
A

Eiffel: The Essentials
This appendix addresses people who are familiar with the object-oriented approach
but do not know Eiffel very well. It introduces all the concepts needed to understand
the core of this thesis.

However, it is not an exhaustive presentation of the Eiffel language. The
reference manual of the current version of Eiffel is the book by Meyer Eiffel: The
Language. The next version of the language is defined in the third edition of this
book, which is currently available as a draft.

A.1 SETTING UP THE VOCABULARY

First, Eiffel uses vocabulary that sometimes differs from the one used in other
object-oriented languages like Java or C#. This section sets up the vocabulary with
references to the terminology used in these other languages you may be familiar with.

Structure of an Eiffel program

The basic unit of an Eiffel program is the class. There is no notion of module or
assembly like in .NET, no notion of package like in Java (no import-like keyword).

Classes are grouped into clusters, which are often associated with a file
directory. Indeed, an Eiffel class is stored in a file (with the extension .e); therefore
it is natural to associate a cluster with a directory. But this is not compulsory. It is a
logical separation, not necessary a physical one. Clusters may contain subclusters,
like a file directory may contain subdirectories.

An Eiffel system is a set of classes (typically a set of clusters that contain
classes) that can be assembled to produce an executable. It is close to what is usually
called a “program”.

Eiffel also introduces a notion of universe. It is a superset of the system. It
corresponds to all the classes present in the clusters defined in an Eiffel system, even
if these classes are not needed for the program execution.

Eiffel uses a notion of root class, which is the class that is instantiated first
using its creation procedure (the constructor) known as the root creation
procedure. An Eiffel system corresponds to the classes needed by the root class
directly or indirectly (the classes that are reachable from the root creation
procedure). The universe contains all classes in all the clusters specified in the system.

The definition of what an Eiffel system contains is done in an Ace file, which
is a configuration file written in a language called LACE (Language for Assembly
Classes in Eiffel).

[Meyer 1992].
[Meyer 200?b].

EIFFEL: THE ESSENTIALS §A.1374
Classes

A class is a representation of an Abstract Data Type (ADT). Every object is an
instance of a class. The object creation uses a so-called creation procedure, which
is similar to the notion of “constructor” in languages such as Java or C#.

A class is characterized by a set of features (operations), which may be either
attributes or routines. (In Java/C# terminology, features tend to be called
“members”, attributes are called “fields” and routines are called “methods”.) Eiffel
further distinguishes between routines that return a result (functions) and routines
that do not return a result (procedures). This is a classification by implementation:
routines vs. attributes, namely computation vs. memory.

There is another classification: by role. Features can be either commands (if
they do not return a result) or queries (if they do return a result). Then, queries can
be either functions if they involve some computation or attributes if the value is
stored in memory.

The following picture shows the different feature categories:

Design principles

Eiffel is not only a programming language but also an object-oriented method to
build high-quality software. As a method, it brings some design principles:
• As mentioned above, Eiffel distinguishes between “commands” and “queries”.

Even if not enforced by any compiler, the Eiffel method strongly encourages
following the Command/Query Separation principle: A feature should not
both change the object’s state and return a result about this object. In other
words, a function should be side-effect-free. As Meyer likes to present it:
“Asking a question should not change the answer.”

• Another important principle, which is Information Hiding: The supplier of a
module (typically a class) must select the subset of the module’s properties
that will be available officially to its client (the “public part”); the remaining
properties build the “secret part”. The Eiffel language provides the ability to
enforce this principle by allowing to define fine-grained levels of availability
of a class to its clients.

• Another principle enforced by the Eiffel method and language is the principle
of Uniform Access, which says that all features offered by a class should be
available through a uniform notation, which does not betray whether features
are implemented through storage (attributes) or through computation
(routines). Indeed, in Eiffel, one cannot know when writing x.f whether f is a
routine or an attribute; the syntax is the same.

Command

Query

Feature

Procedure

Attribute

Function

No result

Returns
result

Computation

Memory

Routine

Returns
result

No result

Memory

Computation

Feature

Feature cate-
gories (by role
and by imple-
mentation)

[Meyer 1997], p 751.

[Meyer 1997], p 51-
53.

[Meyer 1997], p 57.

§A.2 THE BASICS OF EIFFEL BY EXAMPLE 375
Types

As mentioned earlier, in Eiffel, every object is an instance of a class. There is no
exception; even basic types like INTEGERs or REALs are represented as a class.

Besides, Eiffel is strongly typed; every program entity is declared of a certain
type. A type is based on a class. In case of non-generic classes, type and class are
the same. In the case of generic classes, a class is the basis for many different types.

The majority of types are reference types, which means that values of a
certain type are references to an object, not the object itself. There is a second
category of types, called expanded types, where values are actual objects. It is the
case of basic types in particular. For example, the value 5 of type INTEGER is really
an object of type INTEGER with value 5, not a pointer to an object of type INTEGER
with a field containing the value 5.

A.2 THE BASICS OF EIFFEL BY EXAMPLE

This section shows you what an Eiffel class looks like with an example.

Structure of a class

The basic structure of an Eiffel class is the following:

It starts with the keyword class and finishes with the keyword end, and in-between
a set of features grouped by “feature clauses” introduced by the keyword feature and
a comment. The comment is introduced by two consecutive dashes and is not
compulsory (although recommended to improved readability and understandability).

Book example

An Eiffel class may contain other clauses than the basic ones just shown. For
example, it may start with an “indexing clause” (introduced by the keyword
indexing), which should gives general information about the class.

The following class BOOK is a typical example of what an Eiffel class looks
like. (If you do not understand everything, don’t panic; each new notion will be
described after the class text.)

class

CLASS_NAME

feature -- Comment

...

feature -- Comment

...

end

indexing

description: "Representation of a book"

class

BOOK

create

make

See “Genericity”,
page 387.

Basic struc-
ture of an
Eiffel class

Class repre-
sentation of a
book in a
library

EIFFEL: THE ESSENTIALS §A.2376
feature {NONE} -- Initialization

make (a_title: like title; some_authors: like authors) is
-- Set title to a_title and authors to some_authors.

require
a_title_not_void: a_title /= Void
a_title_not_empty: not a_title.is_empty

do
title := a_title
authors := some_authors

ensure
title_set: title = a_title
authors_set: authors = some_authors

end

feature -- Access

title: STRING
-- Title of the book

authors: STRING
-- Authors of the book
-- (if several authors, of the form:
-- "first_author, second_author, ...")

feature -- Status report

is_borrowed: BOOLEAN
-- Is book currently borrowed (i.e. not in the library)?

feature -- Basic operation

borrow is
-- Borrow book.

require
not_borrowed: not is_borrowed

do
is_borrowed := True

ensure
is_borrowed: is_borrowed

end

return is
-- Return book.

require
is_borrowed: is_borrowed

do
is_borrowed := False

ensure
not_borrowed: not is_borrowed

end

invariant

title_not_void: title /= Void
title_not_empty: not title.is_empty

end

§A.2 THE BASICS OF EIFFEL BY EXAMPLE 377
Let’s have a closer look at this class BOOK:
• The optional indexing clause was mentioned before. Each entry (there may

be several) has two parts: a tag “description” and the text “Representation of
a book”. The tag name “definition” is not a keyword; you can use any name,
although it is quite traditional to use “definition” to describe the general
purpose of the class. Other commonly used tags include “author”, “date”,
“note”, etc. The indexing clause is interesting both for the programmers, the
people who will use the class, and for tools which may use this indexed
information to do different kinds of things with the class.

• After the class keyword and class name, BOOK, we find a clause introduced
by the keyword create. It introduces the name of each creation procedure
(constructor) of the class. Indeed, in Eiffel (contrary to Java or C#), creation
procedures do not have a predefined name; they can have any name, although
“make” is commonly used. Here, the class declares only one creation
procedure called make. There may be several, in which case the names would
be separated by commas. There may also be no create clause at all, which
means that the class has the default creation procedure called default_create.
(The feature default_create is defined in class ANY from which any Eiffel class
inherits. This appendix will come back to this point later when mentioning
inheritance.)

• The class name, NONE, in curly brackets between the keyword feature and the
comment “-- Initialization” is an application of information hiding. It means
that the features listed in this feature clause are exported to NONE. NONE is a
virtual class that inherits from all classes (it is at the bottom of the class
hierarchy). A feature exported to NONE means that no client class can access
it. It can only be used within the class or one of its descendants. (It is close to
“protected” in languages such as Java or C#.) It is possible to have any class
name between these curly brackets, providing a fine-grained exportation
mechanism.

You may wonder why a creation procedure is exported to NONE. It does
not mean that the class cannot be instantiated because clients cannot access the
creation procedure. Not at all. In fact, in Eiffel, creation procedures are not
special features. They are normal features that can be called as creation
procedure in expressions of the form create my_book.make but also as “normal”
features in instructions of the form my_book.make (where my_book must already
be instantiated) to reinitialize the object for example. Exporting a creation
routine to NONE means that it can only be used as a creation procedure; it cannot
be called by clients later on as a normal procedure.

• The basic structure of an Eiffel routine is the following:

It may also have a require clause after the comment to introduce preconditions
and an ensure clause before the end keyword to express postconditions. It is the
case of the procedure make. This section will not say more about preconditions
and postconditions for the moment. They will be covered in detail in the next
section about Design by Contract™.

A routine may also have a local clause, listing the local variables used in
this routine; it is located before the do keyword (after the require clause if any).

routine_name (arg_1: TYPE_1; arg_2: TYPE_2): RETURN_TYPE is
-- Comment

do
... Implementation here (set of instructions)

end

Basic struc-
ture of an
Eiffel routine

See “Design by Con-
tract™”, page 378.

EIFFEL: THE ESSENTIALS §A.2378
If you compare the basic scheme of a routine shown above and the text
of make on the previous page, you can deduce that the type of the first argument
a_title is like title and the type of the argument some_authors is like authors. What
does this mean? It is called anchored types in Eiffel. In like title, title is the
anchor. It means that the argument a_title has the same type as the attribute title
defined below in the class text. It avoids having to redefine several routines
when the type of an attribute changes for example. It will become clearer when
we talk about inheritance. But just as a glimpse: imagine BOOK has a
descendant class called DICTIONARY and DICTIONARY redefines title to be of
type TITLE instead of STRING, then make also needs to be redefined to take an
argument of type TITLE. Anchored types avoid this “redefinition avalanche” by
“anchoring” the type of a certain entity to the type of another query (function or
attribute). The anchor can also be Current (a reference to the current object, like
“this” in C# or Java).

The text of feature make also shows the syntax for assignment := (not =
like in Java and C#; in Eiffel = is the reference equality, like == in Java and C#).
You may also encounter syntax of the form ?= which corresponds to an
assignment attempt. The semantics of an assignment attempt a ?= b is to check
that the type B of b conforms to the type A of a; then, if B conforms to A, b is
assigned to a like a normal assignment; if not, a is set to Void. Therefore, the
typical scheme of assignment attempts is as follows:

The typical use of assignment attempts is in conjunction with persistence
mechanisms because one cannot be sure of the exact type of the persistent data
being retrieved.

• The next two feature clauses “Access” and “Status report” introduce three
attributes: title and authors of type STRING, and is_borrowed of type BOOLEAN.
The general scheme for an attribute is the following:

In the current version of Eiffel, attributes cannot have preconditions or
postconditions. It will be possible in the next version of the language.

• The routines borrow and return follow the same scheme as the feature make
described before. It is worth mentioning though the two possible values for
BOOLEANs, namely True and False, which are both keywords.

• The last part of the class is the invariant, which has two clauses in this
particular example. Contracts (preconditions, postconditions, class invariants)
are explained in the next section about Design by Contract™.

• One last comment about the class BOOK: the use of Void. Void is a feature of
type NONE defined in class ANY. It is the equivalent of “null” in other
languages like C# or Java. It corresponds to a reference attached to no object.

Design by Contract™

Design by Contract™ is a method of software construction, which suggests building
software systems that will cooperate on the basis of precisely defined contracts.

a: A
b: B

a ?= b
if a /= Void then

...
end

attribute_name: ATTRIBUTE_TYPE
-- Comment

Typical use of
assignment
attempts

Structure of
an Eiffel
attribute
See “Assertions on
attributes”, page
391.

§A.2 THE BASICS OF EIFFEL BY EXAMPLE 379
The method

Design by Contract™ is a method to reason about software that accompanies the
programmer at any step of the software development. Even if it is called “design”
by contract, it does not only target the design stage of an application. It is useful as
a method of analysis and design, but it also helps during implementation because the
software specification will have been clearly stated using “assertions” (boolean
expressions). Design by Contract™ is also useful to debug and test the software
against this specification.

The idea of Design by Contract™ is to make the goal of a particular piece of
software explicit. Indeed, when developers start a new project and build a new
application, it is to satisfy the need of a client, match a certain specification. The
Design by Contract™ method suggests writing this specification down to serve as a
“contract” between the clients (the users) and the suppliers (the programmers).

This idea of contract defined by some obligations and benefits is an analogy
with the notion of contract in business: the supplier has some obligations to his
clients and the clients also have some obligations to their supplier. What is an
obligation for the supplier is a benefit for the client, and conversely.

Different kinds of contracts

There are three main categories of contracts: preconditions, postconditions, and class
invariants:

• Preconditions are conditions under which a routine will execute properly;
they have to be satisfied by the client when calling the routine. They are an
obligation for the clients and a benefit for the supplier (which can rely on
them). A precondition violation is the manifestation of a bug in the client
(which fails to satisfy the precondition).

Precondition clauses are introduced by the keyword require in an Eiffel routine:

Each precondition clause is of the form “tag: expression” where the tag can be
any identifier and the expression is a boolean expression (the actual assertion).
The tag is optional; but it is very useful for documentation and debugging
purposes.

• Postconditions are properties that are satisfied at the end of the routine
execution. They are benefits for the clients and obligations for the supplier. A
postcondition violation is the manifestation of a bug in the supplier (which
fails to satisfy what it guarantees to its clients).

routine_name (arg_1: TYPE_1; arg_2: TYPE_2): RETURN_TYPE is
-- Comment

require
tag_1: boolean_expression_1
tag_2: boolean_expression_2

do
... Implementation here (set of instructions)

end

Structure of
an Eiffel rou-
tine with pre-
condition

EIFFEL: THE ESSENTIALS §A.2380
Postcondition clauses are introduced by the keyword ensure in an Eiffel routine:

Of course, a routine may have both preconditions and postconditions; hence
both a require and an ensure clause (like in the previous BOOK class).

• Class invariants capture global properties of the class. They are consistency
constraints applicable to all instances of a class. They must be satisfied after
the creation of a new instance and preserved by all the routines of the class.
More precisely, it must be satisfied after the execution of any feature by any
client. (This rule applies to qualified calls of the form x.f only, namely client
calls. Implementation calls — unqualified calls — and calls to non-exported
features do not have to preserve the class invariant.)
Class invariants are introduced by the keyword invariant in an Eiffel class

There are three other kinds of assertions:
• Check instructions: Expressions ensuring that a certain property is satisfied

at a specific point of a method’s execution. They help document a piece of
software and make it more readable for future implementers.
In Eiffel, check instructions are introduced by the keyword check as follows:

• Loop invariants: Conditions, which have to be satisfied at each loop iteration
and when exiting the loop. They help guarantee that a loop is correct.

• Loop variants: Integer expressions ensuring that a loop is finite. It decreases
by one at each loop iteration and has to remain positive.

This appendix will show the syntax of loop variants and invariants later when
introducing the syntax of loops.

routine_name (arg_1: TYPE_1; arg_2: TYPE_2): RETURN_TYPE is
-- Comment

do
... Implementation here (set of instructions)

ensure
tag_1: boolean_expression_1
tag_2: boolean_expression_2

end

class

CLASS_NAME

feature -- Comment

...

invariant

tag_1: boolean_expression_1
tag_2: boolean_expression_2

end

routine_name (arg_1: TYPE_1; arg_2: TYPE_2): RETURN_TYPE is
-- Comment

do
... Implementation here (set of instructions)
check

tag_1: boolean_expression_1
tag_2: boolean_expression_2

end
... Implementation here (set of instructions)

end

Structure of
an Eiffel rou-
tine with post-
condition

Structure of
an Eiffel class
with class
invariant

Structure of
an Eiffel rou-
tine with
check instruc-
tion

See “Syntax of
loops”, page 383.

§A.3 MORE ADVANCED EIFFEL MECHANISMS 381
Benefits

The benefits of Design by Contract™ are both technical and managerial. Among
other benefits we find:
• Software correctness: Contracts help build software right in the first place (as

opposed to the more common approach of trying to debug software into
correctness). This first use of contracts is purely methodological: the Design
by Contract™ method advises you to think about each routine’s requirements
and write them as part of your software text. This is only a method, some
guidelines for software developers, but it is also perhaps the main benefit of
contracts, because it helps you design and implement correct software right
away.

• Documentation: Contracts serve as a basis for documentation: the
documentation is automatically generated from the contracts, which means
that it will always be up-to-date, correct and precise, exactly what the clients
need to know about.

• Debugging and testing: Contracts make it much easier to detect “bugs” in a
piece of software, since the program execution just stops at the mistaken
points (faults will occur closer to the source of error). It becomes even more
obvious with assertions tags (i.e. identifiers before the assertion text itself).
Contracts are also of interest for testing because they can serve as a basis for
black-box test case generation.

• Management: Contracts help understand the global purpose of a program
without having to go into the code in depth, which is especially appreciable
when you need to explain your work to less-technical persons. It provides a
common vocabulary and facilitates communication. Besides, it provides a
solid specification that facilitates reuse and component-based development,
which is of interest for both managers and developers.

A.3 MORE ADVANCED EIFFEL MECHANISMS

Let’s describe more advanced Eiffel mechanisms, typically the facilities on which
the pattern library relies on.

Book library example

This section uses an example to introduce these mechanisms. Because we talked
about books in the previous section, here is the example of a library where users can
borrow and return books.

Here is a possible implementation of an Eiffel class LIBRARY:

indexing

description: "Library where users can borrow books"

class

LIBRARY

inherit
ANY

redefine
default_create

end

See “Pattern
Library”, page 26.

Class repre-
sentation of a
book library

EIFFEL: THE ESSENTIALS §A.3382
feature {NONE} -- Initialization

default_create is
-- Create books.

do
create books.make

end

feature -- Access

books: LINKED_LIST [BOOK]
-- Books available in the library

feature -- Element change

extend (a_book: BOOK) is
-- Extend books with a_book.

require
a_book_not_void: a_book /= Void
a_book_not_in_library: not books.has (a_book)

do
books.extend (a_book)

ensure
one_more: books.count = old book.count + 1
book_added: books.last = a_book

end

remove (a_book: BOOK) is
-- Remove a_book from books.

require
a_book_not_void: a_book /= Void
book_in_library: books.has (a_book)

do
books.start
books.search (a_book)
books.remove

ensure
one_less: books.count = old books.count − 1
book_not_in_library: not books.has (a_book)

end

feature -- Output

display_books is
-- Display title of all books available in the library.

do
if books.is_empty then

io.put_string ("No book available at the moment")
else

from books.start until books.after loop
io.put_string (books.item.title)
books.forth

end
end

end

feature -- Basic operation

§A.3 MORE ADVANCED EIFFEL MECHANISMS 383
This example introduces two controls we had not encountered before: conditional
structures (in feature display_books) and loops (in display_books and borrow_all).

• Here is the syntax scheme for conditional structures:

The elseif and else branches are optional.

• Here is the syntax scheme for loops (there is only one kind of loops in Eiffel):

The variant and invariant clauses are optional. The from clause is compulsory
but it may be empty.

Let’s now discover the other Eiffel techniques used in this example:

Inheritance

The class LIBRARY contains a clause we have not seen yet: an inherit clause. It
introduces the classes from which class LIBRARY inherits. Here LIBRARY inherits
from ANY.

borrow_all is
-- Borrow all books available in the library.

do
from books.start until books.after loop

books.item.borrow
books.forth

end
ensure

all_borrowed: books.for_all (agent {BOOK}.is_borrowed)
end

invariant

books_not_void: books /= Void
no_void_book: not books.has (Void)

end

if some_condition_1 then
do_something_1

elseif some_condition_2 then
do_something_2

else
do_something_else

end

from
initialization_instructions

invariant
loop_invariant

variant
loop_variant

until
exit_condition

loop
loop_instructions

end

Syntax of
conditional
structures

Syntax of
loops

EIFFEL: THE ESSENTIALS §A.3384
ANY is the class from which any Eiffel class inherits. If you remember, we saw
before that NONE is the class that inherits from any Eiffel class, which means we
have a “closed” hierarchy here:

In fact, one does not need to write that a class inherits from ANY; it is the default.
Here, the class LIBRARY expresses the inheritance link explicitly to be able to
“redefine” the feature default_create inherited from ANY. Redefinition allows
changing the body of a routine (the do clause) and changing the routine signature if
the new signature “conforms” to the parent one (which basically means that the base
class of the new argument types inherits from the base class of the argument types
in the parent, and same thing for the result type if it is a function).

The routine body can be changed, but it still has to follow the routine’s
contract. The Design by Contract™ method specifies precise rules regarding
contracts and inheritance: preconditions are “or-ed” and can only be weakened,
postconditions are “and-ed” and can only be strengthened (not to give clients any
bad surprise). Class invariants are also “and-ed” in descendant classes (subclasses).

As suggested by the inheritance figure on the previous page, a class may
inherit from one or several other classes, in which case we talk about multiple
inheritance. Contrary to languages like C# or Java, Eiffel supports multiple
inheritance of classes. (It is restricted to “interfaces” in the Java/C# worlds.)

Allowing multiple inheritance means that a class may get features from two
different parents (superclasses) with the same name. Eiffel provides a renaming
mechanisms to handle name clashes. For example, if we have a class C that inherits
from A and B, and A and B both define a feature f, it is possible to rename the feature
f from A as g to solve the name clash. Here is the Eiffel syntax:
class

C
inherit

A
rename

f as g
end

B
feature -- Comment

...
end

See “Business Object
Notation (BON)”,
page 394.ANY

NONE

…

…All Eiffel classes…

Global inher-
itance struc-
ture

Redefinition of return
type and argument
types follows the
rules of covariance.
See “Non-conform-
ing inheritance”,
page 391.

See “Design by Con-
tract™”, page 378.

Renaming
mechanism

§A.3 MORE ADVANCED EIFFEL MECHANISMS 385
As mentioned above, Eiffel also provides the ability to redefine features inherited
from a parent using a redefine clause. In the redefined version, it is possible to call
the version from the parent by using the Precursor. Here is an example:

Eiffel also enables to “undefine” a routine, that is to say making it deferred
(abstract). A deferred feature is a feature that is not implemented yet. It has no do
clause but a deferred clause. Yet it can have routine preconditions and
postconditions. Here is the general structure of a deferred routine:

A class that has at least one deferred feature must be declared as deferred. In the
current version of Eiffel, it is also true that a deferred class must have at least one
deferred feature. In the next version of the language, it will be possible to declare a
class deferred even if all its features are effective (implemented). Besides, contrary
to other languages like Java or C#, a deferred class can declare attributes. It can also
express a class invariant.

To come back to inheritance and undefinition, here is the syntax that allows
to make a routine deferred when inheriting it from a parent class:

class
C

inherit
A

redefine
f

end
feature -- Comment

f (args: SOME_TYPE) is
-- Comment

do
Precursor {A} (args)
...

end
...

end

routine_name (arg_1: TYPE_1; arg_2: TYPE_2): RETURN_TYPE is
-- Comment

require
... Some precondition clauses

deferred
ensure

... Some postcondition clauses
end

deferred class

C
inherit

A
undefine

f
end

feature -- Comment
...

end

Redefinition
with call to
Precursor

Structure of a
deferred rou-
tine

Undefinition
mechanism

EIFFEL: THE ESSENTIALS §A.3386
This example supposes that class A declares a feature f, which is effective in A. The
class C inherits f from A and makes it deferred by listing it in the clause undefine.
Therefore, class C must be declared as deferred (it has at least one deferred feature).

Another problem that arises with multiple inheritance is the case of repeated
inheritance (also known as the “diamond structure”). For example, we have a class
D that inherits from B and C, which themselves inherit from A. Class A has a feature
f. B renames it as g and redefines it. C leaves f unchanged. Here is the corresponding
class diagram:

The class D inherits two different features from the same feature f in A. The problem
occurs when talking about dynamic binding: which feature should be applied?

There is another inheritance adaptation clause called select, which provides the
ability to say: “in case there is a conflict, use the version coming from this parent”.
For example, if we want to retain the feature g coming from B, we would write:

The last inheritance adaptation clause is the export clause. It gives the possibility to
restrict or enlarge the exportation status of an inherited routine. Here is the general
scheme:

class
D

inherit
B

select
g

end
C

feature -- Comment
...

end

class
B

inherit
A

export
{NONE} f -- Makes f secret in B (it may have been exported in A)
{ANY} g -- Makes g exported in B (it may have been secret in A)
{D, E} x, z -- Makes x and z exported to only classes D and E

end
feature -- Comment

...
end

See “Business Object
Notation (BON)”,
page 394.

A

D

B C
f g
g++

f

Repeated
inheritance
(“diamond
structure”)

Selection
mechanism

Export mech-
anism

§A.3 MORE ADVANCED EIFFEL MECHANISMS 387
Eiffel offers a keyword all to designate all the features of a class (defined in the class
itself and inherited). It is often used to make all features inherited from a parent class
secret (in case of implementation inheritance for example):

The last point we need to see about inheritance is the order of adaptation clauses.
Here it is:

Genericity

Let’s come back to our class LIBRARY. The next mechanism we had not encountered
before is genericity. Indeed, the class LIBRARY declares a list of books:

The attribute books is of type LINKED_LIST [BOOK], which is derived from the
generic class LINKED_LIST [G], where G is the formal generic parameter. A
generic class describes a type “template”. One must provide a type, called actual
generic parameter (for example here BOOK), to derive a directly usable type like
LINKED_LIST [BOOK]. Genericity is crucial for software reusability and
extendibility. Besides, most componentized versions of design patterns rely on
genericity.

The example of LINKED_LIST [G] is a case of unconstrained genericity.
There are cases where it is needed to impose a constraint on the actual generic
parameters. Let’s take an example. Say we want to represent vectors as a generic
class VECTOR [G], which has a feature plus to be able to add two vectors, and we
also want to be able to have vectors of vectors like VECTOR [VECTOR [INTEGER]].

class
B

inherit
A

export
{NONE} all

end
feature -- Comment

...
end

class
D

inherit
B

rename
e as k

export
{NONE} all
{D} r

undefine
m

redefine
b

select
g

end
C

feature -- Comment
...

end

books: LINKED_LIST [BOOK]
-- Books available in the library

Making all
inherited fea-
tures secret

Order of the
inheritance
adaptation
clauses

See “Class represen-
tation of a book
library”, page 381.

Attribute of a
generic type

EIFFEL: THE ESSENTIALS §A.3388
Let’s try to write the feature plus of class VECTOR [G]. In fact, it is unlikely to
be called plus; it would rather be an infix feature “+”, which is a special notation to
allow writing vector_a + vector_b instead of vector_a.plus (vector_b). There also exists
a prefix notation to be able to write - my_integer for example.

To come back to class VECTOR [G], a first sketch may look as follows:
class

VECTOR [G]

create

make

feature {NONE} -- Initialization

make (max_index: INTEGER) is
-- Initialize vector as an array with indexes from 1 to max_index.

require
...

do
...

end

feature -- Access

count: INTEGER
-- Number of elements in vector

item (i: INTEGER): G is
-- Vector element at index i

require
...

do
...

end

infix “+” (other: like Current): like Current is
-- Sum with other

require
other_not_void: other /= Void
consistent: other.count = count

local
i: INTEGER

do
create Result.make (1, count)
from i := 1 until i > count loop

Result.put (item (i) + other.item (i), i)
-- Requires an operation “+” on elements of type G.

i := i + 1
end

ensure
sum_not_void: Result /= Void

end
...
invariant

...
end

Addable vec-
tors

§A.3 MORE ADVANCED EIFFEL MECHANISMS 389
Our implementation of the “+” operation requires a “+” operation on elements of
type G, which means that we cannot accept any kind of actual generic parameters.
We need them to have such a feature “+”. Here is when constrained genericity comes
into play: it allows to say that actual generic parameters must conform to a certain
type, for example here NUMERIC. (It basically means that the base class of the actual
generic parameter must inherit from class NUMERIC.)

Here is the corresponding syntax:

It is not allowed to have multiple constraints, say class C [G −> {A, B}]. It may be
allowed in the next version of the language.

Another kind of constraint is to impose that actual generic parameters must
have certain creation procedures. For example, the notation:

means that any actual generic parameter of MY_CLASS must conform to ANY and
expose default_create in its list of creation procedures (introduced by the keyword
create in an Eiffel class text).

Agents

There is still one mysterious point in the class LIBRARY, the postcondition of borrow_
all:

What the postcondition of borrow_all does is to test for all items of type BOOK in the
list books whether it is_borrowed. The postcondition will evaluate to True if all books
are borrowed.

But what does this “agent” mean? An agent is an encapsulation of a routine
ready to be called. (To make things simple, you may consider an agent as a typed
function pointer.) It is used to handle event-driven development. For example, if you
want to associate an action with the event “button is selected”, you will write:

where my_routine is a routine of the class where this line appears.

A typical agent expression is of the form:

where a and b are closed arguments (they are set at the time of the agent’s definition)
whereas ? is an open argument (it will be set at the time of any call to the agent).

It is also possible to construct an agent with a routine that is not declared in
the class itself. The syntax becomes:

where some_object is the target of the call. It is a closed target. The agent
expression used in the postcondition of borrow_all had an open target of type BOOK:

class

VECTOR [G −> NUMERIC]

class

MY_CLASS [G −> ANY create default_create end]

ensure
all_borrowed: books.for_all (agent {BOOK}.is_borrowed)

my_button.select_actions.extend (agent my_routine)

agent my_function (?, a, b)

agent some_object.some_routine (?, a, b)

agent {BOOK}.is_borrowed

See “Non-conform-
ing inheritance”,
page 391.

[Meyer 200?b].

See “Class represen-
tation of a book
library”, page 381.

Use of agents
in contracts

Events with
agents

Open and
closed argu-
ments

Open and
closed argu-
ments

Open target

EIFFEL: THE ESSENTIALS §A.4390
To call an agent, you simply have to write:

where call is a feature of class ROUTINE.
Here is the class diagram of the three agent types:

An important property of the Eiffel agent mechanism: it is completely type-safe.
Agents are a recent addition to the Eiffel language. They were introduced in

1999. Therefore, they are not described in the reference manual Eiffel: The
Language. However, there is an entire chapter of the next revision of the book
devoted to agents.

Performance

Using agents has a performance overhead. To measure that overhead, I performed
one million direct calls to a routine that does nothing and one million agent calls to
the same routine. Without agents, the duration was two seconds (2µs per call); with
agents, it was fourteen seconds (14µs per call), thus seven times as slow.

But in practice, one calls routines that do something. Therefore I added an
implementation to the routine (a loop that executes do_nothing, twenty times) and did
the same tests. The results were the following: 33s (33µs per call) without agents;
46s (46µs per call) with agents; thus 1.4 times as slow.

In a real application, the number of agent calls in the whole code will be less
significant. Typically, no more than 5% of the feature calls will be calls to agents.
Therefore the execution of an application using agents will be about 0.07 times as
slow, which is a acceptable performance overhead in most cases.

A.4 TOWARDS AN EIFFEL STANDARD

Eiffel is currently being standardized through the ECMA international organization.
The working group in charge of the Eiffel standardization examines some issues of
the Eiffel language and discusses possible extensions. I am an active member of the
group; I am responsible for preparing the meetings’ agenda and for writing the
meeting minutes.

ECMA standardization

The process started in March 2002 when ECMA accepted the proposal to
standardize Eiffel. It resulted in the creation of a new working group TG4, part of
the Technical Committee 39 (originally “scripting languages”, although this is just
for historical reasons). The first group meeting took place at ETH Zurich in
Switzerland in June 2002. Jan van den Beld, secretary general of ECMA, took part
in the meeting and explained how the standardization work should proceed.

my_agent.call ([maybe_some_arguments]) Calling an
agent

See “Business Object
Notation (BON)”,
page 394.ROUTINE

[BASE, ARGS -> TUPLE]

PROCEDURE
[BASE, ARGS -> TUPLE]

FUNCTION
[BASE, ARGS -> TUPLE, RES]

call
Agent types

[Dubois 1999].
See chapter 25 of
[Meyer 200?b].

do_nothing is a proce-
dure defined in ANY
which does nothing.

[ECMA-Web].

§A.4 TOWARDS AN EIFFEL STANDARD 391
The goal is to have a first draft of the standard ready in 2004. To achieve this
goal, the group meets at least four times a year and keeps interacting by email in
between.

The group members are all Eiffel experts with several years experience and
coming from both academia and industry. For the moment, members include ETH
Zurich with Bertrand Meyer and me, LORIA in France with Dominique Colnet,
Monash University, in Australia, represented by Christine Mingins. This is for the
academia. Industry members are AXA Rosenberg with Mark Howard and Éric
Bezault, Eiffel Software with Emmanuel Stapf and Bertrand Meyer, and Enea Data
with Kim Waldén and Paul Cohen.

New mechanisms

This section presents some extensions to the Eiffel language that have been pre-
approved by the committee. (To be finally approved, a mechanism needs to be
implemented in at least one Eiffel compiler. For the four extensions presented here,
there is no doubt about the final acceptation. Besides, three of these extensions are
already implemented at least in part.)

Assertions on attributes

As mentioned before, attributes cannot have contracts in the current version of
Eiffel. Only routines can have contracts. This discrimination between routines and
attributes goes against the Uniform Access principle presented at the beginning of
this appendix. Indeed, clients should not have to know whether a feature is
implemented by computation or by storage; they just need to know that the class
offers this service, no matter what its implementation is.

Therefore the team agreed to introduce a new syntax for attributes, with a new
keyword attribute, that allows putting preconditions and postcondition:

The current notation:

becomes a shortcut for:

Non-conforming inheritance

In the current version of Eiffel, inheritance always brings conformance. For
example, if a class B inherits from a class A, then type B conforms to type A. As a
consequence, an assignment like a1 := b1 where b1 is of type B and a1 is declared of
type A is allowed. It is also possible to pass an instance of type B as argument of a
feature expecting an A (for example, f (b1) with f declared as f (arg: A)).

attribute_name: ATTRIBUTE_TYPE is
-- Comment

require
... Some precondition clauses

attribute
ensure

... Some postcondition clauses
end

attribute_name: ATTRIBUTE_TYPE
-- Comment

attribute_name: ATTRIBUTE_TYPE is
-- Comment

attribute
end

See “Structure of an
Eiffel attribute”,
page 378.
See “Design princi-
ples”, page 374.

Assertions on
attributes

EIFFEL: THE ESSENTIALS §A.4392
However, sometimes, it may be useful to have inheritance without
conformance, namely having subclassing without polymorphism. Non-conforming
gives descendant classes access to the parent’s features but forbids such assignments
and arguments passing as those described above (between entities of the descendant
type and entities of the parent type).

This facility is useful only in specific cases like “implementation inheritance”.
For example, we could have a class TEXTBOOK that inherits from BOOK. This
inheritance relation should be conformant; we want both subclassing and
polymorphism. But this class TEXTBOOK may need access to some helper features
defined in a class TEXTBOOK_SUPPORT. One way to get access to these features is
to declare an attribute of type TEXTBOOK_SUPPORT and have a client relationship.
Another way to do it is to use what is usually called “implementation inheritance”,
that is to say inheriting from TEXTBOOK_SUPPORT just to be able to use these
features. In that case, we just need subclassing (to get the features), not conformance
(we don’t want to assign an entity of type TEXTBOOK to an entity of type
TEXTBOOK_SUPPORT). Hence the use of non-conforming inheritance.

Another example taken from EiffelBase is the class ARRAYED_LIST, which
inherits from LIST and ARRAY. For the moment, both inheritance links are
conformant (there is no other choice!). But what we really want is a class ARRAYED_
LIST that inherits from LIST in a conformant way and a non-conformant link between
ARRAYED_LIST and ARRAY (just to get the features of ARRAY, which are useful for
the implementation of ARRAYED_LIST).

The syntax is not completely fixed yet. For the moment, the idea is to use the
keyword expanded in front of the parent class name in the inherit clause to specify
that the inheritance link is non-conformant (hence the name “expanded inheritance”,
which is sometimes used):

What is the relation between non-conforming inheritance and expanded types? If a class
B inherits from a class A, which is declared as expanded, then there is no conformance
between B and A. Hence the use of the keyword expanded.

Non-conforming inheritance is currently being implemented into the SmartEiffel
compiler.

Automatic type conversion

The third mechanism is automatic type conversion. The goal is to be able to add, for
example a complex number and an integer, or a real and an integer. To do this, the
group decided to include a two-side conversion mechanism into the Eiffel language.
It is possible to convert from and to convert to a particular type thanks to a new
clause convert.

class

B

inherit

C

expanded A

feature -- Comment
...
end

[EiffelBase-Web].

Possible syn-
tax of non-
conforming
inheritance

§A.4 TOWARDS AN EIFFEL STANDARD 393
Here is the syntax:

If you have an instance of type TYPE_1 and you want to add it to an instance of MY_
CLASS, the instance of TYPE_1 will be automatically converted to an instance of MY_
CLASS by calling the conversion procedure from_type_1, which needs to be declared
as a creation procedure.

On the other hand, if you have an instance of type MY_CLASS and you want
to add it to an instance of type TYPE_2, your instance of MY_CLASS will be
automatically converted to TYPE_2 by calling the function to_type_2.

Here are typical cases that this new mechanism permits to write:

Thus, it becomes possible to add complex numbers and integers cleanly and
completely transparently to the clients. Part of the automatic type conversion
mechanism is already implemented in the ISE Eiffel compiler.

Frozen classes

Another mechanism pre-approved at ECMA is to allow frozen classes in Eiffel,
meaning classes from which one cannot inherit. The syntax is simple: the header of
a frozen class is extended with the keyword frozen as shown next:

Section 18.3 describes the syntax and semantics of frozen classes in detail.

class

MY_CLASS

create

from_type_1

convert
from_type_1 ({TYPE_1}),
to_type_2: {TYPE_2}

feature -- Conversion
from_type_1 (arg: TYPE_1) is

-- Convert from arg.
do

...
end

to_type_2: TYPE_2 is
-- New object of type TYPE_2

do
...

end
end

my_attribute: MY_TYPE
attribute_1: TYPE_1
attribute_2: TYPE_2

my_attribute + attribute_1
-- Equivalent to:
-- my_attribute + create {MY_TYPE}.from_type_1 (attribute_1)

attribute_2 + my_attribute
-- Equivalent to:
-- attribute_2 + my_attribute.to_type_2

frozen class
MY_CLASS

Type conver-
sion mecha-
nism

Examples of
automatic
type conver-
sions

Header of a
frozen class

EIFFEL: THE ESSENTIALS §A.5394
This extension is directly useful to the work presented in this thesis: it enables
writing correct singletons in Eiffel, which is not possible with the current version of
the language.

Frozen classes are not supported by classic Eiffel compilers yet but they are
already accepted by the ISE Eiffel for .NET compiler.

A.5 BUSINESS OBJECT NOTATION (BON)

This last section describes the BON method, with a focus on notation. It only
introduces a small subset of BON — what you need to know to understand the class
diagrams appearing in this thesis.

The method

The Business Object Notation (BON) is a method for analysis and design of object-
oriented systems, which emphasizes seamlessness, reversibility and Design by
Contract™. It was developed between 1989 and 1993 by Jean-Marc Nerson and Kim
Waldén to provide the Eiffel programming language and method with a notation for
analysis and design.

BON stresses simplicity and well-defined semantics. In that respect, it is
almost at the opposite of widely-used design notations such as the Unified Modeling
Language (UML) or the Rationale Uniform Process (RUP).

As mentioned above, one priority of BON is to bring seamlessness into
software development, to narrow the gap between analysis, design, and
implementation by using the same concepts and the same semantics for the notation
on the tree stages. Therefore BON does not have state-charts or entity-relationship
diagrams like in UML because they are not compatible with what is available at the
implementation level and would prevent reversibility. Instead, BON relies on pure
object-oriented concepts like classes, client and inheritance relationships.

Notation

Here is a catalog of the notations used throughout this thesis:
In BON, classes are represented as ellipses, sometimes referred to as

“bubbles”:

The ellipse may contain information about the class properties, for example:
• Deferred class: Class that is declared as deferred.

• Effective class: Class that is not declared as deferred but has at least one
deferred parent, or redefines at least one feature.

“Singleton pattern”,
18.1, page 289.

[Waldén-Web].

NAME_OF_
NON_GENERIC_CLASS

NAME_OF_
GENERIC_CLASS

[G]
Notation for a
class

*
CLASS_NAME

Notation for a
deferred class

+
CLASS_NAME

Notation for
an effective
class

§A.5 BUSINESS OBJECT NOTATION (BON) 395
• Persistent class: Class that inherits from STORABLE or has an indexing tag
“persistent”.

• Interfaced class: Class that interfaces with other programming languages (for
example C) through “external features”.

• Reused class: Class that comes from a precompiled library. (ISE Eiffel
compiler provides the ability to compile a library once and for all and then
reuse it in so-called “precompiled” form.)

• Root class: Class that is the program’s entry point.

It is also possible to specify the features of a class by writing the feature names next
to the ellipse representing the class:

BON also permits to express the different categories of features:
• Deferred feature: Non-implemented feature.

• Effective feature: Feature that was deferred in the parent and is implemented
in the current class.

• Undefined feature: Feature that was effective in the parent and is made
deferred in the current class through the undefinition mechanism.

CLASS_NAME
Notation for a
persistent
class

CLASS_NAME
Notation for
an interfaced
class

CLASS_NAME

Notation for a
reused class

CLASS_NAME

Notation for a
root class

CLASS_NAME

name_of_feature_1
name_of_feature_2

Notation for
features

*
CLASS_NAME

feature_name*

Notation for a
deferred fea-
ture

+
CLASS_NAME

feature_name+

Notation for
an effective
feature

CLASS_NAME

feature_name-

Notation for
an undefined
feature

EIFFEL: THE ESSENTIALS §A.5396
• Redefined feature: Feature that was effective in the parent and whose
signature and/or implementation is changed in the current class through the
redefinition mechanism.

BON also provides a notation for feature renaming:

Classes may be grouped into clusters, which are represented as red stippled-rounded
rectangles:

Client relationship between two classes is represented as a blue double-arrow:

Inheritance relationship is represented as a red single-arrow:

Here is the notation for non-conforming inheritance:

CLASS_NAME

feature_name++

Notation for a
redefined fea-
ture

CLASS_NAME

f g

Notation for
feature
renaming

CLASS_NAME

cluster name

Notation for a
cluster

CLIENT_CLASS_NAME

SUPPLIER_CLASS_NAME

feature_name
Notation for
client/sup-
plier relation-
ship

PARENT_CLASS_NAME

HEIR_CLASS_NAME

Notation for
(conforming)
inheritance

PARENT_CLASS_NAME

HEIR_CLASS_NAME

Notation for
(non-con-
forming)
inheritance

	A Eiffel: The Essentials
	A.1 Setting up the vocabulary
	Structure of an Eiffel program
	Classes
	Design principles
	Types

	A.2 The basics of Eiffel by example
	Structure of a class
	Book example
	Design by Contract™

	A.3 More advanced Eiffel mechanisms
	Book library example
	Inheritance
	Genericity
	Agents

	A.4 Towards an Eiffel standard
	ECMA standardization
	New mechanisms

	A.5 Business Object Notation (BON)
	The method
	Notation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

