining philosophers problem: a fix

•  Asymmetric solution: one philosopher picks up forks in a
different order

•  Hence the circular wait condition (Coffman) is broken: no
deadlock

Philosophern

1
2
3
4
5
6

while true loop
 think
 s[1].down
 s[n].down
 eat
 s[n].up
 s[1].up
end

Next on the agenda

53

1. general and binary semaphores

2. implementing semaphores

3. beyond the mutual exclusion problem

4. simulating general semaphores

General semaphores are superfluous

• while conceptually useful, general semaphores
(theoretically) are not necessary -- they can be
implemented through binary semaphores alone

General semaphores are superfluous

41

Implementing general semaphores by binary ones

mutex.count := 1 -- binary semaphore
delay.count := 1 -- binary semaphore
count := k

general_down
 do
 delay.down
 mutex.down
 count := count − 1
 if count > 0 then
 delay.up
 end
 mutex.up
 end

general_up
 do
 mutex.down
 count := count + 1
 if count = 1 then
 delay.up
 end
 mutex.up
 end

General semaphores are superfluous

41

Implementing general semaphores by binary ones

mutex.count := 1 -- binary semaphore
delay.count := 1 -- binary semaphore
count := k

general_down
 do
 delay.down
 mutex.down
 count := count − 1
 if count > 0 then
 delay.up
 end
 mutex.up
 end

general_up
 do
 mutex.down
 count := count + 1
 if count = 1 then
 delay.up
 end
 mutex.up
 end

protects count

value of the general semaphore

not called when count = 0

Next on the agenda

57

1. general and binary semaphores

2. implementing semaphores

3. beyond the mutual exclusion problem

4. simulating general semaphores

Summary

• semaphores are conceptually simple but powerful tools
for solving synchronisation problems

• choice of implementation can affect starvation-freedom

• applications beyond mutual exclusion: k-exclusion,
barriers, condition synchronisation

• but: correct usage is still far from trivial

• essential reading: Chapter 4 of the CCC textbook

58

!

