
Algorithmic Skeleton Framework for the
Orchestration of GPU Computations

Ricardo Marques, Herve Paulino, Fernando Alexandre
and Pedro D. Medeiros

Universidade Nova de Lisboa
Euro-Par 2013, Aachen, Germany

 Presented by: Jingjing Du

http://www.europar2013.org/conference/conference.html

Introduction

❏ GPUs (Graphics Processing Unit) are highly
parallel computation devices
❏ available libraries and languages requires a lot of

deep knowledge of the platform
❏ This work goal is to simplify the

management of computation and data
transfers on GPU devices

1. Where is the problem?

GPU Programming Flow

cited from http://en.wikipedia.org/wiki/CUDA

GPU Programming Flow

Modern GPUs allow overlaps of data
transfers and kernel executions.

cited from http://en.wikipedia.org/wiki/CUDA

GPU Programming Flow

Modern GPUs allow overlaps of data
transfers and kernel executions.

Problem:
not easy to use with current GPU
programming frameworks. (synchronization
requires a lot of coding)

cited from http://en.wikipedia.org/wiki/CUDA

2. How to solve the problem?

Marrow

An algorithmic skeleton framework(ASkF) to
simplify orchestration of OpenCL computations
Main achievement:
Parallelize data transfer and kernel execution.

Marrow Execution Model

Marrow Concepts

❏ Nodes
❏ Skeletons

❏ Pipeline
❏ Loop
❏ Stream
❏ Map

Nodes
❏ Leaf nodes

❏ Only KernelWrapper
❏ Inner nodes

❏ Skeletons
❏ Root node

❏ Manages execution and synchronization of Inner and Leaf nodes

Skeletons

❏ Skeletons
❏ Organize nodes execution order
❏ It is a node itself
❏ Can be nested

Skeletons Type
Pipeline Data

Kernel

Data flow
direction

Skeletons Type
Pipeline Loop Data

Kernel

Data flow
direction

Skeletons Type
Pipeline

Stream
(not nestable)

Loop Data

Kernel

Data flow
direction

Skeletons Type
Pipeline Loop

Stream
(not nestable)

Map Reduce
(not nestable)

Data

Kernel

Data flow
direction

Code Example
1 // … instantiate kernel wrappers
2 unique_ptr<IExecutable> gaussKernel (new KernelWrapper (gaussNoiseSourceFile,

gaussNoiseKernelFunction, inputDataInfo, outputDataInfo, workSize));
3 // … instantiate inner skeletons
4 unique_ptr<IExecutable> p1 (new Pipeline (gaussKernel, solariseKernel));
5 unique_ptr<IExecutable> p2 (new Pipeline (p1, mirrorKernel));
6 // instantiate root skeleton
7 Stream *s = new Stream (p2, 3); // overlap with 3 concurrent executions
8 // request skeleton executions
9 for (int i = 0; i < numberOfSegments; i++) {
10 inputValues [0] = …; // offset in the input image
11 outputValues [0] = …; // offset in the output image
12 futures [i] = s-> write (inputValues, outputValues);
13 }
14 // wait for results ; delete s and resources (e.g the futures)

3. Result Analysis

Results

1. Better throughput with overlap

Result

2. Code simplification

Conclusion

Marrow: a ASkF for the orchestration of
OpenCL computations

❏ enriching the set of skeletons
❏ supporting skeleton nesting
❏ easy and efficient overlap programming

https://bitbucket.org/MarrowTeam/marrow/overview

Thank you!

