
Fully Concurrent Garbage 
Collection of Actors on many 
Cores
S. Clebsch, S. Drossopoulou
Jesse Badash



Background

Actor Model Languages:
● Actors are the basic unit of computation
● All communication is based on message 

passing
● Actors encapsulate memory, computation.
● Fantastic for concurrency



Background

Garbage Collection
● Some languages provide you with the ability 

to explicitly end the actors lifecycle.
● Others utilize hardware for poor 

performance
● Focus on many small, short lived actors



Goals

Create a garbage collection system:
● Soundness: Only collect dead actors
● Completeness: All dead actors are 

eventually collected
● Concurrency: Does not require stopping, 

shared memory, thread coordination etc.



Terminology

● Blocked - Actor’s state when it has 
complete execution and have no messages 
left. Send BLK with reference count and 
external set

● Dead - Actor’s state when it is blocked and 
all of the actors with a reference to it are 
blocked.



Current Solutions

● Many actor languages do not garbage 
collect, you are expected to.

● Convert Actor graph, to an object graph, 
and run known algorithm in ActorFoundry

● SALSA uses reference listing



Topology

● Graph of all the actors
● Each actor has a “local topology”
● Eventually it will be correct



Deferred Reference Counting

● External Set: An over approximation All 
references an actor contains

● Allows lazy reference counting
● “Local garbage collection”



Cycle Detection

● When an actor blocks it send BLK
● When it processes a message, it send UNB
● Cycle detector is eventually correct
● If a ‘dead cycle’ exists it will be removed

○ If there is a conflict, the cycle is not removed



Conf-Ack

● Cycle Detector sends a CNF to the members 
of a perceived cycle

● If the topology agrees actor sends ACK
○ If the cycle detector receives a UNB before an ACK 

all perceived cycles are updated
● Provides confirmation in a truly concurrent 

way



Casual Messaging

● Messages adhere to casual messaging
● Sending a message and enqueuing it can be 

done in a single atomic operation



Formal Model

● Operational semantics for MAC
● Each is accompanied with a formal logic 

representation of the rule.
● Used for proofs and proper representation



Completeness

● If a cycle exists, every actor has sent BLK
● Eventually the cycle will be recognized
● If all workers are blocked, then all cycles 

will be found
● Terminates when:

○ no actors are executing
○ the message queue is empty
○ no cycles are detected



Robustness

● Upon failure of Cycle detector, garbage is 
not collected, but no live actors are 
collected

● Upon failure of actor, that cycle may stay 
alive, but all other cycles will be removed

● Termination conditions can still be reached



Soundness

● When every actor in a PC has confirmed, it is 
infact a true cycle

● When the cycle detector’s view of topology 
of the actors in the cycle is true, the PC is 
true

● When an actor confirms a PC, the actors 
topology, and its view of its topology 
agreed.



Implementation

● Library written in C
○ Error prone, not type safe

● In use at a large financial institution
● Scales linearly with increase of core count
● Casual messaging is easy on a single host



Comparison

● Tests against Erlang, Scala, libeppa, and 3 
versions of MAC:
○ Disabled Cycle detection 
○ Normal Cycle detection
○ Forced Cycle detection



Comparison

● Message handling
○ 3 million messages, 2 cores

● Actor creation
○ 2^19 actors, 2 cores

● Mailbox performance
○ 20 million messages, 4 cores

● Mixed
○ 50 million messages, 1000 actors, 4 cores



Limitations

● Seems unfair to expect erlang is a full 
language
○ This garbage collecting is completely useless in 

distributed systems.
● Demonstrate on a system with many short-

lived actors




