Introduction to Eiffel

Martin Nordio, Christian Estler
ETH Zurich

Distributed Software Engineering Lab

©

Overview

©

Part 1: Language Constructs

>

V V V V V V

Basics: class definition, if then else, expressions, loops
and across, creation procedures

Inheritance: redefinition and multiple inheritance
Exception Handling

Once Routines

Style rules

Generics

Information Hiding

Part 2: Contracts

>
>

Preconditions, postconditions and class invariants
Contracts in inheritance

Part 3: Tuples and Agents

Preparation

Go to:

http://codeboard.io

If you don’t have an account yet, please sign-up
and sign-in before doing the exercises.

Once you're done with a programming
exercise, submit your solution.

©

Part 1. Language constructs

1.1 BASICS

Class declaration: Eiffel vs Java:

class public class Account {
ACCOUNT

end)

©

Constructors

class
ACCOUNT
create
make,
make_balance
feature
make
do ...
end
make_balance (i: INTEGER)
do ...
end

end

public class Account {
public Account() {...}
public Account (intb) {...}

©

Constructors ©

class public class Account {
ACCOUNT public Account() {...}

create . .
make, make_balance, public Account (int b) {...}
make _name public Account (string s) {...}
feature J Constructors can
make have any name; use
do ... the create clause to
end) declare a routine as
make_balance (i: INTEGER) constructor
do ... 77
end ~
make_name (s: STRING)
do ...
end

end

O

Overloading

class public class Printer {
PRINTER public void print(int i) {...}

feature public void print(float) {...}
print_int (a_int: INTEGER) public void print(String s) {...}

do ... end }
princzl‘area/ e(ﬁarea/: REAL) Eiffel does not
support

print_string (a_str: STRING) overloading!

do ... end
end

)

Creating Objects

class
BANK

feature
pay_Dbill
local
b1: ACCOUNT

do
create b1.make

end

end

public class Bank {
public void payBill() {
Account b1 = new Account();

©

©

Creating Objects

class public class Bank {
BANK public void payBill() {
Account b1 = new Account();

feature
pay_bill Account b2 = new Account (2);
local }
b1, b2: ACCOUNT
do
Crea:e 527-”73:9 balance 2 Create objects using
create .makKe_palance .
end the create keyword;
declare the local
end variables in the
local clause

Let’s code... ©

L5
Go to: Wrvg

https://codeboard.io/projects/8744

Task: create a local ACCOUNT objectin the
constructor of the APPLICATION class

Task: modify the creation procedure of
ACCOUNT to print a confirmation that an
account was created

Task: write a new creation procedure in class
ACCOUNT that lets you create an account with
an initial balance; use it from APPLICATION

11

Creating Objects: default create

class class
MAIN BANK
feature feature
root pay_bill
local do
b1: BANK .
do end
create b1 end

—- corresponds to
—- create b1.default_create
b1.pay_bill

end : :
All classes inherit from

ANY (Object in Java). If no
creation procedure is

specified, default_create is
used (inherited from ANY)

end

Creating Objects: default create

class
BANK

inherit
ANY
redefine
default_create
end

create
default _create

feature

end

The routine default create
can be redefined

©

13

Let’s code... ©

(0
Go to: D1y

https://codeboard.io/projects/8744

Task: override the default_create in class
CUSTOMER to print a confirmation message

Task: create a customer object in the
APPLICATION class

Task: write a creation procedure for class
CUSTOMER that takes, name, first._ name and
age as arguments; use it to create a customer

14

©

Features

class public class Account {
ACCOUNT public Account() {...}

feature -- Initialization
make dol _I__Izncll public Account (int b) {...}

make_balance (i: INTEGER) public Account (string s) {...}
do ... end public void deposit (int i) {...}

make_name (s: STRING) public void withdraw (int i) {...}
do ... end

public void transfer(Account b) .

feature — Basic operations public int balance() {...}

deposit (i: INTEGER) do ... end }
withdraw (i: INTEGER) do ... end
transfer (b: ACCOUNT) do ... end

The feature
clause is used to

feature — Access group routines and | {\—
balance: INTEGER do ... end for information (=

end hiding (see 1.8)

Expressions and Conditionals ©

feature public foo() {
foo .
f(b&(cld
do if (_(C .)<
if band (c or d) then X =3;
X :=5
end)
end
end
foo
do

if band then (cor else d)then public foo() {
if (b && (cll d)){
end
iy end)
© }

16

Let’s code... ©

(0
Go to: D1y

https://codeboard.io/projects/8744

Task: write a condition that only allows to
withdraw money if the balance if sufficient;
otherwise print an error message; make two
withdraws that show the regular and the
exceptional behavior

Hint: x . out gives you the string for integer x

17

©

Return and breaks

class public class B {
B public int foo() {
feature return 5;
foo: INTEGER }
do
Result :=5
end Eiffel does not
support neither
end breaks, continues
nor return

©

Loops
print public class Printer {
local public void print() {
i: INTEGER . .
do for(int i=0;i<10;i++) {
from
=1 }
until }
i>=10 }
loop
=1+ 1
end

end

19

Loops: Example 2

print
local
i: INTEGER
do
from
| =1
until
I>=10
loop

=1+ 1
end
end

public class Printer {
public void print() {
int i=0;
while(i<10) {
I++;

©

20

Let’s code... ©

L5
Go to: Wrvg

https://codeboard.io/projects/8746

Task: implement the ‘print_log’ functionality
for in the class ACCOUNT; complete class
ACCOUNT to log deposits and withdraws

21

Loops: Traversing a list

print_using_from
do
from list.start
until /ist.after
loop
list.item.print
list.forth
end
end

print_using_across
do
across list as e loop
e.item.print
end
end

public class Printer {
public void print() {
for(Element e: list) {
e.print();

©

22

Basic Types

Eiffel:
BOOLEAN
CHARACTER
NTEGER
NTEGER_64
REAL
DOUBLE

Java:
boolean
char, byte
short, int
long

float
double

O,

23

O

Part 1: Language constructs

1.2 INHERITANCE

Deferred Class (abstract class) ?

deferred class abstract class Account {
ACCOUNT abstract void deposit(int a);
feature)
deposit (a_num: INT)
deferred
end
end

A class must be deferred
if it has at least one
deferred routine. A class
can be deferred without
any deferred routines.

25

Simple Inheritance

class
ACCOUNT
inherit
ANY
end

public class Account
extends Object {

©

26

Let’s code... ©

L5
Go to: Wrvg

https://codeboard.io/projects/8746

Task: create a deferred class PERSON; move

the properties ‘name’ and ‘age’ from class
CUSTOMER into the deferred class PERSON;

make sure the program behavior did not
change

27

Feature redefinition

class
ACCOUNT
inherit
ANY
redefine out end

feature

out: STRING
do
Result = “abc”
end

end

public class Account
extends Object {

String toString() {
return “abc;

}

All routines that are
redefined must be listed in
the inherit clause.

©

28

Precursor call

©

class
ACCOUNT
inherit
ANY
redefine out end

feature

out: STRING
do
Result =
Precursor {ANY}
end

end

public class Account
extends Object {

String toString() {
return super.toString();

29

Multiple Inheritance

©

class
A

feature
foo do end

end

Option 1:
class
C
inherit
A
B rename foo as foo_bend

end

Class C will have two
features foo and foo b

class
B
feature
foo do end

end

Option 2:
class
C
inherit
A
B undefine foo end

end

foo from B becomes

deferred; implemented in
C by foofrom A

30

Let’s code...

(0
Go to: D1y

https://codeboard.io/projects/8748

Task: redefine the ‘print_self’ routine in class B
to print the correct message

Task: redefine the ‘print_self’ routine in class C
to print the correct message; what happens
when you try to compile?

Task: resolve the conflict that was created due
to multiple inheritance (hint: there is more
than 1 way to do that)

©

31

Structure of inherit clause

inherit
A
rename
undefine
redefine
end
B

rename
undefine
redefine

end

A redefine clause must structured in
the order rename, undefine, redefine.

O,

32

©

Frozen class / frozen routine

frozen class final class Account
: AC.C OUNT extends Object {
inherit
ANY)
end
class class Account {
ACCOUNT final void deposit(int a) {
feature
frozen deposit (a_num: INT) }
do }
end A frozen class cannot be
end inherited; a frozen routine
cannot be redefined.

Expanded class

expanded class
MY _INT

end

int, float, double, char

©

34

