
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2014

Assignment 2: Path planning

ETH Zurich

Individual Demonstration: Monday, 27.10.2014 at 16:15
Individual Software Due: Monday, 27.10.2014 at 23:00

Group Work Demonstration: Monday, 03.11.2014 at 16:15
Group Work Software Due: Monday, 03.11.2014 at 23:00

1 Path planning

1.1 Background

Path planning is the process of producing continuous motion for a robot such that it can move
from a start configuration and a goal configuration while avoiding collision with known obstacles.
Path planning often represents these obstacles in a 2D or 3D map and describes the path in
robot’s configuration space. Configuration space is a set of all possible configurations, i.e., the
robot’s degrees of freedom. As most robots are nonholonomic, there is a limit to the robot’s
velocity in each configuration. To simplify this problem, in mobile robot path planning with a
differential drive robot, we often assume that the robot is holonomic. The configuration space
is then identical to 2D projection of physical space. In addition, we inflate the configuration
space by the robot’s radius and assume that the robot is a point. These modifications allow
path planning algorithms to simply search for a path for point mass between various points in
the free space.

One way to search for a path is by applying a graph search algorithm, which requires the
configuration space to be converted into a graph. A popular method for converting the space is
decomposing it into grid cells. Each cell is then a node in the graph, and two neighboring cells
form an edge in the graph. The connectivity between two neighbouring cells can be either four
or eight. In four-connected graph, a node forms an edge with the node’s top, down, left, and
right neighboring nodes; in eight-connected graph, the node forms additional four edges to its
diagonal neighbors.

A* search algorithm [1] is a best-first search algorithm that finds a lowest-cost path from a
starting node to a goal node in a graph. It explores a path with the lowest expected total cost
first using a priority queue. The expected total cost f(n) of a node n is computed by

f(n) = g(n) + ε ∗ h(n), (1)

where g(n) is the path cost to n from the starting node, h(n) is the heuristic cost to the goal from
n, and ε determines the weight between g(n) and h(n). Heuristic cost h(n) is often computed
as the Euclidean distance between n and the goal node, and the optimal path is found when
ε = 1. The path cost g(n) is

g(n) = g(n′) + c(n, n′), (2)

where g(n′) is the path cost of n’s neighboring node n′ and c(n, n′) is the traversal cost of getting
from n′ to n. The traversal cost c(n, n′) can be computed by the Euclidean distance between
two nodes n and n′ or approximated by the Manhattan distance.

Using the expected cost f(n), A* algorithm, shown in Algorithm 1, works as follows: Given
a starting node nstart and a goal node ngoal, the algorithm initializes the search by setting

1



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2014

g(nstart) = 0 and adding the neighboring nodes of nstart to a heap Sopen. Sopen contains all
the neighboring nodes of the visited nodes Sclosed. Among the nodes in Sopen, the algorithm
searches for the next node nnext with the smallest expected cost fcost(nnext) to the goal and
repeatedly adds the neighboring nodes of nnext to Sopen. When the next node nnext is the
goal node ngoal or all the reachable nodes Sopen in the space have been searched, the algorithm
terminates its search. If the algorithm reaches the goal node ngoal, we can build an optimal
path Poptimal by trailing back the previous nodes until we reach the starting node.

1.2 Task

Write A* search algorithm in as a ROS node and control the robot to go from a starting point
to an end point in Roboscoop.

2 Practical help

For this assignment, you need to download the data directory and install map server. You can
find the installation instruction here: http://www.roboscoop.org/docs.

2.1 Reading a map and publish a path in ROS

map server publishes map topic. To read it in a ROS node, the node must subscribe to map of
type nav msgs/OccupancyGrid. To publish a path and visualize it in RViz, the path must be
of type nav msgs/Path.

2.2 Using TF

tf is a package that lets the user keep track of multiple coordinate frames over time. This
package will be useful when transforming points between the map coordinate frame and the
odometry link coordinate frame.

3 Grading

3.1 In-class demonstration (20 points)

You will be given a map as a png file and some points in the map. The task is for the robot to
plan a path that visits one or more of these points.

3.1.1 Individual In-class demonstration (10 points): Monday, 27.10.2014 at 16:15

For the individual portion, you will publish a path between two or more points as nav msgs/Path

and display the path in RViz. If no path exists, you must indicate that no path exists.

• Find a path between two points

– 4-connected path, point-mass robot: 2 points

– 8-connected path, point-mass robot: 2 points

– 4-connected path, robot of radius 6cm: 2 points

– 8-connected path, robot of radius 6cm: 2 points

• Find a path between four points: 2 points

– Connectivity and robot’s radius will be given to you on the day.

2

http://www.roboscoop.org/docs


ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2014

3.1.2 Group In-class demonstration (10 points): Monday, 03.11.2014 at 16:15

For the group portion, you will demonstrate how your robot can go from a starting location to
a goal location without bumping into obstacles. In addition to known obstacles given to you as
a map, the testing environment will contain one or two unknown obstacles.

• Accuracy (4.5 points)

– Within 2cm of the most accurate robot: 4.5 points

– Every 2cm thereafter: -0.5 point

• Speed (4.5 points)

– Within 30 seconds of the fastest robot: 4.5 points

– Every 30 seconds thereafter: -0.5 point

• No bumping (1 point)

• You will get 2 tries. Every extra try will cost 1 point.

3.2 Software quality (20 points)

On the due date at 23:00, we will collect your code through your SVN repository. Every file that
should be considered for grading must be in the repository at that time. Note that EIFGENs
folder in your project contains auxiliary files and binaries after compilation. Please, DO NOT
include EIFGENs folder into your svn repository.

3.2.1 Individual evaluation (10 points): Monday, 27.10.2014 at 23:00

• Choice of abstraction and relations (3 points)

• Correctness of implementation (4 points)

• Extendibility and reusability (2 points)

• Comments and documentation, including ”README” (1 points)

3.2.2 Group evaluation (10 points): Monday, 03.11.2014 at 23:00

• Choice of abstraction and relations (3 points)

• Correctness of implementation (4 points)

• Extendibility and reusability (2 points)

• Comments and documentation, including ”README” (1 points)

References

[1] Hart, P. E., Nilsson, N. J., Raphael, B. 1968. ”A Formal Basis for the Heuristic Determination
of Minimum Cost Paths”. IEEE Transactions on Systems Science and Cybernetics SSC4 4
(2): 100107.

3



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2014

Algorithm 1: A* search algorithm [1]

Data: nstart – A starting node
ngoal – A goal node
G := (V,E) – A graph of nodes V and edges E

Result: Poptimal – An optimal path from nstart and ngoal

begin
Sclosed := ∅ – A set of visited nodes
Sopen := {nstart} – A priority queue of nodes to visit
gcost(nstart) := 0 – Path cost
fcost(nstart) := gcost(nstart) + hcost(nstart, ngoal) – Expected total cost

npreviousstart := ∅ – Previous node from which nstart comes
Poptimal := ∅
while Sopen 6= ∅ or ngoal /∈ Sclosed do
{nnext | nnext ∈ Sopen, fcost(nnext) ≤ fcost(n) ∀n ∈ Sopen}
– Get a node with the lowest expected cost.
Sopen := Sopen − {nnext}
Sclosed := Sclosed + {nnext}
if nnext = ngoal then

– If the node is at goal, build the path.
ncurrent := ngoal
while ncurrent 6= ∅ do

Poptimal := {ncurrent}+ Poptimal

ncurrent := npreviouscurrent

else
– If the node is not at goal, update its neighbors’ expected cost.
forall {nneighbor ∈ V | nneighbor /∈ Sclosed,∃(nnext, nneighbor) ∈ E} do

– Go through all neighboring nodes of the node.
if nneighbor /∈ Sopen then

– If the neighboring node is not in the priority queue, update its
expected cost, set its previous to the node, and add it to the queue.
gcost(nneighbor) := gcost(nneighbor) + d(nneighbor, nnext)
fcost(nneighbor) := gcost(nneighbor) + hcost(nneighbor, ngoal)

npreviousneighbor := nnext
Sopen := Sopen + {nnext}

else
– If the neighboring node is in the priority queue, compute its path
cost.
gcost,temp(nneighbor) := gcost(nnext) + d(nneighbor, nnext)
if gcost,temp(nneighbor) < gcost(nneighbor) then

– If the new cost is smaller, then update the expected cost and set
its previous to the node.
gcost(nneighbor) := gcost,temp(nneighbor)
fcost(nneighbor) := gcost(nneighbor) + hcost(nneighbor, ngoal)

npreviousneighbor := nnext

end

4


	Path planning
	Background
	Task

	Practical help
	Reading a map and publish a path in ROS
	Using TF

	Grading
	In-class demonstration (20 points)
	Individual In-class demonstration (10 points): Monday, 27.10.2014 at 16:15
	Group In-class demonstration (10 points): Monday, 03.11.2014 at 16:15

	Software quality (20 points)
	Individual evaluation (10 points): Monday, 27.10.2014 at 23:00
	Group evaluation (10 points): Monday, 03.11.2014 at 23:00



