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Petri nets

• Petri nets are mathematical models for describing 
systems with concurrency and resource sharing

• they facilitate many automatic analyses of interest for 
concurrent systems

• rich, intuitive graphical notation for choice, concurrent 
execution, interaction with the environment, ...
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Petri nets - the origins

• proposed by Carl Adam Petri in his famous 
thesis Kommunikation mit Automaten (1962)

• aimed for a system architecture that could be 
expanded indefinitely
  => no central components
  => in particular, no central, synchronising clock
  => actions with locally confined causes/effects

• original presentation omitted the graphical 
representation
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Next on the agenda
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1. modelling concepts: cookies for everyone!

2. synchronisation problems as Petri nets

3. Petri net analyses

4. true concurrency semantics;  unfoldings
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Terminology
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• ϵ denotes a transition that once 
enabled, need not actually occur
• we assume that other enabled 
transitions occur eventually
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1 exercise: strengthen the design such 
that the coin slot and signal places 
store at most one token each



Elementary Petri nets

• if we are interested in only control flow, we can use a 
special case - elementary Petri nets - where all tokens 
are simply black dots

• assume all edges to be labelled by:  “   “

• henceforth, we assume all Petri nets to be elementary
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Elementary cookie vending machine
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Petri nets: definition 

• an (elementary) Petri net consists of a net structure:

with finite sets P and T of places and transitions, F an 
edge relation F ⊆ (P x T) ∪ (T x P) and an initial 
marking M0: P -> N

• transitions marked with ϵ are cold

• markings have the form M: P -> N; each place p holds 
M(p) tokens
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N = (P, T, F)



Petri nets: definition 

• the preset of a transition t is the set of places p 
connected by edges from p to t (postset defined 
analogously)

• a transition is enabled if M(p)≥1 for all places p in the 
preset

• an enabled transition can occur, removing a token 
from each place in the preset and adding one to each 
place in the postset
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Next on the agenda
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1. modelling concepts: cookies for everyone!

2. synchronisation problems as Petri nets

3. Petri net analyses

4. true concurrency semantics;  unfoldings



Producer-consumer problem
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Producers Consumers
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Mutual exclusion
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Mutual exclusion
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Next on the agenda
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1. modelling concepts: cookies for everyone!

2. synchronisation problems as Petri nets

3. Petri net analyses

4. true concurrency semantics;  unfoldings



Modelling power vs. analysability

• many properties of interest for concurrent systems can 
be automatically determined for Petri nets
  => but can be very expensive in the general case

• properties include:
  => k-boundedness (i.e. no place ever has more than k tokens)
  => liveness
  => reachability
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Reachability problem

• the problem to decide whether some marking M can be 
derived from the initial marking

• starting point: construct a reachability graph from the 
initial marking
  => i.e. a transition system completely describing its behaviour
  => nodes denote markings
  => edges denote occurrences

• (more sophistication is needed when reachability graphs 
are not finite)
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Reachability graph for our semaphore

loc1
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express marking M as a vector:
( M(wait1) M(CR1) M(loc1) M(sem) M(wait2) M(CR2) M(loc2) )

i.e. ( 0 0 1 1 0 0 1 )



Reachability graph for our semaphore
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• prove that (0 1 0 0 0 1 0) is unreachable
• prove that M(CR1)+M(CR2)+M(sem) = 1



Reachability graph for our semaphore
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( 0 0 1 1 0 0 1 )

( 0 0 1 1 1 0 0 ) ( 1 0 0 1 0 0 1 )

( 1 0 0 1 1 0 0 )

( 0 1 0 0 1 0 0 ) ( 1 0 0 0 0 1 0 )

( 0 1 0 0 0 0 1 )( 0 0 1 0 0 1 0 )



Deciding reachability is expensive

• reachability is an important analysis

• decidable, but expensive in the general case
  => EXPSPACE-hard
  => reachability graph not always finite

• part II of Reisig (2013) treats the problem with more 
sophistication than we have
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Next on the agenda
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1. modelling concepts: cookies for everyone!

2. synchronisation problems as Petri nets

3. Petri net analyses

4. true concurrency semantics;  unfoldings



The problem of interleaving semantics

•  consider the following Petri net:

• its reachability graph contains 2n states
  => state explosion problem
  => due to interleaving of occurrences
  => unnecessary: ordering of occurrences here immaterial!
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Interleaving vs. true concurrency semantics

• an interleaving semantics imposes a total ordering on 
sequences of occurrences
  => completely described by a reachability graph
  => nodes denote markings; edges denote occurrences
  => state explosion!

• a true concurrency semantics instead models time as a 
partial order
  => two or more occurrences can happen simultaneously
  => completely described by a so-called unfolding
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Unfoldings are compact representations of 
concurrency

• an unfolding of a Petri net N is a Petri net that is more 
“tree like” - but represents the same behaviour

• idea: analyse the unfolding of a Petri net itself, rather 
than an underlying transition system (as in the 
interleaving semantics)
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Example: an unfolding
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Constructing an unfolding

• assumption: Petri nets are 1-bounded
 => possible to generalise to other Petri net variants

• steps to construct an unfolding N’ from a Petri net N:

 (1) initialise N’ with the places in N containing tokens
         in the initial marking
 (2) if a reachable* marking in N’  enables a transition
        t in N, then disjointly add t to N’ and:
        => link it to the corresponding preset
        => disjointly add the postset of t
 (3) iterate step 2

 *checking reachability is far easier for this special net class
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Another example
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Returning to our small example

• construct an unfolding of the following Petri net:
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Returning to our small example

• construct an unfolding of the following Petri net:
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the unfolding is just the Petri net itself!
 => size O(n)
 => whereas interleaving yields 2n reachable states



Petri net analysis using unfoldings

• suppose we want to know if some transition t in a Petri 
net N can occur (i.e. a liveness property)

• compute an answer by exploring the unfolding of N 
until either:
  => a transition labelled t is found; or
  => it can be concluded that no such transition occurs

• important to note that only a finite prefix of the 
unfolding is explored
  => Esparza & Heljanko (2008) cover this
        important part (that we omit)
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Next on the agenda
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1. modelling concepts: cookies for everyone!

2. synchronisation problems as Petri nets

3. Petri net analyses

4. true concurrency semantics;  unfoldings



Main sources for this lecture

• Understanding Petri Nets (2013)
  => by Wolfgang Reisig
  => chapters 1-3

• Unfoldings (2008)
  => by Javier Esparza & Keijo Heljanko
  => chapters 1-3

• both available online (see the course webpage)
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Summary

• Petri nets facilitate a graphical, intuitive means of 
modelling concurrent and distributed systems

• automatic analyses exist for reachability, 
boundedness, liveness, ... but are expensive in the 
general case

• unfoldings (based on true concurrency) may give a 
more compact representation of concurrency than 
reachability graphs (based on interleaving)
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