
RaceMob:
Crowdsourced Data

Race Detection
By : Baris Kasikci, Cristian Zamfir, and George Candea

Presentation by: Jeremy Bradford

Background: Data Races
�  Data Race – when 2 or more threads in a program

access data in an undetermined order and at least
one of these accesses is a write

Motivation

�  Data races are some of most costly and difficult to
find bugs in multithreaded systems

�  Exponential number of interleavings means
impractical to test them all, so bugs can remain
hidden

Solutions?
�  Static detectors

�  Problem: many false positives (e.g. RELAY 84%)

�  Cannot accurately infer what is multithreaded
�  Handling of synchronization primitives

�  Dynamic detectors
�  False positives are rare
�  Problems: high runtime overhead, false negatives

False Negative – Happens Before
Thread 1

x = 1

Lock(l)

Unlock(l)

Thread 2

Lock(l)

Unlock(l)

x = 2

Thread 1

x = 1

Lock(l)

Unlock(l)

Thread 2

Lock(l)

Unlock(l)

x = 2

RaceMob

�  2-phase data race detector

�  Uses static checking and dynamic checking

�  Crowdsources validation of statically determined
potential data races
�  Why crowdsourced?
�  Reduced overhead and real user execution

Phase 1: Static Detection

�  Racemob uses RELAY, a lockset-based detector

�  Could use any static detector, preferably complete
�  RELAY complete when no pointers, inline assembly

RaceMob

List of
Races
•  Unknown
•  True Race
•  Likely False

Positive

“Hive”
•  Assignment

of Tasks
•  Updating

List

User Site
•  Dynamic

Context
Inference

•  On-demand
Detection

Phase 2: Dynamic Validation
�  Dynamic Context Inference (DCI) – lightweight

initial verification (always on)

�  On-demand data race detection

�  Schedule Steering

Dynamic Context Inference
�  Validates the statically determined races

�  Checks for 2 conditions:
�  Concrete instance of aliasing

�  Access from different threads

�  Negligible runtime overhead (0.01%)

�  Small memory footprint (12 bytes per race)

On-demand Race Detection
�  Starts tracking happens-before relationships after

first potentially racing access is made
�  No Race: happens-before relationship established

between first accessing thread and all other threads
�  Race: Access in another thread before happens-before

relationship

Minimal Monitoring
in RaceMob

Thread 1

First Access

Barrier

…

…

Thread 2

…

Barrier

…

…

Thread 3

…

Barrier

Second Access

…

Minimal Monitoring
in RaceMob

Thread 1

First Access

…

Barrier

…

Thread 2

…

…

Barrier

…

Thread 3

…

Second Access

Barrier

…

Schedule Steering
�  Tries to force different orders of execution for

greater coverage
�  Pauses thread that is about to access data if not

“scheduled thread”
�  If incorrect order, reports a timeout to the Hive, which

may increase pause time up to a maximum

�  Timeout generally kept small for low overhead

�  Successful: found races otherwise undetected

Dynamic Validation

Results
�  106 total data races in 10 programs

�  0% false positive for detected races

�  Efficiency
�  Runtime overhead average 2.32%, maximum 4.54%

�  Found 2 previously undiscovered hangs in SQLite

Comparison:
Reported Races

Program Apache SQLite Fmm Aget Pfscan

RaceMob 8 3 58 4 2

TSAN 8 3 58 2 1

RELAY 118 88 176 256 17

Comparison: Total Overhead
Program Apache SQLite Fmm Aget Pfscan

RaceMob
Aggregate
Overhead

339% 282% 1598% 144% 103%

TSAN
Average
Overhead

25,208% 1429% 47888% 184% 13402%

Issues with RaceMob
�  Additional overhead for client

�  Less in-house testing/releasing buggy software?

�  Privacy implications

�  Crowdsourcing with dishonest or malicious users

Final Thoughts
�  Innovative combination of static and dynamic

methods

�  Much more accurate and with lower overhead than
many of today’s standard tools

�  Questions concerning privacy with crowdsourcing

