
The Tasks with Effects Model for
Safe Concurrency

Stephen T. Heumann, Vikram S. Adve, Shengjie Wang
University of Illinois

presented by Jost Joller

 University of Illinois
Prof. Vikram Adve

● Parallel Computing

● Compilers

● Computer Security

● Operating Systems

● Programming Languages

Parallel Computing Research
Center at the University of Illinois
at Urbana-Champaign.

Sponsored by Intel Corporation

Tasks with Effects (TWE)
● Objects are associated with regions

● Effects are write or read operations on regions

● Running tasks have exclusive access to regions

Deterministic Parallel Java
class Image {

region Top, Bottom;
int[] topHalf in Top;
int[] bottomHalf in Bottom;
void increaseContrastTop() writes Top { // write topHalf }
void increaseContrastBottom() writes Bottom { // write bottomHalf }
void increaseContrast() writes Top, Bottom {

cobegin {

this.increaseContrastTop();

this.increaseContrastBottom();

}
}

}

● Data race freedom
● Atomicity
● Deadlock freedom
● DeterminismLack of flexibility :-(

Tasks With Effects Java (simplified)
abstract class Task<type TRet, TArg, effect E>
{
 // code to be run when task is executed
 public abstract TRet run(TArg arg) effect E;

// start task
public SpawnedTaskFuture<TRet> spawn(TArg arg);

}

class SpawnedTaskFuture<type TRet, effect E>
{

// await completion of task and get return value
public TRet join();

}

Tasks With Effects Java
class Image {

region Top, Bottom;
int[] topHalf in Top;
int[] bottomHalf in Bottom;

public void increasePixelContrast() writes Top, Bottom {

SpawnedTaskFuture<Void, writes Top> f = increaseContrast(topHalf).spawn(null);

increaseContrast(bottomHalf).run(null);

f.join();

}
private Task<Void, Void, writes R> increaseContrast(final int[] in R pixels) pure {

return new Task<Void,Void, writes R>(){

public Void run(Void _){ // modify pixels }

} } }

Effect Transfer in TWEJava

increasePixelContrast() increaseContrast(bottomHalf)

increaseContrast(topHalf)

spawn join

writes Bottom

writes Top

writes Top, Bottom writes Top, Bottom

Flexibility? Not really...

Tasks With Effects Java (complete)

abstract class Task<type TRet, TArg, effect E> {
// code to be run when task is executed
public abstract TRet run(TArg arg) effect E;
// execute a task at some point in the future without effect transfer
public final TaskFuture<TRet> executeLater(TArg arg);
// spawn a subtask of the current task, with effect transfer
public final SpawnedTaskFuture<TRet, effect E> spawn(TArg arg);

}
class TaskFuture<type TReturn> {

// await completion and get return value without effect transfer
public TReturn getValue();
// check if task is done without blocking
public boolean isDone();

}
class SpawnedTaskFuture<type TReturn, effect E> extends TaskFuture<TReturn>{

// await completion and get return value with effect transfer
public TReturn join();

}

Parallel Control Flow with TWEJava
class Scientist {

region Lab, Auditorium;
Work research in Lab;
Work teaching in Auditorium;

public void doJob() writes Lab, Auditorium {
TaskFuture researching = new Task<ResearchPaper, Work, writes Lab>() {

public ResearchPaper run(Work research) { research.justDoIt();
 return new ResearchPaper(research); }

}.spawn(research);

while (!researching.isDone()) {

new Task<Void, Work, writes Auditorium>() {

public Void run(Work teaching) { teaching.justDoIt(); return null; }

}.spawn(teaching).join();
}

publish(writing.join());

} }

Flexibility!

Security properties
● Data race freedom

Exclusive access to regions

● Atomicity
Can break if a task does create new tasks or waits for other tasks.

● Deadlock freedom
Can happen since there are locks on regions.

● Determinism
Only limited control over task scheduling and termination.

@Deterministic
● Can be used to enforce determinism
● Only allows spawn() and join()

Limited to Fork-Join parallelism!

Regions are a burden
class Zoo {

region Water, Jungle, Desert;
Animal fish in Water;
Animal monkey in Jungle;
Animal tiger in Jungle;
Animal camel in Desert;

private void feed(Animal animal) effect E { // feed animal };

public void feedAnimals(){
// parallelizable (more or less)
feed(fish); feed(monkey); feed(tiger); feed(camel);

}
}

What is a smart way of defining regions?

Regions are a burden
class Zoo {

region Water;
Animal fish in Water;
Animal monkey in Water;
Animal tiger in Water;
Animal camel in Water;

private void feed(Animal animal) effect E { // feed animal };

public void feedAnimals() {
// not parallelizable :-(
feed(fish); feed(monkey); feed(tiger); feed(camel);

}
}

Multiple objects in same region hinders parallelization!

Regions are a burden
class Zoo {

region Fish, Monkey, Tiger, Camel;
Animal fish in Fish;
Animal monkey in Monkey;
Animal tiger in Tiger;
Animal camel in Camel;

private void feed(Animal animal) effect E { // feed animal };

public void feedAnimals() {
// parallelizable :-)
feed(fish); feed(monkey); feed(tiger); feed(camel);

}
}

In practice: Just put every object in its own region.

Regions are a burden
class Zoo {

Animal fish inHisOwnRegion;
Animal monkey inHisOwnRegion;
Animal tiger inHisOwnRegion;
Animal camel inHisOwnRegion;

private void feed(Animal animal) effect E { // feed animal };

public void feedAnimals() {
// parallelizable :-)
feed(fish); feed(monkey); feed(tiger); feed(camel);

}
}

How about a keyword?

Location of sources

37 cited sources
3 from outside north america

Questions?

