
Concepts of Concurrent Computation
Spring 2014

Lecture 11: Petri Nets

Bertrand Meyer
Sebastian Nanz
Chris Poskitt

Chair of
Software Engineering

1

Petri nets

• Petri nets are mathematical models for describing
systems with concurrency and resource sharing

• they facilitate many automatic analyses of interest for
concurrent systems

• rich, intuitive graphical notation for choice, concurrent
execution, interaction with the environment, ...

2

Petri nets - the origins

• proposed by Carl Adam Petri in his famous
thesis Kommunikation mit Automaten (1962)

• aimed for a system architecture that could be
expanded indefinitely
 => no central components
 => in particular, no central, synchronising clock
 => actions with locally confined causes/effects

• original presentation omitted the graphical
representation

3

Next on the agenda

4

1. modelling concepts: cookies for everyone!

2. synchronisation problems as Petri nets

3. Petri net analyses

4. true concurrency semantics; unfoldings

Let’s design a cookie vending machine

5

coin slot

compartment

Let’s design a cookie vending machine

6

coin slot compartment

Let’s design a cookie vending machine

7

1

coin slot compartment

t

Let’s design a cookie vending machine

8

1
1

coin slot compartment

t

Terminology

9

1

1
t

1
1

t

place

tokens

transition (with precondition)1

marking (distribution of tokens)

Let’s design a cookie vending machine

10

1
1

coin slot compartment

t

Let’s design a cookie vending machine

11

1
1

coin slot compartment

t

transition t is enabled
it can occur and change the marking

Let’s design a cookie vending machine

12

1

coin slot compartment

t

transition t is enabled
it can occur and change the marking

Let’s look inside

13

cash box?
finitely many cookies?

Let’s look inside

14

1
1

coin slot signal

a

cash box

1

b

compartment

storage

Let’s look inside

15

1
1

coin slot signal

a

cash box

1

b

compartment

storage

Let’s look inside

16

1

coin slot signal

a

cash box

1

b

compartment

storage

1

Let’s look inside

17

1

coin slot signal

a

cash box

1

b

compartment

storage

1

Let’s open it up to the world

18

Let’s open it up to the world

19

1

coin slot signal

a

cash box

1

b

compartment

storage

ϵ
1

insert
ϵ

take

Let’s open it up to the world

20

1

coin slot signal

a

cash box

1

b

compartment

storage

ϵ
1

insert
ϵ

take

• ϵ denotes a transition that once
enabled, need not actually occur
• we assume that other enabled
transitions occur eventually

The ultimate cookie machine (design)

21

1

coin slot

signal

a

cash box

1

b

compartment

storage

ϵ
1

insert
ϵ

take

return coin

1

counter

The ultimate cookie machine (design)

22

1

coin slot

signal

a

cash box

1

b

compartment

storage

ϵ
1

insert
ϵ

take

return coin

1

counter

The ultimate cookie machine (design)

23

1

coin slot

signal

a

cash box

1

b

compartment

storage

ϵ
1

insert
ϵ

take

return coin

1

counter

1

The ultimate cookie machine (design)

24

1

coin slot

signal

a

cash box

1

b

compartment

storage

ϵ
1

insert
ϵ

take

return coin

1

counter

1

! conflict! nondeterminism!

The ultimate cookie machine (design)

25

1

coin slot

signal

a

cash box

1

b

compartment

storage

ϵ
1

insert
ϵ

take

return coin

1

counter

1

The ultimate cookie machine (design)

26

1

coin slot

signal

a

cash box

1

b

compartment

storage

ϵ
1

insert
ϵ

take

return coin

1

counter

1

The ultimate cookie machine (design)

27

1

coin slot

signal

a

cash box

1

b

compartment

storage

ϵ
1

insert
ϵ

take

return coin

1

counter

1 exercise: strengthen the design such
that the coin slot and signal places
store at most one token each

Elementary Petri nets

• if we are interested in only control flow, we can use a
special case - elementary Petri nets - where all tokens
are simply black dots

• assume all edges to be labelled by: “ “

• henceforth, we assume all Petri nets to be elementary

28

Elementary cookie vending machine

29

coin slot

signal

a

cash box

b

compartment

storage

ϵ
insert

ϵ
take

return coin

counter

Petri nets: definition

• an (elementary) Petri net consists of a net structure:

with finite sets P and T of places and transitions, F an
edge relation F ⊆ (P x T) ∪ (T x P) and an initial
marking M0: P -> N

• transitions marked with ϵ are cold

• markings have the form M: P -> N; each place p holds
M(p) tokens

30

N = (P, T, F)

Petri nets: definition

• the preset of a transition t is the set of places p
connected by edges from p to t (postset defined
analogously)

• a transition is enabled if M(p)≥1 for all places p in the
preset

• an enabled transition can occur, removing a token
from each place in the preset and adding one to each
place in the postset

31

Next on the agenda

32

1. modelling concepts: cookies for everyone!

2. synchronisation problems as Petri nets

3. Petri net analyses

4. true concurrency semantics; unfoldings

Producer-consumer problem

33

Buffer

Producers Consumers
243

46

71

97

store (buffer, int)

consume (buffer)

Producer-consumer problem

34

wait

produce

consume

wait

Producer-consumer problem

35

wait

produce

consume

wait

buffer space

buffer count

Producer-consumer problem

36

wait

produce

consume

wait

buffer space

buffer count

Producer-consumer problem

37

wait

produce

consume

wait

buffer space

buffer count

Producer-consumer problem

38

wait

produce

consume

wait

buffer space

buffer count

Producer-consumer problem

39

wait

produce

consume

wait

buffer space

buffer count

Producer-consumer problem

40

wait

produce

consume

wait

buffer space

buffer count

Mutual exclusion

41

local1

waiting1

CR1ϵ

local2

waiting2

CR2 ϵ

Mutual exclusion

42

local1

waiting1

CR1ϵ

local2

waiting2

CR2 ϵ

semaphore

Next on the agenda

43

1. modelling concepts: cookies for everyone!

2. synchronisation problems as Petri nets

3. Petri net analyses

4. true concurrency semantics; unfoldings

Modelling power vs. analysability

• many properties of interest for concurrent systems can
be automatically determined for Petri nets
 => but can be very expensive in the general case

• properties include:
 => k-boundedness (i.e. no place ever has more than k tokens)
 => liveness
 => reachability

44

Reachability problem

• the problem to decide whether some marking M can be
derived from the initial marking

• starting point: construct a reachability graph from the
initial marking
 => i.e. a transition system completely describing its behaviour
 => nodes denote markings
 => edges denote occurrences

• (more sophistication is needed when reachability graphs
are not finite)

45

Reachability graph for our semaphore

loc1

wait1

CR1ϵ

loc2

wait2

CR2 ϵ

sem

express marking M as a vector:
(M(wait1) M(CR1) M(loc1) M(sem) M(wait2) M(CR2) M(loc2))

i.e. (0 0 1 1 0 0 1)

Reachability graph for our semaphore

loc1

wait1

CR1ϵ

loc2

wait2

CR2 ϵ

sem

• prove that (0 1 0 0 0 1 0) is unreachable
• prove that M(CR1)+M(CR2)+M(sem) = 1

Reachability graph for our semaphore

48

(0 0 1 1 0 0 1)

(0 0 1 1 1 0 0) (1 0 0 1 0 0 1)

(1 0 0 1 1 0 0)

(0 1 0 0 1 0 0) (1 0 0 0 0 1 0)

(0 1 0 0 0 0 1)(0 0 1 0 0 1 0)

Deciding reachability is expensive

• reachability is an important analysis

• decidable, but expensive in the general case
 => EXPSPACE-hard
 => reachability graph not always finite

• part II of Reisig (2013) treats the problem with more
sophistication than we have

49

Next on the agenda

50

1. modelling concepts: cookies for everyone!

2. synchronisation problems as Petri nets

3. Petri net analyses

4. true concurrency semantics; unfoldings

The problem of interleaving semantics

• consider the following Petri net:

• its reachability graph contains 2n states
 => state explosion problem
 => due to interleaving of occurrences
 => unnecessary: ordering of occurrences here immaterial!

51

aa1

aan

...

Interleaving vs. true concurrency semantics

• an interleaving semantics imposes a total ordering on
sequences of occurrences
 => completely described by a reachability graph
 => nodes denote markings; edges denote occurrences
 => state explosion!

• a true concurrency semantics instead models time as a
partial order
 => two or more occurrences can happen simultaneously
 => completely described by a so-called unfolding

52

Unfoldings are compact representations of
concurrency

• an unfolding of a Petri net N is a Petri net that is more
“tree like” - but represents the same behaviour

• idea: analyse the unfolding of a Petri net itself, rather
than an underlying transition system (as in the
interleaving semantics)

53

Example: an unfolding

54

A

a a

B

C

D

Example: an unfolding

55

A

a a

B

C

D

A

C

Example: an unfolding

56

A

a a

B

C

D

A

C

B

Example: an unfolding

57

A

a a

B

C

D

A

C

B A

Example: an unfolding

58

A

a a

B

C

D

A

C

B A B

Example: an unfolding

59

A

a a

B

C

D

A

C

B A B

D

Example: an unfolding

60

A

a a

B

C

D

A

C

B A B

D

A

Example: an unfolding

61

A

a a

B

C

D

A

C

B A B

D

A

D

...

...

Constructing an unfolding

• assumption: Petri nets are 1-bounded
 => possible to generalise to other Petri net variants

• steps to construct an unfolding N’ from a Petri net N:

 (1) initialise N’ with the places in N containing tokens
 in the initial marking
 (2) if a reachable* marking in N’ enables a transition
 t in N, then disjointly add t to N’ and:
 => link it to the corresponding preset
 => disjointly add the postset of t
 (3) iterate step 2

 *checking reachability is far easier for this special net class

62

Another example

63

A1

a a

A2

B1

B2

C1

C2

Another example

64

A1

a a

A2

A1

C1

B1

B2

C1

C2

B1

Another example

65

A1

a a

A2

A1

C1

B1

B2

C1

C2

B1

C2

Another example

66

A1

a a

A2

A1

C1

B1

B2

C1

C2

B1

C2

B2

C1

Another example

67

A1

a a

A2

A1

C1

B1

B2

C1

C2

B1

C2

B2

C1

A2

B1

Another example

68

A1

a a

A2

A1

C1

B1

B2

C1

C2

B1

C2

B2

C1 C2

A2

B1

Another example

69

A1

a a

A2

A1

C1

B1

B2

C1

C2

B1

C2

B2

C1 C2

A2

B1

A1

Another example

70

A1

a a

A2

A1

C1

B1

B2

C1

C2

B1

C2

B2

C1 C2

A2

B1

...

...

...

A1

B2

C1

Returning to our small example

• construct an unfolding of the following Petri net:

71

aa1

aan

...

Returning to our small example

• construct an unfolding of the following Petri net:

72

aa1

aan

...
the unfolding is just the Petri net itself!
 => size O(n)
 => whereas interleaving yields 2n reachable states

Petri net analysis using unfoldings

• suppose we want to know if some transition t in a Petri
net N can occur (i.e. a liveness property)

• compute an answer by exploring the unfolding of N
until either:
 => a transition labelled t is found; or
 => it can be concluded that no such transition occurs

• important to note that only a finite prefix of the
unfolding is explored
 => Esparza & Heljanko (2008) cover this
 important part (that we omit)

73

Next on the agenda

74

1. modelling concepts: cookies for everyone!

2. synchronisation problems as Petri nets

3. Petri net analyses

4. true concurrency semantics; unfoldings

Main sources for this lecture

• Understanding Petri Nets (2013)
 => by Wolfgang Reisig
 => chapters 1-3

• Unfoldings (2008)
 => by Javier Esparza & Keijo Heljanko
 => chapters 1-3

• both available online (see the course webpage)

75

Summary

• Petri nets facilitate a graphical, intuitive means of
modelling concurrent and distributed systems

• automatic analyses exist for reachability,
boundedness, liveness, ... but are expensive in the
general case

• unfoldings (based on true concurrency) may give a
more compact representation of concurrency than
reachability graphs (based on interleaving)

76

