
Concepts of Concurrent Computation
Spring 2014

Lecture 8: Lock-Free Approaches

Bertrand Meyer
Sebastian Nanz
Chris Poskitt

Chair of
Software Engineering

1

What’s wrong with locks?

2

They are difficult to use correctly

• forget to take a lock?

• take too many locks?

• take the locks in the wrong order?

• take the wrong lock?

3

They are difficult to use correctly

• forget to take a lock?

• take too many locks?

• take the locks in the wrong order?

• take the wrong lock?

4

danger of data race

danger of deadlock

danger of deadlock

???

Blocking, faults, and performance...
• priority inversion

 => lower-priority thread preempted while holding a lock
 that a higher-priority thread needs

• convoying

 => multiple threads of the same priority contend
 repeatedly for the same lock

• fault tolerance

 => what if a faulty process halts whilst holding a lock?

• granularity of locking

 => lock overhead vs. lock contention

5

Blocking, faults, and performance...
• priority inversion

 => lower-priority thread preempted while holding a lock
 that a higher-priority thread needs

• convoying

 => multiple threads of the same priority contend
 repeatedly for the same lock

• fault tolerance

 => what if a faulty process halts whilst holding a lock?

• granularity of locking

 => lock overhead vs. lock contention

increases with more locks

decreases with more locks

Locks are not “composable” in general

• they don’t support modular programming

 => i.e. building larger programs from smaller blocks

6

What’s wrong with locks? (3)

•  Locks are not composable in general, i.e. they don’t
support modular programming (building larger programs
from smaller blocks).

•  How to implement the following method?

class Account {
 int balance;
 synchronized void deposit(int amount) {
 balance = balance + amount;
 }
 synchronized void withdraw(int amount) {
 balance = balance - amount;
 }
}

void transfer(Account acc1, Account acc2, int amount)

how to implement
a “transfer” method?

7

Locks are not “composable” in general

• although deposit and withdraw are correctly
implemented by themselves, the following is incorrect:

7

What’s wrong with locks? (4)

•  Although deposit and withdraw are correctly
implemented by themselves, the following is incorrect:

•  Instead we would have to add explicit locking code:

void transfer(Account acc1, Account acc2, int amount) {
 acc1.withdraw(amount);
 acc2.deposit(amount);
}

void transfer(Account acc1, Account acc2, int amount) {
 synchronized (acc1) {
 synchronized (acc2) {
 acc1.withdraw(amount);
 acc2.deposit(amount);
 }
 }
}

!

8

Locks are not “composable” in general

• although deposit and withdraw are correctly
implemented by themselves, the following is incorrect:

7

What’s wrong with locks? (4)

•  Although deposit and withdraw are correctly
implemented by themselves, the following is incorrect:

•  Instead we would have to add explicit locking code:

void transfer(Account acc1, Account acc2, int amount) {
 acc1.withdraw(amount);
 acc2.deposit(amount);
}

void transfer(Account acc1, Account acc2, int amount) {
 synchronized (acc1) {
 synchronized (acc2) {
 acc1.withdraw(amount);
 acc2.deposit(amount);
 }
 }
}

!

7

What’s wrong with locks? (4)

•  Although deposit and withdraw are correctly
implemented by themselves, the following is incorrect:

•  Instead we would have to add explicit locking code:

void transfer(Account acc1, Account acc2, int amount) {
 acc1.withdraw(amount);
 acc2.deposit(amount);
}

void transfer(Account acc1, Account acc2, int amount) {
 synchronized (acc1) {
 synchronized (acc2) {
 acc1.withdraw(amount);
 acc2.deposit(amount);
 }
 }
}

have to add explicit
locking code

9

How do we do concurrent programming
without locks?

• message passing

 => no shared data at all
 => but: overheads of messaging, slower access to data, ...

• lock-free programming

 => instead of locks, use stronger atomic operations

• software transactional memory (STM)

 => based on the idea of database transactions

10

How do we do concurrent programming
without locks?

• message passing

 => no shared data at all
 => but: overheads of messaging, slower access to data, ...

• lock-free programming

 => instead of locks, use stronger atomic operations

• software transactional memory (STM)

 => based on the idea of database transactions

10

Next on the agenda

11

1. lock-free programming

2. software transactional memory (STM)

3. linearisability and sequential consistency

Lock-free programming

• write shared-memory concurrent programs without
using locks (but still ensuring thread safety)

• idea: use stronger atomic operations (typically provided
by the hardware)

• designing general lock-free algorithms is difficult

 => focus instead on developing lock-free data structures
 => stack, list, queue, buffer, ...

12

Classes of lock-free algorithms

• typically distinguish two classes of lock-free algorithms

lock-free wait-free

13

Classes of lock-free algorithms

• typically distinguish two classes of lock-free algorithms

lock-free

=> guaranteed
system-wide progress

=> i.e. infinitely often
some process finishes

wait-free

=> guaranteed
per-thread progress

=> i.e. all processes
complete in a finite
number of steps

14

Classes of lock-free algorithms

• typically distinguish two classes of lock-free algorithms

lock-free

=> guaranteed
system-wide progress

=> i.e. infinitely often
some process finishes

wait-free

=> guaranteed
per-thread progress

=> i.e. all processes
complete in a finite
number of steps

implies

14

Classes of lock-free algorithms

• typically distinguish two classes of lock-free algorithms

lock-free

=> guaranteed
system-wide progress

=> i.e. infinitely often
some process finishes

wait-free

=> guaranteed
per-thread progress

=> i.e. all processes
complete in a finite
number of steps

implies

free from deadlock free from deadlock
and starvation14

Compare-and-swap (CAS)

• compare-and-swap (CAS) combines a load and a store
into a single atomic operation

• takes three arguments: a memory address x, an old
value, and a new value

 CAS (x, old, new)

• atomically reads the contents at x, and, if it contains
old, updates it to new

15

Compare-and-swap (CAS)

• CAS must indicate whether or not it performed the
substitution

 => by returning the value read from memory
 => or by a simple Boolean response

• latter variant sometimes
called compare-and-set:

13

Compare-and-swap (recap)

•  Compare-and-swap (CAS) takes three parameters: the
address of a memory location, an old and a new value

•  The new value is atomically written to the memory
location if the content of the location agrees with the
old value

CAS (x, old, new)
 do

 if *x = old then
 *x := new;
 result := true

 else
 result := false
 end
 end

-atomic

16

Compare-and-swap (CAS)

.....1 35 21 44 66 38 86

1 2 3 4 5 6 7

CAS (3, 21, 0)

17

Compare-and-swap (CAS)

.....1 35 0 44 66 38 86

1 2 3 4 5 6 7

CAS (3, 21, 0) true

18

Compare-and-swap (CAS)

.....1 35 0 44 66 38 86

1 2 3 4 5 6 7

CAS (5, 21, 0)

19

Compare-and-swap (CAS)

.....1 35 0 44 66 38 86

1 2 3 4 5 6 7

CAS (5, 21, 0) false

20

Treiber stack
(a simple lock-free stack)

• CAS facilitates a lock-free stack implementation (due
to Treiber, 1986)

• stack of integers represented as a linked list of nodes;
the top of the stack denoted by the node head

14

Simple lock-free stack (1)

•  Using CAS, we obtain the following lock-free
implementation of a stack, due to (Treiber, 1986)

•  A stack of elements (here of integer type) is
represented as a linked list of nodes

•  The top of the stack is denoted by the node head

class Node {
 Node* next;
 int item;
}

Node* head; // top of the stack

21

Treiber stack
(a simple lock-free stack)

• to implement push and pop, a common pattern is used:

 (1) read a value from the current state

 (2) compute an updated value based on the read one

 (3) atomically update the state by swapping the new
 for old

22

Treiber stack
(a simple lock-free stack)

15

Simple lock-free stack (2)

•  In the implementation of push and pop, a common pattern
in lock-free algorithms is used:

1.  read a value from the current state
2.  compute an updated value based on the read value
3.  atomically update the state by swapping the new

for the old value

void push (int value) {
 Node* oldHead;
 Node* newHead := new Node();
 node.item := value;
 do {
 oldHead := head;
 newHead.next := head;
 } while (!CAS(&head, oldHead, newHead));
}

newHead.item := value;

23

Treiber stack
(a simple lock-free stack)

15

Simple lock-free stack (2)

•  In the implementation of push and pop, a common pattern
in lock-free algorithms is used:

1.  read a value from the current state
2.  compute an updated value based on the read value
3.  atomically update the state by swapping the new

for the old value

void push (int value) {
 Node* oldHead;
 Node* newHead := new Node();
 node.item := value;
 do {
 oldHead := head;
 newHead.next := head;
 } while (!CAS(&head, oldHead, newHead));
}

newHead.item := value;

operation fails if another process has changed
the head in the meantime (then loop repeats)

24

Treiber stack
(a simple lock-free stack)

16

Simple lock-free stack (3)

•  If the state changes between steps 1 and 3, the CAS-
operation fails and the algorithm is repeated until
success

int pop () {
 Node* oldHead;
 Node* newHead;
 do {
 oldHead := head;
 if(oldHead = null) return EMPTY;
 newHead := oldHead.next;
 } while(!CAS(&head, oldHead, newHead));
 return oldHead.item;
}

25

CAS can be fooled!

• consider the following pattern:

 T1: a value is read from state A
 T2: the state is changed to state B
 T1: CAS operation does not distinguish between A
 and B, so assumes the state is still A

• called the ABA problem

• avoided in our stack since push always creates a new
node (and old node’s location is not freed)

!

26

Lock-free programming: discussion

• good performance in some situations, avoiding many of
the problems of locks

 => deadlock, priority inversion, ...

• but difficult to correctly implement lock-free algorithms

 => e.g. the ABA problem
 => can lead to unnatural structuring of algorithms

• focused on lock-free data structures (well-established
algorithms and implementations available)

27

Next on the agenda

28

1. lock-free programming

2. software transactional memory (STM)

3. linearisability and sequential consistency

Motivating STM

• the conventional atomic primitives of lock-free
approaches operate on one memory location at a time

 => algorithms can have an unnatural structure

• software transactional memory (STM) aims at
simplifying atomic updates of multiple independent
memory locations

• inspiration: transactions in database management
systems

29

Database transactions

• a database transaction is a sequence of operations performed
within a DBMS enjoying these properties:

=> Atomicity: transactions appear to execute completely or not at all
=> Consistency: transactions preserve consistency of the DB
=> Isolation: other operations cannot access data modified by an
 incomplete transaction
=> Durability: all committed transactions guaranteed to persist

• for STM, atomicity and isolation are most interesting

30

Software transactional memory (STM)

• development has focused on software implementations

 => starting with the work of
 Shavit & Touitou, 1995
 => based on earlier ideas of a
 multiprocessor hardware
 architecture to support
 lock-free programming
 (Herlihy & Moss, 1993)

• idea: allow code to be enclosed by an atomic-block

 => guarantee: executes atomically with respect to
 other atomic-blocks

(photo by Jukka Suomela)31

Implementing STM

• an “optimistic” implementation scheme:

=> atomic-blocks run without locking; write to transaction log
=> onus placed on readers to check consistency
=> transaction can be committed, aborted, and/or re-executed

• many implementations of STM (quality varies!)

=> nice support in concurrent Haskell
=> facilitates composability and modularity
=> http://research.microsoft.com/pubs/67418/2005-ppopp-composable.pdf

32

http://research.microsoft.com/pubs/67418/2005-ppopp-composable.pdf
http://research.microsoft.com/pubs/67418/2005-ppopp-composable.pdf

STM: discussion

33

• advantages:

 => simple and effective programming model
 => transactions can be composed (Harris et al., 2005)
 => increased concurrency, no waiting for resources

• disadvantages:

 => restrictions on operations within atomic-blocks, since rollback
 must be available (e.g. no externally observable effects)
 => performance loss with respect to fine-grained locking; the
 overhead of transaction logs and consistency checking

Next on the agenda

34

1. lock-free programming

2. software transactional memory (STM)

3. linearisability and sequential consistency

Correctness conditions

• we can understand the execution of a system as operations
of a collection of (sequential) processes on data objects

 => objects equipped with types and operations

• in a sequential system, it is easy to specify the behaviour of
operations

 => pre- and postconditions

 => operations cannot be called on objects that are in
 an “intermediate state”

{pre} q.op {post}

35

Concurrent objects

• in a concurrent system, operations can potentially be
invoked on objects that are in intermediate states

• more difficult to define correctness for concurrent objects

• linearisability provides a correctness condition for
concurrent objects

36

Linearisability: the intuition

• idea: a concurrent object is linearisable if every concurrent
execution of its operations can be shown to be
“equivalent” (in some sense) to a sequential execution

30

Linearizability: Intuition

•  Idea: A concurrent object is linearizable if every
concurrent execution of its operations can be shown to
be “equivalent” to a sequential execution

lock() unlock()

lock() unlock()

Thread A

Thread B

duration of operation 1

duration of operation 2

time
Equivalent

sequential execution

invocation of operation 1 response of operation 1

37

Using the semantics of an object

• imagine an object implementing a FIFO queue with two
operations, enq(x) and deq()

• decide whether a concurrent execution is correct using the
object’s intended semantics

31

Using the semantics of an object

•  Imagine an object implementing a FIFO queue with two
operations enq(x) and deq().

•  To decide whether a concurrent execution is correct, we
have to use the object’s intended semantics.

•  History H1 is acceptable, it agrees with the semantics.
•  History H2 is not acceptable: enq(2) was completed

before enq(5) started, so 5 couldn’t have been dequeued
earlier.

enq(2) 5 = deq()

enq(5)
Thread A

Thread B 2 = deq()

enq(2) 5 = deq()

enq(5)

Thread A

Thread B

H1

H2

38

Using the semantics of an object

• imagine an object implementing a FIFO queue with two
operations, enq(x) and deq()

• decide whether a concurrent execution is correct using the
object’s intended semantics

31

Using the semantics of an object

•  Imagine an object implementing a FIFO queue with two
operations enq(x) and deq().

•  To decide whether a concurrent execution is correct, we
have to use the object’s intended semantics.

•  History H1 is acceptable, it agrees with the semantics.
•  History H2 is not acceptable: enq(2) was completed

before enq(5) started, so 5 couldn’t have been dequeued
earlier.

enq(2) 5 = deq()

enq(5)
Thread A

Thread B 2 = deq()

enq(2) 5 = deq()

enq(5)

Thread A

Thread B

H1

H2

acceptable

not
acceptable

39

Observation

• observation: each operation should appear to “take effect”
instantaneously at some moment between its invocation and
response

• for the second history, no equivalent sequential execution can
be found

32

Observation

•  Observation: Each operation should appear to “take
effect” instantaneously at some moment between its
invocation and response

•  For the second history, no equivalent sequential
execution can be found:

enq(2) 5 = deq()

enq(5)
Thread A

Thread B 2 = deq()

enq(2) 5 = deq()

enq(5)

Thread A

Thread B

H1

H2

time
Equivalent

sequential execution

32

Observation

•  Observation: Each operation should appear to “take
effect” instantaneously at some moment between its
invocation and response

•  For the second history, no equivalent sequential
execution can be found:

enq(2) 5 = deq()

enq(5)
Thread A

Thread B 2 = deq()

enq(2) 5 = deq()

enq(5)

Thread A

Thread B

H1

H2

time
Equivalent

sequential execution

40

Histories
• a call of an operation is split into two events:

 invocation [A q.op(a1, ..., an)]
 response [A q:Ok(r)]

• where A is a thread ID, q an object, op(a1, ..., an) an
invocation of call with arguments, and Ok(r) a successful
response of call with result r

• a history is a sequence of invocation / response events

41

Histories
• a call of an operation is split into two events:

 invocation [A q.op(a1, ..., an)]
 response [A q:Ok(r)]

• where A is a thread ID, q an object, op(a1, ..., an) an
invocation of call with arguments, and Ok(r) a successful
response of call with result r

• a history is a sequence of invocation / response events

33

Histories

•  A call of an operation is split into two events:
•  Invocation: [A q.op(a1, ..., an)]
•  Response: [A q:Ok(r)]

•  Notation:
•  A: thread ID
•  q: object
•  op(a1, ..., an): invocation of call with arguments
•  Ok(r): successfull response of call with result r

•  A history is a sequence of invocation and response events
•  Example: History H1 can be written as

 [A q.enq(2)], [B q.enq(5)], [B q:Ok], [A q:Ok],
 [B q.deq()], [B q:Ok(2)], [A q.deq()], [A q:Ok(5)]

32

Observation

•  Observation: Each operation should appear to “take
effect” instantaneously at some moment between its
invocation and response

•  For the second history, no equivalent sequential
execution can be found:

enq(2) 5 = deq()

enq(5)
Thread A

Thread B 2 = deq()

enq(2) 5 = deq()

enq(5)

Thread A

Thread B

H1

H2

time
Equivalent

sequential execution

31

Using the semantics of an object

•  Imagine an object implementing a FIFO queue with two
operations enq(x) and deq().

•  To decide whether a concurrent execution is correct, we
have to use the object’s intended semantics.

•  History H1 is acceptable, it agrees with the semantics.
•  History H2 is not acceptable: enq(2) was completed

before enq(5) started, so 5 couldn’t have been dequeued
earlier.

enq(2) 5 = deq()

enq(5)
Thread A

Thread B 2 = deq()

enq(2) 5 = deq()

enq(5)

Thread A

Thread B

H1

H2

42

Projections

• we can define projections on objects and on threads

• assume we have a history:

• object projection:

• thread projection:

34

Projections

•  We can define projections on objects and on threads
•  Assume we have a history
 H = [A q1.enq(2)], [B q2.enq(5)], [B q2:Ok], [A q1:Ok],

 [B q1.deq()], [B q1:Ok(2)], [A q2.deq()], [A q2:Ok(5)]

•  Object projection:
 H|q1 = [A q1.enq(2)], [A q1:Ok], [B q1.deq()], [B q1:Ok(2)]

•  Thread projection:
 H|A = [A q1.enq(2)], [A q1:Ok], [A q2.deq()], [A q2:Ok(5)]

34

Projections

•  We can define projections on objects and on threads
•  Assume we have a history
 H = [A q1.enq(2)], [B q2.enq(5)], [B q2:Ok], [A q1:Ok],

 [B q1.deq()], [B q1:Ok(2)], [A q2.deq()], [A q2:Ok(5)]

•  Object projection:
 H|q1 = [A q1.enq(2)], [A q1:Ok], [B q1.deq()], [B q1:Ok(2)]

•  Thread projection:
 H|A = [A q1.enq(2)], [A q1:Ok], [A q2.deq()], [A q2:Ok(5)]

34

Projections

•  We can define projections on objects and on threads
•  Assume we have a history
 H = [A q1.enq(2)], [B q2.enq(5)], [B q2:Ok], [A q1:Ok],

 [B q1.deq()], [B q1:Ok(2)], [A q2.deq()], [A q2:Ok(5)]

•  Object projection:
 H|q1 = [A q1.enq(2)], [A q1:Ok], [B q1.deq()], [B q1:Ok(2)]

•  Thread projection:
 H|A = [A q1.enq(2)], [A q1:Ok], [A q2.deq()], [A q2:Ok(5)]

43

Sequential histories

• a response matches an invocation if their object and thread
names agree

• a history is sequential if it starts with an invocation, and
each invocation (except possibly the last) is immediately
followed by a matching response

• a sequential history is legal if it agrees with the sequential
specification of each object

35

Sequential histories

•  A response matches an invocation if their object and
thread names agree.

•  A history is sequential if it starts with an invocation and
each invocation, except possibly the last, is immediately
followed by a matching response

 H = [A q.enq(2)], [A q:Ok], [B q.enq(5)], [B q:Ok], ...

•  A sequential history is legal if it agrees with the

sequential specification of each object.

44

More definitions

• a call op1 precedes another call op2 (op1 -> op2) if op1’s
response event occurs before op2’s invocation event

• we write ->H for the precedence relation induced by H

 => e.g. q.enq(2) ->H q.enq(5)

• an invocation is pending if it has no matching response

• a history is complete if it does not have pending responses

• complete(H) is the subhistory of H with all pending
invocations removed

45

Linearisability: the definition

• two histories H and G are equivalent if H|A = G|A for all
threads A

• a history H is linearisable if it can be extended to a history
G by adding zero or more response events, such that:

 => complete(G) is equivalent to some legal sequential history S
 => ->H ⊆ ->S (i.e. the precedences of H are maintained)

46

Linearisability: the definition

• two histories H and G are equivalent if H|A = G|A for all
threads A

• a history H is linearisable if it can be extended to a history
G by adding zero or more response events, such that:

 => complete(G) is equivalent to some legal sequential history S
 => ->H ⊆ ->S (i.e. the precedences of H are maintained)

37

Linearizability

•  Two histories H and G are equivalent if H|A = G|A for
all threads A

•  A history H is linearizable if it can be extended by
appending zero or more response events to a history G
such that:

•  complete(G) is equivalent to a legal sequential
history S

•  ->H ⊆ ->S
•  Example:

->H = {a -> c, b -> c}
->S = {a -> b, a -> c, b -> c}

a

b
Thread A

Thread B c
H

time S
47

Example: linearisability

38

Example: Linearizability

•  Read/write registers:

•  H is not linearizable
•  How about the next one?

•  H’ is linearizable

r.write(0)

r.write(1)
Thread A

Thread B 0 = r.read()
H

time S

1 = r.read() r.write(2)

r.write(1) must
have occurred
at this point

r.write(0)

r.write(1)
Thread A

Thread B 1 = r.read()
H’

time S

r.write(2)

48

Sequential consistency

• a history H is sequentially consistent if it can be extended
to a history G by adding zero or more response events,
such that:

 => complete(G) is equivalent to some legal sequential history S

• note that ->H ⊆ ->S is not a requirement

• idea: calls from a particular thread appear to take place in
program order

49

Sequential consistency

50

39

Sequential consistency

•  A history H is sequentially consistent if it can be
extended by appending zero or more response events to
a history G such that:

•  complete(G) is equivalent to a legal sequential
history S

•  Idea: Calls from a particular thread appear to take
place in program order

•  H is not sequentially consistent:

•  H’ is sequentially consistent but not linearizable:

r.write(0) H 0 = r.read() r.write(2)

q.enq(2)

q.enq(5)

Thread A

Thread B

5 = q.deq()
H’

Compositionality

• every linearisable history is also sequentially consistent

• linearisability is compositional: H is linearisable if and only if
each object H|x is linearisable

• sequential consistency is not compositional

51

Thanks! Questions?

52

1. lock-free programming

2. software transactional memory (STM)

3. linearisability and sequential consistency

