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Motivation 

• Concurrent object-oriented programming is hard 

• Locks used to coordinate conflicting memory accesses 

• Locking behaviour of libraries not always formally specified 

• Use of (arbitrary) locks: 
– Hard to enforce lock specification 

– Information hiding vs. Fine grained locking 

 

• We want to be able to abstract locks in a useful way 

 



Ownership 

Containment Context 

Source: Structural Lock Correlation with Ownership Types, Yi Lu, John Potter, Jingling Xue 



Locks and Effects 

• Lock correlation: Relationship between lock 
and the guarded memory 

• Notation: <L::ε> 

 

• Effects: Objects on which reads/writes occur 

– Writes more important in this context 



Example: Lock correlation 

 par { 

  sync (l1) { o1.f = … }; // A 

  sync (l2) { o2.f = … }; // B 

 } 

 

• Corresponding Lock Effects: 

 <l1::o1> and <l2::o2> 



Example: Lock correlation cont. 

Lock Effects: <l1::o1> and <l2::o2> 

 

• Safe when: 

–o1 and o2 are not aliased 

–l1 and l2 are aliased 



Example: Lock correlation cont. 

Lock Effects: <l1::o1> and <l2::o2> 

 

Assumption: l1 owns o1 and l2 owns o2 

• If l1 and l2 are not aliased o1 and o2 must be different 
objects 

• If l1 and l2 are aliased the tasks are correctly synchronized 



Structural Lock Correlation 

• In structural lock correlations the lock must own 
all of the associated side effects 

 

• Notation: <[ω]::ε> 
– ω is held when side-effect ε occurs and ω contains ε 

 

• Two structural locks at the same rank are 
correctly synchronized: 
– Two locks are either aliased 

– Or the effects cannot overlap 



Lock Abstraction 

• Cannot precisely name actual locks and side-
effects in larger scopes 

• Abstraction of locks and side-effects possible 

– Precise information lost 

– But: Structural correlation information retained 

 

 Modularity 



Example 

class Account { int balance = 0; } 

 

class Customer { 

 

private final Account[] accounts; 

… 

void depositA(int i, int x) { 

 Account acct = account[i]; 

 acct.balance += x; 

} 

void depositB(int i, int x) { 

 Account acct = account[i]; 

 sync (this) acct.balance += x; 

} 

void depositC(int i, int x) { 

 Account acct = account[i]; 

 sync (acct) acct.balance += x; 

} 

} 

 

Customer c, d; int i, j, x, y; 

 

 

// case ParA 

par { c.depositA(i, x); 

 d.depositA(j, y); } 

 

// case ParB 

par { c.depositB(i, x); 

 d.depositB(j, y); } 

 

// case ParC 

par { c.depositC(i, x); 

 d.depositC(j, y); } 

 



Example 

• Structural Lock Correlation without Ownership: 
depositA: <acct>  <peer> 
depositB: <this::acct>  <this::peer> 
depositC: <[acct]::acct>  <[peer]::peer> 

 
– ParA 

Conflicting effects 

– ParB 
Conflicting effects (different customers might change the same 
account at the same time) 

– ParC 
Accepted 



Example 

class Account { int balance = 0; } 

 

class Customer { 

 

private final Account<this>[] accounts; 

… 

void depositA(int i, int x) { 

 Account acct = account[i]; 

 acct.balance += x; 

} 

void depositB(int i, int x) { 

 Account acct = account[i]; 

 sync (this) acct.balance += x; 

} 

void depositC(int i, int x) { 

 Account acct = account[i]; 

 sync (acct) acct.balance += x; 

} 

} 

 

Customer c, d; int i, j, x, y; 

 

 

// case ParA 

par { c.depositA(i, x); 

 d.depositA(j, y); } 

 

// case ParB 

par { c.depositB(i, x); 

 d.depositB(j, y); } 

 

// case ParC 

par { c.depositC(i, x); 

 d.depositC(j, y); } 

 



Example 

• Structural Lock Correlation with Ownership: 
depositA: <acct>  <this+1> 
depositB: <this::acct>  <[this]::this+1> 
depositC: <[acct]::acct>  <[this+1]::this+1> 

 
– ParA 

Conflicting effects 

– ParB 
Accepted 

– ParC 
Accepted 

 



Conclusion 

• Structural lock correlation is preserved 
through abstraction 

• Possible to enforce locking specification at 
interface boundaries 

• Model supports modular checking of lock 
usage 



Related Work and Citations 

• Ownership- and Universe type systems 

• SafeJava 
– Fields implicitely guarded 

• Locksmith 
– Static race checker for C programs 

• Chord 
– Static race checker for java programs 

 

• No citations yet (but quite recent: ‘13) 



Review 

• Very hard to distinguish the new ideas from 
previous work 

• Formal part of the paper unpresentable 

 

 

• Good examples 


