E'" Ziirich

Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 6:

Patterns
(with material by other members of the
team)

. O]
Note about these slides

For a more extensive version
Architectureo course), see

http:// se.inf.ethz.ch/courses/2011a spring/soft ar
ch/lectures/04 softarch patterns.pdf

The present material is a subset covering the patterns of
direct relevance to the Robotics Programming Laboratory

http://se.inf.ethz.ch/courses/2011a_spring/soft_arch/lectures/04_softarch_patterns.pdf

What is a pattern?

©

U First developed by Christopher Alexander for
constructing and designing buildings and urban areas

UOEach patt e rpartrules which dxgrassea
relation between a certain context , a problem, and a
solution. 0

What is a pattern?

©

U First developed by Christopher Alexander for
constructing and designing buildings and urban areas

UOEach patt e rpartrules which dxgrassea
relation between a certain context , a problem, and a
solution. 0

Example Web of Shopping (C. Alexander, A pattern language)

Conflict : Shops rarely place themselves where they best serve
people's needs and guarantee their own stability.

Resolution: Locate a shop by the following steps:

1) Identify and locate all shops offering the same service.

2) ldentify and map the location of potential consumers.

3) Find the biggest gap in the web of similar shops with potential

consumers.
4) Within the gap locate your shop next to the largest cluster of other

kinds of shops.

What is a pattern?

©

U First developed by Christopher Alexander for
constructing and designing buildings and urban areas

UOEach patt e rpartrules which dxgrassea
relation between a certain context , a problem, and a
solution. 0

U Patterns can be applied to many areas, including
software development

Patterns in software development

©

Design pattern:

i A document that describes a general solution to a
design problem that recurs in many applications.

Developers adapt the pattern to their specific application

Since 1994, various books have catalogued important
patterns. Best known is Design Patterns by Erich Gamma,

Richard Helm, Ralph Johnson, John Vilissides, Addison -
Wesley 1994.

Why design patterns?

©

O0Desi gni nagientedospftevare is hard and designing
reusableobject -or i ented software I
Gamma

U Experienced object -oriented designers make good
designs while novices struggle

U Object -oriented systems have recurring patterns of
classes and objects

U Patterns solve specific design problems and make OO
designs more flexible, elegant, and ultimately reusable

S

Benefits of design patterns

i Capture the knowledge of experienced developers
i Publicly available repository

i Common pattern language

i Newcomers can learn & apply patterns

i Yield better software structure

i Facilitate discussions: programmers, managers

Design patterns

©

U A design pattern is an architectural scheme 1 a certain
organization of classes and features 1 that provides
applications with a standardized solution to a common

problem.

Design patterns (

GoF)

©

Creational
A Abstract Factory
A Singleton
A Factory Method
A Builder
A Prototype

Structural

A Adapter
Bridge
Composite
Decorator
Facade
Flyweight
Proxy

To o To Io Do Do

Behavioral

A

To o Io Io Do Do Do Do I» I»

Chain of Responsibility
Command (undo/redo)
Interpreter

lterator

Mediator

Memento

Observer

State

Strategy

Template Method
Visitor

Non-GoF patterns

A

Model-View-Controller

A pattern is not a reusable solution

Solution to a particular recurring design issue in a
particular context:

OcEach pattern describes a problem that occurs over
and over again in our environment, and then describes
the core of the solution to this problem in such a way
that you can use this solution a million times over,

without ever doing it the same way twice. 0
Gamma et al.

NOT REUSABLE

: : Karine Arnout
Pattern componentization l ETH PhD, 2004 ‘

Classification of design patterns:
i Fully componentizable
i Partially componentizable
i Wizard - or library -supported

u Non-componentizable

Mot Componentizable (2)
9% Fully componentizable (48%)

Wizard or Library Support (6)
26% Fully Componentizable (11)

A48%

FParialy Componentizable (4)
17%

_ ©
Observer pattern and event -driven progr .

Intent: O De f | ameto-anany dependency between
objects so that when one object changes state, all its
dependents are notified and u

[Gamma et al., p 331]

U Implements publish -subscribe mechanism

U Used in Model -View-Controller patterns, interface
toolkits, event

U Reduces tight coupling of classes

13

Observer and event -driven design

.

Observers

Berest g Bt

Handling input with modern GUIs

User drives program:

TTTTT

b
x

)I
OWhen a user presses ¥ gmemest /

this button, execute N -
that action from my
programo

g/

E

| CLICK START STATION ABOVE

e

bl [

Event -driven programming: an example

Specify that when a
user clicks this button
the system must
execute

find_station (X, y)

where x and y are the
mouse coordinates and
find_station isa
specific procedure of
your system.

) TRAFFIC
File Help

@ e® e 6o =

|ais des congres /
P Matot Haussmann - 5t.
rles de Gaulle - Etoi
Dauphi .amps El - Ef
5 =

/ g
|

r
ﬁ/
§

| CLICK START STATION ABOVE

bl [

JAaadaaa:

Event -driven programming: a metaphor

Publishers Subscribers

Alternative terminologies

©

U Observed / Observer

U Subject/ Observer

U Publish / Subscribe

U0 Event-driven
design/programming

In this presentation:
Publisher and Subscriber

|

A solution: the Observer Pattern (GoF)

subscribed: LIST [é]
publish * __attach ~ update *

, * detach o[* subscribe *
PUBLISHER UBSCRIBE unsubscribe *

e

- " \ y - update i
+

PUB_2 PUs.1 SUB_1 i -

* Deferred (abstract) ‘ Inherits from
t Effective (implemented) _ Client (uses)

Observer pattern

Publisher keeps a (secret) list of observers:
subscribed : LINKED LIST [SUBSCRIBER]

To register itself, an observer executes
subscribe (some_publisher)

where subscribe is defined in SUBSCRIBER:

subscribe (p: PUBLISHER)
-- Make current object observe p.
require
publisher_exists : p /= Void
p.attach (Current)
end

Attaching an observer

©

In class PUBLISHER : Why? J
P
feature {SUBSCRIBER}
attach (s: SUBSCRIBER)

-- Register s as subscriber to this
publisher.

require
subscriber_exists :s/=Void
do

subscribed .extend (s)

end
Note that the invariant of PUBLISHER includes the clause
subscribed /= Void

(List subscribed is created by creation procedures of
PUBLISHER)

Triggering an event

_ B Upgate,k:
+
publish Unsubscribe+
-- Ask all observers to
-- react to current event. subscribed: LIST [¢]
dO detach
across
subscribed update *
as)
S | — é
loop __ Dynamic binding |
. y, _/
s.item . | update | -
end
end o & @

item

subscribed

forth

Cursor

Each descendant of SUBSCRIBER defines its own version of update

Observer - Participants

©

Publisher

i knows its subscribers. Any number of Subscriber objects may
observe a publisher.

i provides an interface for attaching and detaching subscribers.

Subscriber
defines an updating interface for objects that should be
notified of changes in a publisher.
Concrete Publisher
i stores state of interest to ConcreteSubscriber objects.
i sends a notification to its subscribers when its state changes.

Concrete Subscriber
i maintains a reference to a ConcretePublisher object.
i stores state that should stay consistent with the publisher's.

i iImplements the Subscriber updating interface to keep its state
consistent with the publisher's.

23

Observer pattern (in basic form)

©

0

0

0

0

Subscriber may subscribe:
i At most one operation
i To at most one publisher

Event arguments are tricky to handle

Subscriber knows publisher
(More indirection is desirable)

Not reusable n must be coded anew for each application

©
Observer - Conseqguences

Observer pattern makes the coupling between publishers
and subscribers abstract.

Supports broadcast communication since publisher
automatically notifies to all subscribers.

Changes to the publisher that trigger a publication may lead
to unexpected updates in subscribers.

25

Using agents in EliffelVision

O

) TRAFFIC

I3
Ix

®a e

=

g
El

e

| CLICK START STATION ABOVE

Paris_map. click . subscribe (agent find_station)

Mechanisms in other languages

uC and C++: ofunction pointer

U C#: delegates (more limited form of agents)

Using agents (Event Library)

Event: each event type will be an object
Example: left click

Context : an object, usually
representing a user interface element

Example: the map

Action : an agent representing a routine
Example: find_station

) TRAFFIC

LIS

FRjais es cong

The Event library

©

Basically:
(One generic class: EVENT_TYPE
(Two features: publish and subscribe

For example: A map widget Paris_map that reacts in a way
defined in find_station when clicked (event left click):

Event library: a simple implementation

class
EVENT_TYPE [ARGS ->TUPLE]

inherit ANY
redefine default create end

feature {NONE } -- Implementation
subscribers : LINKED LIST [PROCEDURHANY, ARGS]]

feature {NONE } -- Initialization

default_create
-- Initialize list.
do
create subscribers smake

subscribers scompare_equal
end

30

Simplified event library (end)

feature -- Basic operations

subscribe (action: PROCEDURE[ANY, ARGS])
-- Add action to subscription list.

require
exists: action /= Void
do
subscribers gsextend (action)
ensure
subscribed : subscribers shas (action)
end

publish (arguments: ARGS)
-- Call subscribers.

require

exist : arguments /= Void
do

across subscribers as s loop s sitem gcall (arguments) end
end

end

Event Library style

©

The basic classis EVENT _TYPE
On the publisher side , e.g. GUI library:

i (Once) declare event type:

click : EVENT_TYPE [TUPLE [INTEGER, INTEGER]]
i (Once) create event type object :

create click

i To trigger one occurrence of the event:

click .publish ([x_coordinate , y coordinate])

On the subscriber side, e.g. an application:

click .subscribe (agent find_station)

. . ©
Example using the Event library

The subscribers (O0observersd) subsc

Paris_map.click .subscribe (agent find_station)

The publisher (O0Osubjectd) trigger s
click .publish ([x_positition ,y position])

Someone (generally the publisher) defines the event type :

click : EVENT _TYPE [TUPLE[INTEGER, INTEGER]]
-- Mouse click events
once
create Result
ensure

exists : Result /= Void
end

Subscriber variants

©

click .subscribe (agent find_station)

‘Paris_mapiclick .subscribe (agent find_station)

click .subscribe (agent \your procedure (a, ?, ?, b)J)

click .subscribe (agent other _object .other procedure J)

Observer pattern vs. Event Library

©

In case of an existing class MY CLASS :

i With the Observer pattern:

A Need to write a descendant of SUBSCRIBER and
MY_ CLASS

A Useless multiplication of classes

i With the Event Library:
A Can reuse the existing routines directly as agents

Design patterns (

GoF)

©

Creational
A Abstract Factory
A Singleton
A Factory Method
A Builder
A Prototype

Structural

A Adapter
Bridge
Composite
Decorator
Facade
Flyweight
Proxy

> < < < < <

Behavioral

A

o o To Do < Do Po P I <

Chain of Responsibility
Command (undo/redo)
Interpreter

lterator

Mediator

Memento

Observer

State

Strategy

Template Method
Visitor |

Non-GoF patterns

V

Model-View-Controller

Visitor pattern

Intent:;

0 Re pr e s epetation ta Ime performed on the elements
of an object structure . Visitor lets you define a new
operation without changing the classes of the elements
on which it operates. o

[Gamma et al., p 331]

i Static class hierarchy

i Need to perform traversal operations on
corresponding data structures

i Avoid changing the original class structure

37

Visitor application examples

Set of classes to deal with an Eiffel or Java program (in
EiffelStudio, Eclipse ...)

Or: Set of classes to deal with XML documents
(XML_NODE, XML_DOCUMENT, XML _ELEMENT,
XML ATTRI BUTE, XML CONTENTE€)

One parser (or several: keep
Many formatters:

i Pretty -print

u Compress

i Convert to different encoding

i Generate documentation

i Refactor

i e

38

Inheritance hierarchy

"_CLOSED.
FIGURE

ils

(N
* deferred

+ effective

++ redefine d
\)

Polymorphic data structures

(POLYGON) (CIRCLE)

(CIRCLE) (ELLIPSE) (POLYGON

[figs LIS T [FIGURE]

|

/ from
figs . start

until
figs . after

loop

figs item . display
\end

figs .forth

/

The dirty secret of O -0 architecture

conter o i°niay® Is it easy to add types
/)_k (e.g. TRIANGLE) to
e — existing operations
OPEN_ CLOSED _
\FIGURE/\ NS FIGURE)
”/,,/?'$s\\\\ ’///,a'$g\\\\\\
w POLYLINE poL\;rGoN ELLI+PSE

RECTANGLE Si9¢d

T diagonal

SQUARE CIRCLE

