
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2014

Mock Exam 2

ETH Zurich

December 3, 2014

Name:

Group:

Question 1 / 13
Question 2 / 10
Question 3 / 13
Total / 36

1

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2014

1 Contracts (13 points)

We are interested in an adventure game in which knights wander through unknown lands.
A knight owns coins that can be used for recruiting villagers as companions and for healing
wounds. He also has a reputation ranging from -5 to 5, which is subtracted from the cost of
recruiting and healing (see examples below). Even though the cost is reduced for the knights
with good reputation, it can never go below zero. All the actions listed below allow the knight
to gain experience points.

Here are some actions a knight can do:

• recruit a villager. This is possible if:

– The knight does not have a companion already

– The villager does not have a knight as a leader already

– The knight can afford the recruiting cost for the villager. For example, if the villager
cost is 3 and the knight has a bad reputation of -2, he would need 5 coins to recruit
this villager. However, if the knight has a positive reputation of 5, he can recruit the
villager for free.

The knight gains as many experience points as coins spent.

• dismiss a villager as a companion for free (gaining 5 experience points). This is only
possible if the knight has a companion already.

• heal one or more wounds. The cost of healing is the same as the number of wounds to be
healed; the knight must be able to afford the cost. For example, if the knight has 3 coins
and a good reputation of 1, he can afford to heal up to 4 wounds. The knight gains as
many experience points as wounds healed.

Your task is to add contracts to the deferred classes KNIGHT and VILLAGER, so that
the informal specification above (together with the feature comments) is reflected in each class
interface.

Please note:

• Assume that the void safety option of the compiler is turned off. This means that, when
appropriate, you have to explicitly check whether the objects are void or not.

• The number of dotted lines is not indicative of the number of missing contract clauses.

• You need to write True at places where you think no explicit contract is necessary: leaving
a postcondition empty gives you 0 point for that section.

• The following features from class INTEGER may be useful:

class INTEGER

feature
max (other: INTEGER): INTEGER

−− The greater of current object and ‘other’.

−− Other features omitted.
end

2

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2014

1.1 Solution

deferred class
KNIGHT

feature −− Access

wounds: INTEGER
−− Number of wounds the current knight currently has.

coins : INTEGER
−− Number of coins owned. They are used to pay for recruiting and healing.

reputation : INTEGER
−− Affects positively or negatively the cost of recruiting and healing.

experience : INTEGER
−− Experience points gained by performing actions.

companion: VILLAGER
−− Companion of current knight, possibly Void.

feature −− Basic operations

recruit (a villager : VILLAGER)
−− Recruit a villager.

require
no companion: companion = Void
villager exists : a villager /= Void
villager is recruitable : not a villager . has leader

can afford : coins >= a villager. recruiting cost − reputation
deferred
ensure

villager recruited : companion = a villager
villager leader set : a villager . has leader

coins updated : coins = old coins − (a villager . recruiting cost − reputation).
max (0)

experience updated : experience = old experience − (coins − old coins)
end

dismiss
−− Dismiss the current companion.

require
companion exists: companion /= Void

deferred
ensure

companion dismissed: companion = Void
villager has no leader : not (old companion).has leader

experience updated : experience = old experience + 5
end

heal (w: INTEGER)

3

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2014

−− Heal w wounds.
require

heal some wounds: w > 0
not too many wounds to cure: w <= wounds
can afford : coins >= w − reputation

deferred
ensure

wounds updated: wounds = old wounds − w
coins updated : coins = old coins − (w − reputation).max (0)
experience updated : experience = old experience + w

end

invariant
wounds non negative: wounds >= 0
coins non negative : coins >= 0
reputation in range : reputation >= −5 and reputation <= 5
experience non negative : experience >= 0
binding companionship: companion /= Void implies companion.has leader

end

deferred class
VILLAGER

feature −− Access

recruiting cost : INTEGER
−− Positive cost of recruiting the current villager .

feature −− Status report

has leader : BOOLEAN
−− Does the current villager have a leader?

feature −− Status setting

set has leader (hl : BOOLEAN)
−− Set the ”has leader” status for the current villager .

require
−− nothing

deferred
ensure

has leader set : has leader = hl
end

invariant
recruiting cost positive : recruiting cost > 0

end

4

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2014

2 Data Structures (10 points)

A bag (also called multiset) is a generalization of a set, where elements are allowed to appear
more than once. For example, the bag {a, a, b} consists of two copies of a and one copy of b.
However, a bag is still unordered, so the bags {a, b, a} and {a, a, b} are equivalent.

Below you will find source code of a linked representation of the bag data structure; this
representation is very similar to a regular singly-linked list, except for the following:

• In addition to the value and the reference to the next cell, each bag cell stores the number
of copies of its value (see Figure 1).

• For a given value, at most one cell storing that value should appear in the data structure.

Figure 1: A possible linked representation of the bag {a, a, b}.

In the class LINKED BAG below fill in the implementations of the following two features:

1. remove (v: G; n: INTEGER), which removes as many copies of v as possible, up to n. For
example, removing one copy of a from the bag {a, a, b} will result in a bag {a, b}, while
removing two copies of c from the same bag will not change it.

2. subtract (other : LINKED BAG [G]), which removes all elements of other from the current
bag. For example, taking the bag {a, a, b} and subtracting {a, b, c} from it will yield the
bag {a}.

Your implementation should satisfy the provided contracts.

2.1 Solution

class
LINKED BAG [G]

feature −− Access

occurrences (v: G): INTEGER
−− Number of occurrences of ‘v’.

local
c: BAG CELL [G]

do
from

c := first
until

c = Void or else c.value = v
loop

c := c.next
end
if c /= Void then
Result := c.count

5

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2014

end
end

feature −− Element change

add (v: G; n: INTEGER)
−− Add ‘n’ copies of ‘v ’.

require
n positive : n > 0

local
c: BAG CELL [G]

do
from

c := first
until

c = Void or else c.value = v
loop

c := c.next
end
if c /= Void then

c. set count (c.count + n)
else
create c.make (v)
c. set count (n)
c. set next (first)
first := c

end
ensure

n more: occurrences (v) = old occurrences (v) + n
end

remove (v: G; n: INTEGER)
−− Remove as many copies of ‘v’ as possible, up to ‘n ’.

require
n positive : n > 0

local
c, prev : BAG CELL [G]

do
from

c := first
until

c = Void or else c.value = v
loop

prev := c
c := c.next

end
if c /= Void then
if c.count > n then

c. set count (c.count − n)
elseif c = first then

first := first .next
else

6

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2014

prev . set next (c.next)
end

end
ensure

n less : occurrences (v) = (old occurrences (v) − n).max (0)
end

subtract (other : LINKED BAG [G])
−− Remove all elements of ‘other’.

require
other exists : other /= Void

local
c: BAG CELL [G]

do
from

c := other. first
until

c = Void
loop

remove (c.value, c.count)
c := c.next

end
end

feature {LINKED BAG} −− Implementation

first : BAG CELL [G]
−− First cell .

end

7

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2014

3 Recursion (13 points)

Task 1

The function n th element (see below) should implement a recursive algorithm that, given a
list a, computes the n-th element of a sorted list (in ascending order) that contains the same
elements as the list a. Note that list a does not need to be sorted. See the example in task 2
to get an idea of what the correct output of function n th element should look like. Complete
the implementation by filling in the missing expressions. Note that the expected implementation
uses recursion.

Solution

if (not greater.count + 1) = n then
result := pivot

elseif (not greater.count + 1) < n then
result := n th element (greater, n − (not greater.count + 1))

elseif n < (not greater.count + 1) then
result := n th element (not greater, n)

end

Task 2

In the following code snippets, function n th element is called with different inputs. Write down
the output that is printed to the console for each snippet once function n th element has been
properly implemented. Note that the function n th element prints out the argument n in each
call.
Assume that variable a was declared as follows:

local
a: ARRAYED LIST [INTEGER]

Example

create a.make (0) −− Create an empty list.
a.extend (1)
a.extend (2)
a.extend (−2)
print (”result = ” + n th element (a, 1).out)

Output:

n = 1

n = 1

result = -2

Snippet 1

create a.make (0)
a.extend (0)
print (”result = ” + n th element (a, 1).out)

8

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2014

Output:

. .

. .

. .

. .

. .

. .

Solution

n = 1

result = 0

9

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2014

Snippet 2

create a.make (0)
a.extend (5)
a.extend (1)
a.extend (3)
a.extend (2)
a.extend (1)
print (”result = ” + n th element (a, 5).out)

Output:

. .

. .

. .

. .

. .

. .

Solution

n = 5

n = 3

n = 2

n = 1

result = 5

10

	Contracts (13 points)
	Solution

	Data Structures (10 points)
	Solution

	Recursion (13 points)

