
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 6:

Patterns
(with material by other members of the

team)

Note about these slides

For a more extensive version (from the òSoftware
Architectureó course), see

http:// se.inf.ethz.ch/courses/2011a_spring/soft_ar
ch/lectures/04_softarch_patterns.pdf

The present material is a subset covering the patterns of
direct relevance to the Robotics Programming Laboratory

2

http://se.inf.ethz.ch/courses/2011a_spring/soft_arch/lectures/04_softarch_patterns.pdf

What is a pattern?

üFirst developed by Christopher Alexander for
constructing and designing buildings and urban areas

üòEach pattern is a three-part rule, which expresses a
relation between a certain context , a problem, and a
solution.ó

What is a pattern?

üFirst developed by Christopher Alexander for
constructing and designing buildings and urban areas

üòEach pattern is a three-part rule, which expresses a
relation between a certain context , a problem, and a
solution.ó

Example Web of Shopping (C. Alexander, A pattern language)

Conflict : Shops rarely place themselves where they best serve
people's needs and guarantee their own stability.

Resolution: Locate a shop by the following steps:
1) Identify and locate all shops offering the same service.
2) Identify and map the location of potential consumers.
3) Find the biggest gap in the web of similar shops with potential
consumers.
4) Within the gap locate your shop next to the largest cluster of other
kinds of shops.

What is a pattern?

üFirst developed by Christopher Alexander for
constructing and designing buildings and urban areas

üòEach pattern is a three-part rule, which expresses a
relation between a certain context , a problem, and a
solution.ó

üPatterns can be applied to many areas, including
software development

Patterns in software development

Design pattern:

üA document that describes a general solution to a
design problem that recurs in many applications.

Developers adapt the pattern to their specific application .

Since 1994, various books have catalogued important
patterns. Best known is Design Patterns by Erich Gamma,
Richard Helm, Ralph Johnson, John Vlissides , Addison -
Wesley 1994.

Why design patterns?

òDesigning object-oriented software is hard and designing
reusable object -oriented software is even harder.ó Erich
Gamma

üExperienced object -oriented designers make good
designs while novices struggle

üObject -oriented systems have recurring patterns of
classes and objects

üPatterns solve specific design problems and make OO
designs more flexible, elegant, and ultimately reusable

7

Benefits of design patterns

üCapture the knowledge of experienced developers

üPublicly available repository

üCommon pattern language

üNewcomers can learn & apply patterns

üYield better software structure

üFacilitate discussions: programmers, managers

Design patterns

üA design pattern is an architectural scheme ña certain
organization of classes and features ñ that provides
applications with a standardized solution to a common
problem.

Design patterns (GoF)

Creational
Å Abstract Factory
Å Singleton
Å Factory Method
Å Builder
Å Prototype

Structural
Å Adapter
Å Bridge
Å Composite
Å Decorator
Å Façade
Å Flyweight
Å Proxy

Behavioral
Å Chain of Responsibility
Å Command (undo/redo)
Å Interpreter
Å Iterator
Å Mediator
Å Memento
Å Observer
Å State
Å Strategy
Å Template Method
Å Visitor

Non-GoF patterns
Å Model-View-Controller

A pattern is not a reusable solution

Solution to a particular recurring design issue in a
particular context:

òEach pattern describes a problem that occurs over
and over again in our environment, and then describes
the core of the solution to this problem in such a way
that you can use this solution a million times over,
without ever doing it the same way twice. ó

Gamma et al.

NOT REUSABLE

Pattern componentization

Classification of design patterns:
ü Fully componentizable

ü Partially componentizable

ü Wizard - or library -supported

ü Non-componentizable

Karine Arnout
ETH PhD, 2004

Fully componentizable (48%)

Observer pattern and event -driven progr .

Intent: òDefine a one-to -many dependency between
objects so that when one object changes state, all its
dependents are notified and updated automatically.ó

[Gamma et al., p 331]

ü Implements publish -subscribe mechanism

üUsed in Model -View-Controller patterns, interface
toolkits, event

üReduces tight coupling of classes

13

VIEW

Observer and event -driven design

A = 50%
B = 30%
C = 20%

O
b

se
rv

e
rs

S
u

b
je

ct

Handling input with modern GUIs

User drives program:

òWhen a user presses
this button, execute
that action from my
programó

CLICK START STATION ABOVE

Event -driven programming: an example

Specify that when a
user clicks this button
the system must
execute

find_station (x , y)

where x and y are the
mouse coordinates and
find_station is a
specific procedure of
your system.

CLICK START STATION ABOVE

Event -driven programming: a metaphor

Routine

Routine

Routine

Routine

Routine

Routine

Routine

Publishers Subscribers

Alternative terminologies

üObserved / Observer

üSubject / Observer

üPublish / Subscribe

üEvent-driven
design/programming

In this presentation:
Publisher and Subscriber

A solution: the Observer Pattern (GoF)

*
PUBLISHER

+
PUB_1

*
SUBSCRIBER

+
SUB_1

update *

update +

Deferred (abstract)

Effective (implemented)

*
+

Inherits from

Client (uses)

subscribe +

unsubscribe +

subscribed: LIST [é]
attach
detach

+
SUB_2

é

+
PUB_2

é

publish +

Observer pattern

Publisher keeps a (secret) list of observers:
subscribed : LINKED_LIST [SUBSCRIBER]

To register itself, an observer executes
subscribe (some_publisher)

where subscribe is defined in SUBSCRIBER :

subscribe (p: PUBLISHER)
-- Make current object observe p.

require
publisher_exists : p /= Void

do
p.attach (Current)

end

s1 s2 s3 s4

Attaching an observer

In class PUBLISHER :
feature {SUBSCRIBER}

attach (s : SUBSCRIBER)
-- Register s as subscriber to this

publisher.
require

subscriber_exists : s /= Void
do

subscribed .extend (s)

end
Note that the invariant of PUBLISHER includes the clause

subscribed /= Void
(List subscribed is created by creation procedures of
PUBLISHER)

Why?

Triggering an event

publish
-- Ask all observers to
-- react to current event.

do
across

subscribed
as

s
loop

s.item .
end

end

Each descendant of SUBSCRIBER defines its own version of update

update

Dynamic binding

sub

Cursor

item

forth

after

s1 s2 s3 s4

subscribed

*
PUBLISHER

+
PUB_1

*
SUBSCRIBER

+
SUB_1

update *
subscribe+
unsubscribe+

update +

subscribed: LIST [é]
attach
detach

é

publish+

Observer - Participants

Publisher
ü knows its subscribers. Any number of Subscriber objects may

observe a publisher.

ü provides an interface for attaching and detaching subscribers.

Subscriber
defines an updating interface for objects that should be
notified of changes in a publisher.

Concrete Publisher
ü stores state of interest to ConcreteSubscriber objects.

ü sends a notification to its subscribers when its state changes.

Concrete Subscriber
ü maintains a reference to a ConcretePublisher object.

ü stores state that should stay consistent with the publisher's.

ü implements the Subscriber updating interface to keep its state
consistent with the publisher's.

23

Observer pattern (in basic form)

üSubscriber may subscribe:

üAt most one operation

üTo at most one publisher

üEvent arguments are tricky to handle

üSubscriber knows publisher
(More indirection is desirable)

üNot reusable ñmust be coded anew for each application

Observer - Consequences

Observer pattern makes the coupling between publishers
and subscribers abstract.

Supports broadcast communication since publisher
automatically notifies to all subscribers.

Changes to the publisher that trigger a publication may lead
to unexpected updates in subscribers.

25

Using agents in EiffelVision

Paris_map. click . subscribe (agent find_station)

CLICK START STATION ABOVE

Mechanisms in other languages

üC and C++: òfunction pointersó

üC#: delegates (more limited form of agents)

Using agents (Event Library)

Event: each event type will be an object
Example: left click

Context : an object, usually
representing a user interface element

Example: the map

Action : an agent representing a routine

Example: find_station

The Event library

Basically:

ü One generic class: EVENT_TYPE

ü Two features: publish and subscribe

For example: A map widget Paris_map that reacts in a way
defined in find_station when clicked (event left_click):

Event library: a simple implementation

class

EVENT_TYPE [ARGS ->TUPLE]

inherit ANY
redefine default_create end

feature {NONE } -- Implementation

subscribers : LINKED_LIST [PROCEDURE [ANY, ARGS]]

feature {NONE } -- Initialization

default_create
-- Initialize list.

do
create subscribers ¶make

subscribers ¶compare_equal
end

30

Simplified event library (end)

feature -- Basic operations

subscribe (action: PROCEDURE [ANY, ARGS])
-- Add action to subscription list.

require
exists: action /= Void

do
subscribers ¶extend (action)

ensure
subscribed : subscribers ¶has (action)

end

publish (arguments: ARGS)
-- Call subscribers.

require
exist : arguments /= Void

do
across subscribers as s loop s ¶item ¶call (arguments) end

end
end

31

Event Library style

The basic class is EVENT_TYPE

On the publisher side , e.g. GUI library:

ü (Once) declare event type:

click : EVENT_TYPE [TUPLE [INTEGER, INTEGER]]

ü (Once) create event type object :

create click

ü To trigger one occurrence of the event :

click .publish ([x_coordinate , y_coordinate])

On the subscriber side, e.g. an application :

click .subscribe (agent find_station)

Example using the Event library

The subscribers (òobserversó) subscribe to events:

Paris_map.click .subscribe (agent find_station)

The publisher (òsubjectó) triggers the event:

click .publish ([x_positition , y_position])

Someone (generally the publisher) defines the event type :

click : EVENT_TYPE [TUPLE [INTEGER , INTEGER]]
-- Mouse click events

once
create Result

ensure
exists : Result /= Void

end

Subscriber variants

click .subscribe (agent find_station)

Paris_map.click .subscribe (agent find_station)

click .subscribe (agent your_procedure (a, ?, ?, b))

click .subscribe (agent other_object .other_procedure)

Observer pattern vs. Event Library

In case of an existing class MY_CLASS :

üWith the Observer pattern:
ÁNeed to write a descendant of SUBSCRIBER and

MY_CLASS

ÁUseless multiplication of classes

üWith the Event Library:
ÁCan reuse the existing routines directly as agents

Design patterns (GoF)

Creational
Å Abstract Factory
Å Singleton
Å Factory Method
Å Builder
Å Prototype

Structural
Å Adapter
V Bridge
V Composite
V Decorator
V Façade
V Flyweight
Å Proxy

Behavioral
Å Chain of Responsibility
V Command (undo/redo)
Å Interpreter
Å Iterator
Å Mediator
Å Memento
V Observer
Å State
Å Strategy
Å Template Method
Å Visitor

Non-GoF patterns
V Model-View-Controller

37

Visitor pattern

Intent:

òRepresents an operation to be performed on the elements
of an object structure . Visitor lets you define a new
operation without changing the classes of the elements
on which it operates.ó

[Gamma et al., p 331]

ü Static class hierarchy

ü Need to perform traversal operations on
corresponding data structures

ü Avoid changing the original class structure

38

Visitor application examples

Set of classes to deal with an Eiffel or Java program (in
EiffelStudio, Eclipse ...)

Or: Set of classes to deal with XML documents
(XML_NODE, XML_DOCUMENT, XML_ELEMENT,
XML_ATTRIBUTE, XML_CONTENTé)

One parser (or several: keep comments or noté)

Many formatters:

üPretty -print

üCompress

üConvert to different encoding

üGenerate documentation

üRefactor

üé

Inheritance hierarchy

FIGURE
*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE

SQUARE

center * display*
rotate*

diagonal

...
...

+
+

side2

* deferred

+ effective

++ redefine d

side1

Polymorphic data structures

(POLYGON) (CIRCLE) (POLYGON)(CIRCLE) (ELLIPSE)

from
figs ştart

until
figs ¸after

loop
figs i̧tem ¸display
figs f̧orth

end

figs : LIS T [FIGURE]

The dirty secret of O -O architecture

Is it easy to add types
(e.g. TRIANGLE) to
existing operations

FIGURE
*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE

SQUARE

center * display*
rotate*

diagonal

...
...

+
+

side2
side1

