
Finding Incorrect Compositions of Atomicity
Peng Liu, Julian Dolby, Charles Zhang

Seminar Presentation

Claudio Corrodi

March 11, 2014

1 / 18



Problem Statement

I Concurrent APIs provide atomic operations.

I User composes APIs to new atomic functionality.

1: x = pos.getX();

2: y = pos.getY();

// (x, y) only valid if called atomically

I Problematic interleaving:

P1: pos = new Pos(0, 0);

P1: x = pos.getX();

P2: pos.move(5, 5);

P1: y = pos.getY(); // P1 sees (0, 5)

I Problem: Identify compositions and find out whether they
need to be implemented atomically.

2 / 18



Contributions

I Identify the problem of incorrect compositions of atomic
library APIs.

I Automatic approach to find incorrect compositions.

I Extensive evaluation of the approach.

3 / 18



Algorithm

1. Inferring atomic sets.

2. Identifying library and client using atomic sets.

3. Inferring atomic compositions.

4. Exhibiting synchronization errors.

4 / 18



Atomic Sets

I Definition in the paper:
“In object-oriented programs, where objects form reference
hierarchies via field references, an atomic set is a set of
instance fields, each of which is reachable from the root
object along a field chain.”

I Atomic sets are inferred statically for each synchronized block
or method.

I Sets that share fields are merged.

5 / 18



Atomic Sets
I Example:

Account acc

Owner myOwner

String name

String address

int balance

I {acc .balance, acc .myOwner , acc .myOwner .name, · · · }
6 / 18



Library Example

public class Account {

private int balance;

private Owner myOwner;

public synchronized void deposit () {

/* ... */

}

public synchronized int

withdraw(int amount) {

/* ... */

}

public synchronized int getBalance () {

return balance;

}

}
7 / 18



Client Example

public class Client {

private Account account;

/* Uses atomic APIs withdraw and

* getBalance from Account library. */

public static void main(String [] args) {

int balance , cash;

balance = account.checkBalance ();

cash = account.withdraw (100);

}

}

8 / 18



Library and Client

I Library module: Classes which declare the fields in the atomic
set.
Example: {Account,Owner}

I Client module: The class of which the methods invoke the
atomic methods of the library module.
Example: class Client

I Library and client are inferred statically.

9 / 18



Atomic Compositions

I Atomic API: Methods that use fields of the atomic set in a
synchronized block.

I Atomic Composition: Using multiple atomic APIs in a single
method.

I Does not always need to be atomic:

cash = someAccount.withdraw (100);

otherAccount.deposit(cash);

I Which compositions need to be atomic?

10 / 18



USE Symptom

I If a program dependence exists between two atomic calls, they
should be called atomically.

I Example:

// withdraw everything if balance < 100

int balance , cash;

balance = account.checkBalance ();

if (balance < 100) {

cash = account.withdraw(balance);

}

11 / 18



Complementation Symptom

I If two invocations dominate and post-dominate each other,
they should be called atomically.

I Example:

/* withdraw 100 after checking the

* balance */

int balance , cash;

balance = account.checkBalance ();

cash = account.withdraw (100);

12 / 18



Dynamic Checking

I Uses existing atomicity violation detection analyses to find
buggy interleavings.

I Monitor a normal run (trace) and then try to find violating
interleavings.

I Prunes a lot of false positives.

I For example: If a composition is only executed by one thread,
it does not need to be atomic.

13 / 18



The Big Picture

1. Infer atomic sets.
Simple in our example:
{Account.balance,Account.owner ,Account.owner .name, · · · }.

2. Identify library and client.
Library: {Account,Owner}.
Clients: main method in class Client.

3. Infer atomic compositions.
For example:

balance = account.checkBalance ();

cash = account.withdraw(balance);

4. Find buggy interleavings (dynamic checking).
E.g. bug if another thread can withdrow from my account in
between calls.

14 / 18



Evaluation

I Exhaustive evaluation with various programs. Most notably:
Tomcat.

I Compare with state of the art approach: MUVI (statistics
based).

I Static part: Number of compositions found comparable to
MUVI.

I Dynamic checking: Prunes most compositions.

I Case study with Tomcat: Inspect reported violations and (try
to) determine if they are true/false positives.

15 / 18



Remarks: What I did not like

I Some explanations not very detailed.

I Evaluation seems to leave out “uncomfortable” data.
I Some statements in the evaluation are a bit vague and/or

useless.
I “Our evaluation on a set of large scale applications shows, the

static analysis finds up to 391 atomic compositions for an
application, while half would be missed by the previous
statistic-based approach.”

I Poor documentation of the provided program.

I Dynamic checking not included in provided program.

16 / 18



Remarks: What I did like

I First half (algorithm description) well written and easy to
understand.

I Impressive results (e.g. 5 of 12 compositions in Tomcat were
actual bugs).

I The tool can be useful in practice.
I Few actual reports (less than 20 in each of their cases).
I But: Execution time may be an issue with larger project.

17 / 18




	Problem Statement
	Contributions
	Algorithm
	Atomic Sets
	Library and Client
	Atomic Compositions
	Dynamic Checking
	Summary

	Evaluation
	Remarks

