
Automatic Testing of
Sequential and

Concurrent Substitutability
Paper by: Michael Pradel & Thomas R. Gross

Presented by: Erik Henriksson
12 Mars 2014

Organization

• Motivation

• The paper’s approach

• Evaluation

• Limitations

Motivation
class Set() {
	 Set() { … }
	 …
}
!
class BoundedSet extends Set {
	 BoundedSet(int bound) { … }
	 …
}

Set s = new Set();
s.add(1); // OK

Set s = new BoundedSet(0);
s.add(1); // Error

Safe Substitute

A class Sub is a safe substitute of a class Super if
and only if we can substitute Sub with Super without

changing the visible behavior of the program.

Motivation
class Set() {
	 Set() { … }
	 …
}
!
class BoundedSet extends Set {
	 BoundedSet(int bound) { … }
	 …
}

Set s = new Set();
s.add(1); // OK

Set s = new BoundedSet(0);
s.add(1); // Error

BoundedSet is not a safe substitute for Set!

Motivation
However, these classes compile fine under Java and
an unexperienced programmer will not see this error.

!

We want an automatic tool for finding such mistakes.

Pradel's and Gross’s
Approach

• Easy to apply

• Precise

• Incomplete

1. Generic tests

2. Constructor mappings

3. Finding good method arguments

4. Concurrent test cases

Test Generator
Generate test cases:

Generic Tests

• Test both Super and Sub with same arguments

• Static type is always Super, but dynamic type can
vary between Sub and Super.

Constructor Mappings
• Due to classes not inheriting the constructor in

Java, we run into problems

Set s = Set() OR BoundedSet(?)

What should we write here?

Subclass may not have a constructor that takes
same number of arguments as the superclass!

Constructor Mappings
• If constructors have the same signature, the tool

assumes two objects are semantically equivalent
after calling the constructors with the same
arguments.

• Otherwise the user needs to specify a mapping

Person p1 = new Person(”Foo”);
	 	 p2 = new Student(”Foo”);

Constructor Mappings
• Otherwise the user needs to specify a mapping

class Student {
	 //CM super(name) -> Student(name, 0)
	 Student(String name, int credits) {
	 	 …
	 }
}

Method Arguments

1. If there exists a variable of the correct type, use it

2. Call a method that returns the correct type

3. Randomly generate a value if type is primitive

If a method needs arguments, we choose between

Concurrent Tests

• Only 2 threads are considered

• We use a pair of methods

• All interleavings are checked

• Error if Sub is not thread-safe when Super is

The Two Oracles

• The Output Oracle

• The Crash Oracle

Evaluation

• Crash Oracle (CO) works well, 96% of reported
bugs should be fixed

• Output Oracle (OO) not that well, only 7% of
reported bugs is actual bugs

• The tool found 47 bugs in 4 libraries

Limitations
• No evaluation comparison with related work

• Constructor Mappings which are automatically
generated is not precise

• User is responsible for giving correct mappings where
the tool fails

• The tool is both incomplete and unprecise

• The tool is not completely automatic, but this is stated
in the paper

Constructor Mappings
• If constructors have the same signature, the tool

assumes two objects are semantically equivalent
after calling the constructors with the same
arguments.

Is this sound? No!
class Person {
	 Person(int age) {…}
	 …
}

class Student extends Person {
	 Student(int credits) {…}
	 …
}

Constructor Mappings

What mapping should we
provide the tool with?

Set() → BoundedSet(?)

• Otherwise the user needs to specify a mapping

How do we know our mapping is correct?

Questions?

