

River Trail: A Path to Parallelism
in JavaScript

Stephan Herhut et al. (Intel Labs), 2013

Stefan Zurfluh, CCC Seminar Talk

May 7, 2014

Web Programming /
JavaScript Today

• Used more and more for
computationally complex,
large-scale applications

• The only universal web
browser programming
language

• Mostly sequential

Requirements, Challenges,
Goals for RiverTrail

• Safety and security

• Comfortable API

• Generic and hardware
independent

• Dramatic performance
improvements

API Components

ParallelArray data type

Parallel methods: map, combine, reduce, scan, scatter, filter,
flatten, partition, get

Elemental functions

API Components
• ParallelArray

– Numeric

– Immutable

– May be multidimensional

• Parallel methods
– Compact set of useful, common data-parallel

methods

• Elemental function
– Operates element-wise on parallel arrays

– Read-only access to global state

Example: Map Function

Element-wise operation on array
myArray.map(elementalFunction, arg1, arg2, …)

returns new array with applied function

Elemental function:
function (element, arg1, arg2, …)

// Adding one to each element.

var source = new ParallelArray([1,2,3,4,5]);

var plusOne = source.map(function inc(v)

 { return v+1; });

Example: Reduce Function

Reduce a dimension to one element
myArray.reduce(elementalFunction, arg1, arg2, ...)

returns last element

Elemental function:
function (a, b, arg1, arg2, …)

should be commutative and associative, as reducing order is arbitrary

// Calculate the sum of the elements

var source = new ParallelArray([1,2,3,4,5]);

var sum = source.reduce(

 function plus(a,b) { return a+b; });

Other Functions
• combine

– like map, but exposes element index instead of element
value to elemental function

• scan
– reduce n times from 0 to i

• scatter
– element redistribution with indices – similar to reduce

from MapReduce

• filter
– remove elements according to boolean function

• flatten, partition
– change array dimensions

• get
– return element

Implementation

There are both parallel and sequential implementations

Parallel and Sequential
Implementations

• All functions have sequential versions

• If compiler and OpenCL are present:
parallel versions of map, combine, and
comprehension constructor are used instead

• Parallel version := elemental function
translated from JavaScript to OpenCL

River Trail Compiler

JavaScript
• High level

• Dynamically typed

• Implicit memory mgmt / GC

• (restricted) Shared memory
model

OpenCL
• Hardware specific

• Statically typed (C-like)

• Explicit memory
(de)allocation

• Distributed memory model

Compiler Restrictions

Don’t:
• use closures
• throw exceptions
• use objects

– except for homogeneous arrays, multiple return types,
and Math

• use polymorphism
• use strings
• use null
within elemental functions

Compiler Stages

1. Parsing
(Mozilla

Narcissus)

2. Type
Inference

3. Address
Space

Propagation

4. Range
Analysis

5.
Representation

Analysis

6. Static Heap
Allocation

7. Bounds
Check

Elimination

8. Code
Generation

Implementation

After Compilation?

• OpenCL embedding into SpiderMonkey
(written in C++)

• Optimizations:
– cache compiled functions

– cache mapped ParallelArrays

– result is not mapped back until read in JavaScript

– memory alignment

– dynamically set CPU/GPU distribution factor
(“hybrid execution”)

Experiments

Firefox

• Authors claim joint work with Mozilla on
production version

• Firefox 29 (April 29, 2014):

• ECMAScript Proposal

• First data-parallelism library
for JavaScript

• Minimalistic approach

• Integrates well with existing
technologies

• Experimental results are
promising

• Enables new kinds of web
applications

• Other parallelizable routines

• Additional web browser
components needed

• Browser Support?

Personal Assessment

