

ConAir: Featherweight Concurrency Bug
Recovery Via Single-Threaded Idempotent

Execution

Wei Zhang Marc de Kruijf Ang Li
Shan Lu Karthikeyan Sankaralingam

ASPLOS 2013

CCC 2014 Andreas Dillier

Overview

● Motivation
● ConAir System
● Evaluation
● Criticism

Motivation - Overview

● Concurrency bugs remain hidden
● Severe failure
● Hard to fix

Motivation – Automatic Tools

● Compatibility

● Correctness

● Generality

● Performance

Motivation – Automatic Fixing

● Additional Synchronisation

● Needs to know about the root cause

Motivation – Prohibit Interleaving

● Additional serialisation leads to performance loss

● Only works on certain interleavings

● Some approaches need programmer annotations

Motivation – Traditional Rollback Recovery

● Require checkpointing

● All threads are rolled back

● Require OS/hardware modification to run efficiently

ConAir - Overview

● Single thread rollback

● No checkpoints

● Static program modification

ConAir - Feasibility

● Atomicity violations

– About 70% of non-deadlock bugs

● Rollback of one thread establishes serialised execution

● About 92% recoverable

ConAir – Feasibility

● Write after write (WAW)

Log = CLOSE;
Log = OPEN;

If (Log != OPEN)
{ //output failure}

ConAir – Feasibility

● Write after write (WAW)

Log = CLOSE;
Log = OPEN;

If (Log != OPEN)
{ //output failure}

Rollback of this thread recovers the
program

ConAir - Feasibility

● Read after write (RAW)

ptr = aptr;
tmp = *ptr;

ptr = NULL;

ConAir - Feasibility

● Read after write (RAW)

ptr = aptr;
tmp = *ptr;

ptr = NULL;

Rollback of this thread recovers the
program

ConAir - Feasibility

● Read after read (RAR)

if (ptr)
{ fputs(ptr); }

ptr = NULL;

ConAir - Feasibility

● Read after read (RAR)

if (ptr)
{ fputs(ptr); }

ptr = NULL;

Rollback of this thread recovers

ConAir - Feasibility

● Write after read (WAR)

count += deposit1;
printf(cnt);

cnt += deposit2;

ConAir - Feasibility

● Write after read (WAR)

count += deposit1;
printf(cnt);

cnt += deposit2;

Rollback of this thread recovers

ConAir - Feasibility

● Order-violation

– 30% of non-deadlock bugs

● About 50% recoverable

SomeClass b = NULL;
b = new SomeClass();

b.foo();

ConAir - Feasibility

● Order-violation

– 30% of non-deadlock bugs

● About 50% recoverable

SomeClass b = NULL;
b = new SomeClass();

b.foo();

Rollback of this thread recovers

ConAir - Feasibility

● Deadlock bugs

– About 40% of bugs

● Recovers if one thread rolled back

ConAir - Basics

● Identify potential failure sites

● Identify idempotent region for each failure site

● Insert recovery code

● Two modes: Fix and Survival

ConAir – Failure Site Identification

● Survival mode

– Assertions

● → Can use assertion to indicate output failure

– Heap/global pointer dereference

– Deadlock detection with any detection tool

ConAir – Failure Site Identification

● Fix mode

– Programmer specifies the location of the failure

ConAir – Idempotent Regions

● Re-execution only on idempotent regions

● Guarantees correctness

● May be too weak for many bugs

– But has a low overhead

ConAir – Idempotent Regions

● No writes to shared Variables

● No I/O

● No idempotent destroying write to local variables

x = x+1;
z = x+y;

y = x+1;
z = x+y;

ConAir – Idempotent Regions

● No writes to shared Variables

● No I/O

● No idempotent destroying write to local variables

x = x+1;
z = x+y;

y = x+1;
z = x+y;

Not idempotent, value of x changes in each
re-execution

ConAir – Idempotent Regions

● Discovery non-trivial

– Source code ↔ bit code ↔ binary code

● Binary code analysis alone complicated

● Search all backward paths from failure sites

ConAir – Idempotent Regions

● Weaken the definition

– Idempotent function calls

– Parent functions

● Requires more analysis

ConAir – Recovery Code

● At start of re-execution region: setjmp

– Saves the register image

● At failure site: longjmp

– Loads the register image and executes from setjmp

● Multiple retries

ConAir – Recovery Code

● Original code

…
if(e){
…
} else {

__assert_fail(...);
}

ConAir – Recovery Code

● Modified code

__thread jmp_buf c;
__thread int RetryCnt=0;
…
Reexecution:

setjmp(c);
… //idempotent region
if(e){
…
} else {

Failure:
while(RetryCnt++<maxRetryNum){

longjmp(c, 0);
}
__assert_fail(...);

}

ConAir – Recovery Code

● Modified code

__thread jmp_buf c;
__thread int RetryCnt=0;
…
Reexecution:

setjmp(c);
… //idempotent region
if(e){
…
} else {

Failure:
while(RetryCnt++<maxRetryNum){

longjmp(c, 0);
}
__assert_fail(...);

}

Thread local variables for registers
and retry count

ConAir – Recovery Code

● Modified code

__thread jmp_buf c;
__thread int RetryCnt=0;
…
Reexecution:

setjmp(c);
… //idempotent region
if(e){
…
} else {

Failure:
while(RetryCnt++<maxRetryNum){

longjmp(c, 0);
}
__assert_fail(...);

}

Thread local variables for registers
and retry count

Registers saved and jump point
set

ConAir – Recovery Code

● Modified code

__thread jmp_buf c;
__thread int RetryCnt=0;
…
Reexecution:

setjmp(c);
… //idempotent region
if(e){
…
} else {

Failure:
while(RetryCnt++<maxRetryNum){

longjmp(c, 0);
}
__assert_fail(...);

}

Thread local variables for registers
and retry count

Registers saved and jump point
set

Try multiple times, insert
random sleep for deadlock
recovery

ConAir – Recovery Code

● Modified code

__thread jmp_buf c;
__thread int RetryCnt=0;
…
Reexecution:

setjmp(c);
… //idempotent region
if(e){
…
} else {

Failure:
while(RetryCnt++<maxRetryNum){

longjmp(c, 0);
}
__assert_fail(...);

}

Thread local variables for registers
and retry count

Registers saved and jump point
set

Try multiple times, insert
random sleep for deadlock
recovery

Jump to the saved location and
restore registers

ConAir - Optimisations

● Allow library funtions

– Extend idempotent region

– Needed for certain recoveries (Deadlock)

– Need compensation function (lock/unlock, malloc/free)

● ConAir allows malloc and lock in idempotent regions

– Cleanup before longjmp

ConAir – Optimisations

● Remove code from unrecoverable fail sites

– Statically proven

– Deadlock recovery with no lock in idempotent region

– Non-deadlock recovery with no shared-variable reads

ConAir - Optimisations

● Include parent functions in idempotent region

● Should at least change one argument

● Significant overhead in static analysis

Evaluation

● 10 bugs in open-source libraries

● Wide variety of root causes and failure symptoms

● Analyze performance, overhead and recovery time

● Also analyze static analysis time

Evaluation

● Modify buggy code with sleep instructions

– Almost 100% failure rate

● Run 1000 times with applied ConAir

● Successfully recovered if none causes the bug

Evaluation

● Run time overhead measured on the original source code

Results – Fix Mode

● No measurable overhead

– Small number of failure sites

● Recovered all failures

Results – Survival Mode

● Small overhead (<1%)

● Could recover 8/10 bugs

– I/O operations would require program annotations

Results – Recovery Time

● At most 17 milliseconds

● Much better than crash/program restart

Results – Static Analysis

● FFT (1.2K lines of code)

– Less than a second

● MySQL(~685k lines of code)

– 4 hours

● Inter procedural analysis requires big part

– Only 50 seconds in MySQL are spent on intra procedural analysis

Limitations

● No completeness

Criticism

● Aims of ConAir are met

● Surprisingly low overhead

● Easy to read, enough explanations

● Hard to find negative points, since ConAir is more of a
heuristic approach

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

