
Structural Lock Correlation with
Ownership Types
Yi Lu, John Potter, Jingling Xue

University of New South Wales, Sydney

ESOP’13 Proceedings of the 22nd European conference of

Programming Languages and Systems

Motivation

• Concurrent object-oriented programming is hard

• Locks used to coordinate conflicting memory accesses

• Locking behaviour of libraries not always formally specified

• Use of (arbitrary) locks:
– Hard to enforce lock specification

– Information hiding vs. Fine grained locking

• We want to be able to abstract locks in a useful way

Ownership

Containment Context

Source: Structural Lock Correlation with Ownership Types, Yi Lu, John Potter, Jingling Xue

Locks and Effects

• Lock correlation: Relationship between lock
and the guarded memory

• Notation: <L::ε>

• Effects: Objects on which reads/writes occur

– Writes more important in this context

Example: Lock correlation

 par {

 sync (l1) { o1.f = … }; // A

 sync (l2) { o2.f = … }; // B

 }

• Corresponding Lock Effects:

 <l1::o1> and <l2::o2>

Example: Lock correlation cont.

Lock Effects: <l1::o1> and <l2::o2>

• Safe when:

–o1 and o2 are not aliased

–l1 and l2 are aliased

Example: Lock correlation cont.

Lock Effects: <l1::o1> and <l2::o2>

Assumption: l1 owns o1 and l2 owns o2

• If l1 and l2 are not aliased o1 and o2 must be different
objects

• If l1 and l2 are aliased the tasks are correctly synchronized

Structural Lock Correlation

• In structural lock correlations the lock must own
all of the associated side effects

• Notation: <[ω]::ε>
– ω is held when side-effect ε occurs and ω contains ε

• Two structural locks at the same rank are
correctly synchronized:
– Two locks are either aliased

– Or the effects cannot overlap

Lock Abstraction

• Cannot precisely name actual locks and side-
effects in larger scopes

• Abstraction of locks and side-effects possible

– Precise information lost

– But: Structural correlation information retained

 Modularity

Example

class Account { int balance = 0; }

class Customer {

private final Account[] accounts;

…

void depositA(int i, int x) {

 Account acct = account[i];

 acct.balance += x;

}

void depositB(int i, int x) {

 Account acct = account[i];

 sync (this) acct.balance += x;

}

void depositC(int i, int x) {

 Account acct = account[i];

 sync (acct) acct.balance += x;

}

}

Customer c, d; int i, j, x, y;

// case ParA

par { c.depositA(i, x);

 d.depositA(j, y); }

// case ParB

par { c.depositB(i, x);

 d.depositB(j, y); }

// case ParC

par { c.depositC(i, x);

 d.depositC(j, y); }

Example

• Structural Lock Correlation without Ownership:
depositA: <acct> <peer>
depositB: <this::acct> <this::peer>
depositC: <[acct]::acct> <[peer]::peer>

– ParA

Conflicting effects

– ParB
Conflicting effects (different customers might change the same
account at the same time)

– ParC
Accepted

Example

class Account { int balance = 0; }

class Customer {

private final Account<this>[] accounts;

…

void depositA(int i, int x) {

 Account acct = account[i];

 acct.balance += x;

}

void depositB(int i, int x) {

 Account acct = account[i];

 sync (this) acct.balance += x;

}

void depositC(int i, int x) {

 Account acct = account[i];

 sync (acct) acct.balance += x;

}

}

Customer c, d; int i, j, x, y;

// case ParA

par { c.depositA(i, x);

 d.depositA(j, y); }

// case ParB

par { c.depositB(i, x);

 d.depositB(j, y); }

// case ParC

par { c.depositC(i, x);

 d.depositC(j, y); }

Example

• Structural Lock Correlation with Ownership:
depositA: <acct> <this+1>
depositB: <this::acct> <[this]::this+1>
depositC: <[acct]::acct> <[this+1]::this+1>

– ParA

Conflicting effects

– ParB
Accepted

– ParC
Accepted

Conclusion

• Structural lock correlation is preserved
through abstraction

• Possible to enforce locking specification at
interface boundaries

• Model supports modular checking of lock
usage

Related Work and Citations

• Ownership- and Universe type systems

• SafeJava
– Fields implicitely guarded

• Locksmith
– Static race checker for C programs

• Chord
– Static race checker for java programs

• No citations yet (but quite recent: ‘13)

Review

• Very hard to distinguish the new ideas from
previous work

• Formal part of the paper unpresentable

• Good examples

