
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 9: Software Architecture 

in Robotics 



2

Control and navigation architecture

Serial architecture

Parallel architecture

Module 1 … Module n hardware

… hardware

Module 1

Module n

Arbiter

perception

action

action

perception



3

Architecture

 Sense the environment.

 Plan the next move based on the goals.

 Execute the plan through the actuators.

Properties

 Easy to execute a plan

 Must generate a plan and model the world

 No feedback: insufficient to handle 

environmental uncertainty and unpredictability.

Sense-Plan-Act

Sensors

Data

Perception

Planning

Control

Control

Actuator

Nilsson, N. Principles of Artificial Intelligence. Palo Alto: Tioga. 1980.



4

Subsumption architecture

Architecture

 Divide the control into different behaviors, where the higher level 

behavior subsumes the lower level behaviors.

 Let the arbiter pick the appropriate behavior for the given 

condition.

Arbiter

Behavior 1

Behavior 2

Behavior 3
Control

Brooks, R. "A robust layered control system for a mobile robot". IEEE Journal of Robotics and 
Automation, 2 (1): 14–23. 1986.



5

Subsumption Architecture

Properties

 Each layer/behavior as a small finite state machine

 Each behavior achieves a single goal

 No cooperation of different behaviors

 Deduce the best next action based on the current sensor 

readings

 Reactive: rapidly responds to environmental changes

 No global representation nor world model

 No planning nor meta-reasoning

 Not taskable

 Does not remember the current goals



6

Three-layer architecture

Architecture

 Deliberator: perform high-level computations

 Sequencer: select which primitive behavior 

the controller should use at a given time and 

supply parameters for the behavior.

 Controller: Perform primitive behaviors, with 

tight coupling of sensors to actuators

Properties

 Avoids the bottleneck problem

 Can plan and learn

 Can operate in dynamic environment

Gat, E. “On three-layer architectures". Artificial Intelligence and Mobile Robots. AAAI Press. 1998.

Deliberator

Control

Sequencer

Control

Controller

Query

Query



7

Tiered robot architecture examples

Three-tiered architecture Two-tiered architecture with 

offline planning

Executive

Planning

Real-time controller

Motion control

Behavior 1 Behavior n…

Executive

Real-time controller

Motion control

Behavior 1 Behavior n…

actionperception

Robot hardware

actionperception

Robot hardware

Pell, B., Bernard, D., Chien, S., Gat, E., Muscettola, N., Nayak, P., Wagner, M., Williams, B. 1998. 

“An Autonomous Spacecraft Agent Prototype.” Autonomous Robots, No. 5, 1–27.



8

Tiered robot architecture examples

Three-tiered architecture with 

episodic planning

Two tiered with integrated 

planning

Executive

Planning

Real-time controller

Motion control

Behavior 1 Behavior n…

Executive

Real-time controller

Motion control

Behavior 1 Behavior n…

actionperception

Robot hardware

actionperception

Robot hardware

Global 
knowledge

Local 
knowledge

Global 
knowledgePlanning … …



9

It’s all good but …



10

Robotics Frameworks

 Ease the development of control software for robots.

 Provide standards, principles, applications, and libraries to support 

common tasks.

 Exemplary frameworks

 The Carnegie Mellon Navigation Toolkit (CARMEN)

 Yet Another Robot Platform (YARP)

 Universal Robotic Body Interface (URBI)

 Mission-Orientated Operating Suite (MOOS)

 Microsoft Robotics Development Studio

 Robot Operating System (ROS)



11

CARMEN

Model-View-Controller (MVC) 

 A central hub coordinates the 

communication. 

 The modules read parameters and 

maps from a centralized model 

repository. 

 The modules communicate over the 

network with a publish/subscribe 

pattern.

 The modules are arranged in layers.

Display

Robot 
control

Robot 
model

Subscribe
Publish &

Subscribe

Publish &

Subscribe



12

CARMEN modules

• High-level tasks, e.g. tour giving, 
interaction, etc.

Application Layer

• localization, planning, mapping, visual 
processing, logging, and simulation

Navigation Layer

• Hardware management and communication

• Collision detection
Base Layer

• Display modules, editors, etc.
Non-autonomous 

Layer



13

YARP

Observer pattern

 Special port objects deliver 

messages to other observers/ports.

 Every connection can take place 

using a different protocol.

 Every port belongs to a process.

 Ports are located on the network by 

symbolic names.

 A name server maps the names into 

the IP address, port number, and 

interface name.



14

YARP components

• Interface with operating system(s)

• Data streaming across many threads 
across many machines

libYARP_OS

• Signal processing tasks (visual, auditory)

• Easy interface with commonly used 
libraries

libYARP_sig

• Interface with common devices used in 
robotics: framegrabbers, digital 
cameras, motor control boards, etc.

libYARP_dev



15

URBI

Client-server architecture

 Several clients can interact with the server simultaneously.

 Remote objects can also connect to the server.



16

URBI components

• C++ component library that comes with a robot 
standard API to describe motors, sensors and 
algorithms. 

UObject

• Orchestration scripting language

• Runs on top of Urbi Virtual Machine

• Glues components together and describes high 
level behaviors

• Supports parallel and event-driven 
programming 

UrbiScript



17

Microsoft Robotics Development Studio

Representational State Transfer (REST) pattern

 A program interacts with a robot through 

multiple software services.

 A distributed messaging system enables 

services to communicate on the same 

computer over the network.

 A configuration manifest file defines the 

interaction of services in a particular control 

system.

Wireless 
comm.

Robot 
control 

interface

Camera

Wireless 
comm.

Motor 
drive 

control



18

MRDS core features

Coordination and Concurrency Runtime (CCR)

 Handles state updates and message processing

Decentralized Software Services Protocol (DSSP)

 Launches services from its manifest descriptions

 Provides for partnering

 Facilitates communications between message ports on 

individual services

Generic contracts for common elements of a robotic system

 New services can specify to which contracts it conforms

 A discovery service lists all currently running services that 

conform to a certain contract. 



19

MOOS

A star topology with layered architecture

 A central server with a database of messages

 Each client bundles its messages and sends 

them to the server. 

 All communication between the client and 

the server is instigated by the client.

 A client subscribes for messages of 

the right type. 

 The client picks up the messages 

whenever it connects to the server.

 No peer-to-peer communication.

Client 1

Client 2

MOOS 
database

Store &

Fetch

Store &

Fetch

Client 3

Store &

Fetch



20

MOOS client

• ApplicationsApplication Layer

• Commonly used functionality such 
as control and logging

Essentials Layer

• connects clients (e.g. sensors, 
actuators, processes, etc.) through 
a network with a star topology

Communication 
Layer



21

ROS

Peer-to-peer network architecture

 A central naming service to allow nodes to find other nodes

 Publish-subscribe model for asynchronous transactions

 A node can publish and subscribe to topics.

 Many nodes can publish and subscribe to a single topic.

 Service for synchronous transactions

 Only one node can advertise a service.

 A response follows a request.



22

ROS

Node

Topic Topic

Publication

Subscription

NodeNode


