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What’s wrong with locks?
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They are difficult to use correctly

• forget to take a lock?

• take too many locks?

• take the locks in the wrong order?

• take the wrong lock?
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danger of data race

danger of deadlock

danger of deadlock

???



Blocking, faults, and performance...
• priority inversion

   => lower-priority thread preempted while holding a lock
        that a higher-priority thread needs

• convoying

   => multiple threads of the same priority contend
        repeatedly for the same lock

• fault tolerance

   => what if a faulty process halts whilst holding a lock?

• granularity of locking

  => lock overhead vs. lock contention
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Locks are not “composable” in general

• they don’t support modular programming

  => i.e. building larger programs from smaller blocks
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What’s wrong with locks? (3) 

•  Locks are not composable in general, i.e. they don’t 
support modular programming (building larger programs 
from smaller blocks). 

•  How to implement the following method? 

class Account { 
    int balance; 
    synchronized void deposit(int amount) { 
        balance = balance + amount; 
    } 
    synchronized void withdraw(int amount) { 
        balance = balance - amount; 
    } 
} 

void transfer(Account acc1, Account acc2, int amount) 

how to implement
a “transfer” method?
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Locks are not “composable” in general

• although deposit and withdraw are correctly 
implemented by themselves, the following is incorrect:
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What’s wrong with locks? (4) 

•  Although deposit and withdraw are correctly 
implemented by themselves, the following is incorrect: 

•  Instead we would have to add explicit locking code: 

void transfer(Account acc1, Account acc2, int amount) { 
    acc1.withdraw(amount); 
    acc2.deposit(amount); 
} 

void transfer(Account acc1, Account acc2, int amount) { 
    synchronized (acc1) { 
        synchronized (acc2) { 
            acc1.withdraw(amount);  
            acc2.deposit(amount);  
        } 
    } 
} 

!
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How do we do concurrent programming 
without locks?

• message passing

  => no shared data at all
  => but: overheads of messaging, slower access to data, ...

• lock-free programming

  => instead of locks, use stronger atomic operations

• software transactional memory (STM)

  => based on the idea of database transactions
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Next on the agenda
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1. lock-free programming

2. software transactional memory (STM)

3. linearisability and sequential consistency



Lock-free programming

• write shared-memory concurrent programs without 
using locks (but still ensuring thread safety)

• idea: use stronger atomic operations (typically provided 
by the hardware)

• designing general lock-free algorithms is difficult

  => focus instead on developing lock-free data structures
  => stack, list, queue, buffer, ...
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Classes of lock-free algorithms

• typically distinguish two classes of lock-free algorithms

lock-free wait-free

13



Classes of lock-free algorithms

• typically distinguish two classes of lock-free algorithms

lock-free

=> guaranteed 
system-wide progress

=> i.e. infinitely often 
some process finishes

wait-free

=> guaranteed
per-thread progress

=> i.e. all processes 
complete in a finite 
number of steps
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Classes of lock-free algorithms

• typically distinguish two classes of lock-free algorithms

lock-free

=> guaranteed 
system-wide progress

=> i.e. infinitely often 
some process finishes

wait-free

=> guaranteed
per-thread progress

=> i.e. all processes 
complete in a finite 
number of steps

implies

free from deadlock free from deadlock 
and starvation14



Compare-and-swap (CAS)

• compare-and-swap (CAS) combines a load and a store 
into a single atomic operation

• takes three arguments: a memory address x, an old 
value, and a new value

     CAS (x,  old,  new)

• atomically reads the contents at x, and, if it contains 
old, updates it to new
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Compare-and-swap (CAS)

• CAS must indicate whether or not it performed the 
substitution

   => by returning the value read from memory
   => or by a simple Boolean response

• latter variant sometimes 
called compare-and-set:
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Compare-and-swap (recap) 

•  Compare-and-swap (CAS) takes three parameters: the 
address of a memory location, an old and a new value 

•  The new value is atomically written to the memory 
location if the content of the location agrees with the 
old value 

CAS (x, old, new) 
    do 

    if *x = old then  
            *x := new;  
            result := true 

    else  
            result := false 
        end 
    end 

-atomic
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Compare-and-swap (CAS)

.....1 35 21 44 66 38 86

1 2 3 4 5 6 7

CAS ( 3, 21, 0 )
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Compare-and-swap (CAS)

.....1 35 0 44 66 38 86

1 2 3 4 5 6 7

CAS ( 3, 21, 0 ) true
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Compare-and-swap (CAS)

.....1 35 0 44 66 38 86

1 2 3 4 5 6 7

CAS ( 5, 21, 0 )
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Compare-and-swap (CAS)

.....1 35 0 44 66 38 86

1 2 3 4 5 6 7

CAS ( 5, 21, 0 ) false
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Treiber stack
(a simple lock-free stack)

• CAS facilitates a lock-free stack implementation (due 
to Treiber, 1986)

• stack of integers represented as a linked list of nodes; 
the top of the stack denoted by the node head
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Simple lock-free stack (1) 

•  Using CAS, we obtain the following lock-free 
implementation of a stack, due to (Treiber, 1986) 

•  A stack of elements (here of integer type) is 
represented as a linked list of nodes 

•  The top of the stack is denoted by the node head 

class Node { 
    Node* next;  
    int item;  
} 
 
Node* head; // top of the stack 
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Treiber stack
(a simple lock-free stack)

• to implement push and pop, a common pattern is used:

   (1) read a value from the current state

   (2) compute an updated value based on the read one

   (3) atomically update the state by swapping the new
        for old
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Treiber stack
(a simple lock-free stack)

15 

Simple lock-free stack (2) 

•  In the implementation of push and pop, a common pattern 
in lock-free algorithms is used: 

1.  read a value from the current state 
2.  compute an updated value based on the read value 
3.  atomically update the state by swapping the new 

for the old value 

void push (int value) { 
    Node* oldHead; 
    Node* newHead := new Node(); 
    node.item := value; 
    do { 
        oldHead := head; 
        newHead.next := head; 
    } while (!CAS(&head, oldHead, newHead)); 
} 

newHead.item := value;
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Treiber stack
(a simple lock-free stack)

15 

Simple lock-free stack (2) 

•  In the implementation of push and pop, a common pattern 
in lock-free algorithms is used: 

1.  read a value from the current state 
2.  compute an updated value based on the read value 
3.  atomically update the state by swapping the new 

for the old value 

void push (int value) { 
    Node* oldHead; 
    Node* newHead := new Node(); 
    node.item := value; 
    do { 
        oldHead := head; 
        newHead.next := head; 
    } while (!CAS(&head, oldHead, newHead)); 
} 

newHead.item := value;

operation fails if another process has changed 
the head in the meantime (then loop repeats)
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Treiber stack
(a simple lock-free stack)
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Simple lock-free stack (3) 

•  If the state changes between steps 1 and 3, the CAS-
operation fails and the algorithm is repeated until 
success 

int pop () { 
    Node* oldHead; 
    Node* newHead; 
    do { 
        oldHead := head;  
        if(oldHead = null) return EMPTY; 
        newHead := oldHead.next; 
    } while(!CAS(&head, oldHead, newHead)); 
    return oldHead.item; 
} 
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CAS can be fooled!

• consider the following pattern:

   T1:  a value is read from state A
   T2:  the state is changed to state B
   T1:  CAS operation does not distinguish between A
         and B, so assumes the state is still A

• called the ABA problem

• avoided in our stack since push always creates a new 
node (and old node’s location is not freed)

!
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Lock-free programming: discussion

• good performance in some situations, avoiding many of 
the problems of locks

   => deadlock, priority inversion, ...

• but difficult to correctly implement lock-free algorithms

   => e.g. the ABA problem
   => can lead to unnatural structuring of algorithms

• focused on lock-free data structures (well-established 
algorithms and implementations available)
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Next on the agenda
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1. lock-free programming

2. software transactional memory (STM)

3. linearisability and sequential consistency



Motivating STM

• the conventional atomic primitives of lock-free 
approaches operate on one memory location at a time

   => algorithms can have an unnatural structure

• software transactional memory (STM) aims at 
simplifying atomic updates of multiple independent 
memory locations

• inspiration: transactions in database management 
systems
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Database transactions

• a database transaction is a sequence of operations performed 
within a DBMS enjoying these properties:

=> Atomicity: transactions appear to execute completely or not at all
=> Consistency: transactions preserve consistency of the DB
=> Isolation: other operations cannot access data modified by an
                    incomplete transaction
=> Durability: all committed transactions guaranteed to persist

• for STM, atomicity and isolation are most interesting

30



Software transactional memory (STM)

• development has focused on software implementations

  => starting with the work of
       Shavit & Touitou, 1995
  => based on earlier ideas of a
       multiprocessor hardware
       architecture to support
       lock-free programming
       (Herlihy & Moss, 1993)

• idea: allow code to be enclosed by an atomic-block

   => guarantee: executes atomically with respect to
            other atomic-blocks

(photo by Jukka Suomela)31



Implementing STM

• an “optimistic” implementation scheme:

=> atomic-blocks run without locking; write to transaction log
=> onus placed on readers to check consistency
=> transaction can be committed, aborted, and/or re-executed

• many implementations of STM (quality varies!)

=> nice support in concurrent Haskell
=> facilitates composability and modularity
=> http://research.microsoft.com/pubs/67418/2005-ppopp-composable.pdf
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STM: discussion

33

• advantages:

 => simple and effective programming model
 => transactions can be composed (Harris et al., 2005)
 => increased concurrency, no waiting for resources

• disadvantages:

 => restrictions on operations within atomic-blocks, since rollback
      must be available (e.g. no externally observable effects)
 => performance loss with respect to fine-grained locking; the
      overhead of transaction logs and consistency checking



Next on the agenda
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1. lock-free programming

2. software transactional memory (STM)

3. linearisability and sequential consistency



Correctness conditions

• we can understand the execution of a system as operations 
of a collection of (sequential) processes on data objects

  => objects equipped with types and operations

• in a sequential system, it is easy to specify the behaviour of 
operations

   => pre- and postconditions

   => operations cannot be called on objects that are in
         an “intermediate state”

{pre} q.op {post}
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Concurrent objects

• in a concurrent system, operations can potentially be 
invoked on objects that are in intermediate states

• more difficult to define correctness for concurrent objects

• linearisability provides a correctness condition for 
concurrent objects

36



Linearisability: the intuition

• idea: a concurrent object is linearisable if every concurrent 
execution of its operations can be shown to be 
“equivalent” (in some sense) to a sequential execution

30 

Linearizability: Intuition 

•  Idea: A concurrent object is linearizable if every 
concurrent execution of its operations can be shown to 
be “equivalent” to a sequential execution 

lock() unlock() 

lock() unlock() 

Thread A 

Thread B 

duration of operation 1 

duration of operation 2 

time 
Equivalent 

sequential execution 

invocation of operation 1 response of operation 1 
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Using the semantics of an object

• imagine an object implementing a FIFO queue with two 
operations, enq(x) and deq()

• decide whether a concurrent execution is correct using the 
object’s intended semantics

31 

Using the semantics of an object 

•  Imagine an object implementing a FIFO queue with two 
operations enq(x) and deq(). 

•  To decide whether a concurrent execution is correct, we 
have to use the object’s intended semantics. 

•  History H1 is acceptable, it agrees with the semantics. 
•  History H2 is not acceptable: enq(2) was completed 

before enq(5) started, so 5 couldn’t have been dequeued 
earlier. 

enq(2) 5 = deq() 

enq(5) 
Thread A 

Thread B 2 = deq() 

enq(2) 5 = deq() 

enq(5) 

Thread A 

Thread B 

H1 

H2 
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•  Imagine an object implementing a FIFO queue with two 
operations enq(x) and deq(). 

•  To decide whether a concurrent execution is correct, we 
have to use the object’s intended semantics. 

•  History H1 is acceptable, it agrees with the semantics. 
•  History H2 is not acceptable: enq(2) was completed 

before enq(5) started, so 5 couldn’t have been dequeued 
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enq(2) 5 = deq() 

enq(5) 
Thread A 

Thread B 2 = deq() 

enq(2) 5 = deq() 

enq(5) 

Thread A 

Thread B 

H1 

H2 

acceptable

not 
acceptable
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Observation

• observation: each operation should appear to “take effect” 
instantaneously at some moment between its invocation and 
response

• for the second history, no equivalent sequential execution can 
be found
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Histories
• a call of an operation is split into two events:

   invocation   [A q.op(a1, ..., an) ]
   response   [A q:Ok(r) ]

• where A is a thread ID, q an object, op(a1, ..., an) an 
invocation of call with arguments, and Ok(r) a successful 
response of call with result r

• a history is a sequence of invocation / response events
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Histories 

•  A call of an operation is split into two events: 
•  Invocation: [A q.op(a1, ..., an)]  
•  Response: [A q:Ok(r)] 

•  Notation:  
•  A: thread ID 
•  q: object 
•  op(a1, ..., an): invocation of call with arguments 
•  Ok(r): successfull response of call with result r 

•  A history is a sequence of invocation and response events 
•  Example: History H1 can be written as 

 [A q.enq(2)], [B q.enq(5)], [B q:Ok], [A q:Ok],  
 [B q.deq()], [B q:Ok(2)], [A q.deq()], [A q:Ok(5)] 
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Using the semantics of an object 

•  Imagine an object implementing a FIFO queue with two 
operations enq(x) and deq(). 

•  To decide whether a concurrent execution is correct, we 
have to use the object’s intended semantics. 

•  History H1 is acceptable, it agrees with the semantics. 
•  History H2 is not acceptable: enq(2) was completed 

before enq(5) started, so 5 couldn’t have been dequeued 
earlier. 

enq(2) 5 = deq() 

enq(5) 
Thread A 

Thread B 2 = deq() 

enq(2) 5 = deq() 

enq(5) 

Thread A 

Thread B 

H1 

H2 
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Projections

• we can define projections on objects and on threads

• assume we have a history:

• object projection:

• thread projection:
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•  We can define projections on objects and on threads 
•  Assume we have a history 
    H = [A q1.enq(2)], [B q2.enq(5)], [B q2:Ok], [A q1:Ok],  

 [B q1.deq()], [B q1:Ok(2)], [A q2.deq()], [A q2:Ok(5)] 
 
•  Object projection: 
   H|q1 = [A q1.enq(2)], [A q1:Ok],  [B q1.deq()], [B q1:Ok(2)] 
 
•  Thread projection: 
   H|A = [A q1.enq(2)], [A q1:Ok], [A q2.deq()], [A q2:Ok(5)] 
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Sequential histories

• a response matches an invocation if their object and thread 
names agree

• a history is sequential if it starts with an invocation, and 
each invocation (except possibly the last) is immediately 
followed by a matching response

• a sequential history is legal if it agrees with the sequential 
specification of each object
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Sequential histories 

•  A response matches an invocation if their object and 
thread names agree. 

•  A history is sequential if it starts with an invocation and 
each invocation, except possibly the last, is immediately 
followed by a matching response 

    H = [A q.enq(2)], [A q:Ok], [B q.enq(5)], [B q:Ok], ... 
 
•  A sequential history is legal if it agrees with the 

sequential specification of each object. 
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More definitions

• a call op1 precedes another call op2 (op1 -> op2) if op1’s 
response event occurs before op2’s invocation event

• we write ->H for the precedence relation induced by H

  => e.g.  q.enq(2) ->H q.enq(5)

• an invocation is pending if it has no matching response

• a history is complete if it does not have pending responses

• complete(H) is the subhistory of H with all pending 
invocations removed
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Linearisability: the definition

• two histories H and G are equivalent if H|A = G|A for all 
threads A

• a history H is linearisable if it can be extended to a history 
G by adding zero or more response events, such that:

  => complete(G) is equivalent to some legal sequential history S
  => ->H ⊆ ->S  (i.e. the precedences of H are maintained)
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• two histories H and G are equivalent if H|A = G|A for all 
threads A
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Linearizability 

•  Two histories H and G are equivalent if H|A = G|A for 
all threads A 

•  A history H is linearizable if it can be extended by 
appending zero or more response events to a history G 
such that: 

•  complete(G) is equivalent to a legal sequential 
history S 

•  ->H ⊆ ->S 
•  Example: 

->H = {a -> c, b -> c} 
->S = {a -> b, a -> c, b -> c} 

a 

b 
Thread A 

Thread B c 
H 

time S 
47



Example: linearisability

38 

Example: Linearizability 

•  Read/write registers: 

•  H is not linearizable 
•  How about the next one? 

•  H’ is linearizable 

r.write(0) 

r.write(1) 
Thread A 

Thread B 0 = r.read() 
H 

time S 

1 = r.read() r.write(2) 

r.write(1) must 
have occurred 
at this point 

r.write(0) 

r.write(1) 
Thread A 

Thread B 1 = r.read() 
H’ 

time S 

r.write(2) 
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Sequential consistency

• a history H is sequentially consistent if it can be extended 
to a history G by adding zero or more response events, 
such that:

  => complete(G) is equivalent to some legal sequential history S

• note that ->H ⊆ ->S is not a requirement

• idea: calls from a particular thread appear to take place in 
program order

49



Sequential consistency

50
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Sequential consistency 

•  A history H is sequentially consistent if it can be 
extended by appending zero or more response events to 
a history G such that: 

•  complete(G) is equivalent to a legal sequential 
history S 

•  Idea: Calls from a particular thread appear to take 
place in program order  

•  H is not sequentially consistent: 

•  H’ is sequentially consistent but not linearizable: 

r.write(0) H 0 = r.read() r.write(2) 

q.enq(2) 

q.enq(5) 

Thread A 

Thread B 

5 = q.deq() 
H’ 



Compositionality

• every linearisable history is also sequentially consistent

• linearisability is compositional: H is linearisable if and only if 
each object H|x is linearisable

• sequential consistency is not compositional

51



Thanks! Questions?
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1. lock-free programming

2. software transactional memory (STM)

3. linearisability and sequential consistency


