
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

Assignment 5: Assignments and control structures

ETH Zurich

handout: Monday, 13 October 2014
Due: Wednesday, 22 October 2014

GOTO c© Randall Munroe (http://xkcd.com/292)

Goals

• Understand assignments.

• Learn to program with loops and conditionals.

• Start to work on a more complex application.

1 Assignments

In this task you can test your understanding of assignment instructions. Consider the following
class:

class PERSON
create make
feature −− Initialization
make (s: STRING)

−− Set ‘name’ to ‘s’.
require
s non empty: s /= Void and then not s.is empty

do
name := s

ensure
name set: name = s

end

1

http://xkcd.com/292


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

feature −− Access
name: STRING

−− Person’s name.

loved one: PERSON
−− Person’s loved one.

feature −− Basic operations
set loved one (p: PERSON)

−− Set ‘loved one’ to ‘p’.
do
loved one := p

ensure
loved one set: loved one = p

end

invariant
has name: name /= Void and then not name.is empty

end

Below is the code of the feature tryout. It contains a number of declarations and creation
instructions, and it is defined in a class different from PERSON. All features of class PERSON
as shown above are accessible by feature tryout.

tryout
−− Tryout assignments.

local
i, j: INTEGER
x, y, z: PERSON

do
create x.make (”Anna”)
create y.make (”Ben”)
create z.make (”Chloe”)
x.set loved one (y)
y.set loved one (z)
−− Here the code snippets from below are added

end

To do

Below you will find a number of subtasks, each containing a code snippet and statements. For
each subtask, list all the correct statements (there might be more than one).

Assume that the code snippet is inserted at the location indicated in feature tryout above. If
it produces a compilation error, choose option (a); otherwise decide for each statement whether
it is correct or incorrect after the code snippet has been fully executed.

To make the answers easier to read, we call Anna the object whose name attribute is set to
“Anna”, and accordingly Ben and Chloe for subtasks 6 – 9.

2



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

1. i := 7
i := i + 3

(a) Compilation error.
(b) i has value 13.
(c) i has value 10.
(d) i has value 7.

2. i := 3
2 := i

(a) Compilation error.
(b) i has value 2.
(c) i has value 3.
(d) i has value 5.

3.

i := −1
j := 5
i := 2
j := 3

(a) Compilation error.
(b) i has value 2 and j has value 3.
(c) i has value 1 and j has value 8.
(d) i has value -1 and j has value 5.

4.

i := −7
j := 5
i := j
j := i

(a) Compilation error.
(b) i has value 5 and j has value -7.
(c) both i and j have value -7.
(d) both i and j have value 5.
(e) j has value 5 and i holds no value any more.

5.
i := 5
j := i + 7
i := 8

(a) Compilation error.
(b) i has value 8 and j has value 15.
(c) i has value 8 and j has value 12.
(d) both i and j have value 8.

6. y := x
x := y

(a) Compilation error.
(b) x is attached to Ben and y to Anna.
(c) y is a void reference and x is attached to Anna.
(d) x and y are both attached to Anna.
(e) Ben is not attached to any local variable of tryout any more.

7. y := z
y.loved one := x.loved one

(a) Compilation error.
(b) y is attached to Chloe.
(c) Chloe’s loved one is Ben.
(d) Ben’s loved one is Ben.

8.
y := x.loved one
x.set loved one (z)
z := y

(a) Compilation error.
(b) y is attached to Chloe.
(c) y is attached to Ben.
(d) x is attached to Anna and her loved one is Ben.
(e) Nobody loves Ben.

9.
z := x.loved one
z.set loved one (x)
y := y.loved one.loved one

(a) Compilation error.
(b) y and z are both attached to Ben.
(c) y is Void and z is attached to Ben.
(d) x is attached to Ben.
(e) Anna and Ben love each other.
(f) Anna loves herself.

To hand in

Hand in your answers to the questions above.

2 Reading loops

To review the structure and semantics of loops refer to section 7.5 of Touch of Class.
It happens very often that you want to iterate through all the items of a container, for

example all lines in Zurich or all stations of a particular line. To do this you can use the

3



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

following scheme:

−− Make all lines pink:
across
Zurich.lines as i −− Create a new cursor ‘i’

loop
−− ‘i.item’ denotes the current line:
i.item.set color (”F010B0”)

end

If you need to do something more complicated, for example remove some lines from Zurich
as you go, you will need the full form of the loop. Here is the same loop in its full form:

local
i: like Zurich.lines.new cursor −− Local variable to store the cursor

do
−− Make all lines pink:
from

−− Create a new cursor at the beginning of the container
−− and assign it to ‘i’:
i := Zurich.lines.new cursor

until
i.after −− ‘i’ traversed the whole container

loop
i.item.set color (”F010B0”)
i.forth −− Move ‘i’ one position forward

end
end

The type declaration for i means “i has the same type as the expression Zurich.lines.
new cursor”. The actual type of i in this case is V ITERATOR [LINE] (“an iterator over
lines”).

To do

Assume that the two code extracts in Listing 1 and Listing 2 intend to iterate through all stations
in Zurich, find one named “Central” and move it to the exact center of the city (coordinates [0,
0]).

1. For each version (Listings 1 and 2) decide whether it does what it is supposed to do.

2. If you think it does not, then correct the errors.

Hints

Operator = used on expressions of a reference type compares two references. If they are pointing
to the same object the result is true, otherwise the result is false. In contrast, operator ∼
compares the content of two objects.

For this exercise you may assume the following:

• There are no compilation problems

• Zurich and all its stations are not Void

4



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

Listing 1: Version A

explore
−− Move ”Central”.

local
station: STATION

do
across
Zurich.stations as i

loop
if i.item.name = ”Central” then
station := i.item

end
if station /= Void then
station.set position ([0.0, 0.0])

end
end

end

Listing 2: Version B

explore
−− Move ”Central”.

local
i: like Zurich.stations.new cursor

do
from
i := Zurich.stations.new cursor

until
i.item.name ∼”Central” or i.after

loop
end
if not i.after then
i.item.set position ([0.0, 0.0])

end
end

To hand in

This is a pen-and-paper exercise: you do not need to write code in EiffelStudio. Hand in the
corrected versions of Listing 1 and Listing 2.

3 Next station: loops

In this task you will equip public transportation in Traffic with route information displays,
similar to the ones real trams and buses have in Zurich (Figure 1).

Figure 1: Route information display in a tram

To do

1. Download http://se.inf.ethz.ch/courses/2014b_fall/eprog/assignments/05/traffic.zip,
unzip it, copy the dir assignment 5 into directory traffic/examples and open
assignment 5.ecf from within EiffelStudio. Open class DISPLAY in the editor.

2. First let us add some public transport to Zurich. In the feature add public transport write
a loop that iterates through all lines in Zurich and adds one transportation unit to each

5

http://se.inf.ethz.ch/courses/2014b_fall/eprog/assignments/05/traffic.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

line. You can use the across loop example from task 2.

Run the application to check if you can see trams and buses. Try double-clicking on the
map to toggle animation on and off and left-clicking on trams and buses to select them.

3. Now let us implement feature update transport display (t: PUBLIC TRANSPORT). The
application is programmed to call this feature every time you select a transport, and, if
the animation is running and a transport is selected, whenever some short amount of time
has passed. The selected transport is passed through the argument t.

The feature has to output route information of the selected transport to the console below
the map. In particular, for the next three stops of the transport, it has to show the time it
takes to reach the stop and the station name. Then it has to show the same information
for the final destination (unless the destination is already listed among the next stops).
See an example in Figure 2.

Figure 2: Route information display in Traffic

Note that sometimes there are less than three stops left until the end of the line. In this
case the display only shows as many stops as there are left.

To iterate through stations on a line in a given direction (denoted by a terminal station),
sometimes it is more convenient to use the feature next station of class LINE, as an
alternative to the schemes described in task 2. For example:

local
s: STATION

do
from

s := Zurich.station (”Central”) −− Start from Central
until

s = Void −− Until the end of the line (add your condition here)
loop

−− Move to the next station of line 6 in the direction of its west terminal
s := Zurich.line (6).next station (s, Zurich.line (6).west terminal)

end
end

6



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

4. (Optional) Next to each coming station, output all connections available at that station.
Note that a line is not considered a connection, if its next stations in both directions are
covered by the line we are already on.

Hints

• To do the output you might want to call features clear and append line on the object
console. Use ”%T” to print a tabulation character. Use query out to get a string
representation of any object.

• To convert time from seconds to minutes, use the integer division operator (//):
time minutes := time seconds // 60.

• You might want to define a separate function stop info (t: PUBLIC TRANSPORT;
s: STATION): STRING, which returns the data to be displayed for a given station.

To hand in

Hand in the code of class DISPLAY.

4 Board game: Part 1

In this task you will start a small project from scratch. We will proceed in iterations, starting
with a simplified problem and then progressively enriching it. This first part will focus on
choosing the right classes.

The idea is to program a prototype of a board-game. It comes with a board, divided into 40
squares, and a pair of dice; the game can accommodate 2 to 6 players. It works as follows:

• All players start from the first square.

• One at the time, players take a turn: roll the dice and advance their respective tokens on
the board.

• A round consists of all players taking their turns once.

• The winner is the player that first advances beyond the 40th square.

To do

Make up a list of classes that you would use to model the board game.

Choosing the right abstractions

To suggest classes, you have to ask yourself: What are the relevant abstractions in the problem
domain? A good source of abstractions is the problem description: names (nouns) in the
description often identify important concepts in the problem domain.

Unfortunately, some names in the problem description might not deserve to become classes
(like “idea” or “program”); also there might be relevant abstractions that are not expressed as
names in the specific text we are looking at.

Whether an entity in the problem domain deserves its own class, depends on its relevant
properties and behavior. If you are modeling a door, whose only relevant property is being
open or closed, use a boolean variable. If you are programming a game with trapdoors and
magic doors that trigger special behavior, then you might need a class for it. Thus the second
question you should ask yourself about each candidate abstraction is: Is there any meaningful
data (attributes) and behavior (routines) associated with the abstraction?

7



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

Finally, you should take into account that the problem description (the requirements) is
almost never final. When reading the description think about things that are likely to change
and new functionality that is likely to be added. Sometimes a concept doesn’t have enough
associated behavior in the present version of the requirements, but if you think it is likely to
gain more in the future, it might still deserve its own class.

To hand in

Hand in your candidate list of class names together with short descriptions of their associated
properties and behavior.

5 MOOC: Assignment, control structures

To do

1. Access the main MOOC course web page at http://se.ethz.ch/mooc/programming.

2. Listen to lecture number 6 “References, Assignment, and Object Structure” and take the
corresponding quiz.

3. Listen to lecture number 8 “Control Structures”, and take the corresponding quizzes.

4. Solve the programming exercises.

Your goal is to provide all correct answers to the quizzes and pass all the tests in the programming
exercises. You can take the quizzes and attempt the programming exercises as many times as
you want. If you succeed, you will be awarded a badge for each correctly solved quiz.

8

http://se.ethz.ch/mooc/programming

	Assignments
	Reading loops
	Next station: loops
	Board game: Part 1
	MOOC: Assignment, control structures

