E'" Ziirich

Chair of Software Engineering

Beyond Eiffel

these slides contain advanced
material and are optional

Beyond Eiffel)

 Eiffel was used in the course to introduce you
to programming
 The goal is not to learn programming Eiffel

 The goal is to
— Understand programming
— Learn the concepts of programming

— Learn how to programm well

How to program well

)

Understand fundamental concepts of
programming

Understand when and how to apply these
concepts

Write code with readability in mind
Know the language you are using
Experience

More experience

Which language should you use? ()

e All programming languages have advantages and
disadvantages

— Ease of use

— Performance characteristics (speed, memory)
— Applicability to problem domain

— Availability of libraries and supporting tools
— Personal experience

— Company expertise / existing codebase

* Know the problem you want to solve
* Select the language accordingly

Programming language frequency (»)

TIOBE index top 10 languages December 2012 (sum up to 80%)

1. C 18.7% 6. PHP 55% | |
2. Java 17.6% 7. (Visual) Basic 5.2%
3. Objective-C 11.1% 8. Python 3.8%

4. C++ 9.2% 9. Perl 2.2% | |
5. CH 5.5% ' 10. Ruby 1.7% | |
Paradigms Type systems
'Object-oriented 58.5% | Statically typed 71.4%
Procedural 36.9% ' Dynamically typed 28.6%
Functional 3.2%

Logical 1.4%

Source: http://www.tiobe.com/index.php/tiobe index

http://www.tiobe.com/index.php/tiobe_index
http://www.tiobe.com/index.php/tiobe_index
http://www.tiobe.com/index.php/tiobe_index

Learning a new language)

* Learning a new language consists of
— Learning the syntax (fast)

— Mapping known programming concepts to new
syntax (fast)

— Learning the conventions (medium)
— Learning the libraries (long)

Some concepts in various languaged®)

Namespaces
Encapsulation
Inheritance
Generics
Contracts
Function objects

Namespaces

Global (Eiffel)
Directory-based packages (Java)

— Warnings if directory structure does not follow
packages

File-based modules (Python)

— Module name = file name

User-declared (C#)
— Declare (multiple) arbitrary namespaces per file

Encapsulation)

e Export status (Eiffel)
— Granularity level of classes, no fully private
— Attributes never writable from outside class

* Access modifier (Java, C#, C++, PHP)

— Public (full acccess), private (only inside the class),
protected (class + subclasses)

 Naming conventions (Python)
— No access modifiers

— Names starting with underscore should not be
accessed from outside the class

Inheritance)

Static multiple inheritance (Eiffel, C++)

— Name-Routine mapping defined at compile-time

— Various conflict resolution schemes (renaming, virtual)
Dynamic multiple inheritance (Python)

— Inheritance ordering matters

— Name resolution depth-first, left-to-right (+special
cases)

Single inheritance + Interfaces (Java, C#)
— Single inheritance of full classes
— Multiple inheritance of interfaces only

Single inheritance (PHP)

Generics

Generics (Eiffel)
Generics (Java)

— Safe co- and contravariance (Wildcards)
— Type erasure

Generics (CH)

— No conformance
Templates (C++)
Dynamic typing (Python, PHP)

Contracts

* Built-in contracts (Eiffel)
e Contracts as a library (C#)

— Library offering calls that are interpreted as
preconditions / postconditions / invariants

* Assert statements (Java, C, Python)
— Assertion in the beginning is a precondition
— Assertion in the end is a postcondition
— No contract inheritance

Function objects

)

* Agents (Eiffel)
— Unique: open/closed arguments, open targets
* Function pointers (C)
* Functor (C++)
* Delegates (C#)
e Closures (Python)
 Anonymous inner classes (Java <8)
See http://en.wikipedia.org/wiki/Function object

 Lambda expressions (Java 8)

— http://www.informit.com/articles/article.aspx?p=1963535

&segqNum=2

http://en.wikipedia.org/wiki/Function_object
http://www.informit.com/articles/article.aspx?p=1963535&seqNum=2
http://www.informit.com/articles/article.aspx?p=1963535&seqNum=2

