
1

1.3 EXCEPTION HANDLING
Part 1: Language constructs

2

Java: Exception Handling

public class Printer {
public print(int i) {

try {
throw new Exception()

}
catch(Exception e) { }
}

}

3

Eiffel: Exception Handling

class
PRINTER

feature
print_int (a_int: INTEGER)

local
l_retried: BOOLEAN

do
if not l_retried then

(create {DEVELOPER_EXCEPTION}).raise
else

-- Do something
end

rescue
l_retried := True
retry

end
end

4

Eiffel: retry example

feature
transmit (a_p: PACKET)

-- transmit packet a_p
local

l_current_retries: INTEGER
r: RANDOM_NUMBER_GENERATOR

do
line.send (a_p)

rescue
if l_current_retries < max_retries then

r.next
wait_millisecs (r.value_between(20, 50))
current_retries := current_retries + 1
retry

end
end

end

5

1.4 ONCE ROUTINES
Part 1: Language constructs

6

What are once routines?

foo: INTEGER
once

Result := factorial (10)
end

test_foo
do

io.put_integer (foo) -- 3628800, calculated
io.put_integer (foo) -- 3628800, directly returned

end

§ Executed the first time only, subsequent calls
have no effect

§ If routine is a function, Result is stored and
returned in subsequent calls

§ Similar to singleton pattern

7

Use of once routines

ØConstants, other than basic types
i: COMPLEX

once create Result.make (0, 1) end

ØLazy initialization
settings: SETTINGS

once create Result.load_from_filesystem end

ØInitialization procedures
init_graphics_system

once ... end

8

1.5 STYLE RULES
Part 1: Language constructs

9

Style rule

class
PREVIEW

inherit
TOURISM

feature
explore

-- Show city info
-- and route.

do
Paris•display
Louvre•spotlight
Line8•highlight
Route1•animate

end
endTabs

For indentation, use tabs, not
spaces

10

- Class name: all upper-case
Full words, no abbreviations
(with some exceptions)
- Classes have global
namespace: two classes
cannot have the same name
(even in different clusters)
- Usually, classes are prefixed
with a library prefix

EiffelVision2: EV_
Base is not prefixed

class
PREVIEW

inherit
TOURISM

feature
explore

-- Show city info
-- and route.

do

Paris•display
Louvre•spotlight
Line8•highlight
Route1•animate

end
end

More style rules

11

- For feature names, use full
words, not abbreviations

- Always choose identifiers
that clearly identify the
intended role

- Use words from natural
language (preferably
English) for the names you
define

- For multi-word identifiers,
use underscores

class
PREVIEW

inherit
TOURISM

feature
explore

-- Show city info
-- and route.

do
Paris•display
Louvre•spotlight
Line8•highlight
Line8•remove_all_sections
Route1•animate

end
end

Even more style rules

12

Eiffel Naming: Locals / Arguments

ØLocals and arguments share namespace with features
Ø Name clashes arise when a feature is introduced,

which has the same name as a local (even in parent)

ØTo prevent name clashes:
Ø Locals are prefixed with l_
Ø Some exceptions like “i“ exist
Ø Arguments are prefixed with a_

13

1.6 GENERICS
Part 1: Language constructs

14

Declaring generics

class
MY_QUEUE [G]

feature

item: G
-- First item in queue.

do … end

extend (a_element: G)
-- Add new element.

do … end

end

G is called the generic
parameter. By
convention, the generic
parameter name is G. If
there are more
parameters, use G, H,
etc. or a meaningful
abbreviation such as K
for keys in a hash table

15

Creating instances of generics classes

class
EXAMPLE1

feature
int_queue

-- An integer queue.
local
qi: MY_QUEUE [INTEGER]

do
create qi

qi.extend (35)
qi.extend (6)

end
end

class
EXAMPLE2

feature
string_queue

-- A string queue.
local
qs: MY_QUEUE [STRING]

do
create qs

qs.extend (“Asterix”)
qs.extend (“Obelix”)
qs.extend (“Suffix”)

end
end

16

Constraint generics

class
MY_LIST [G -> COMPARABLE]

feature

item: G
-- First item in queue.

do … end

extend (a_element: G)
-- Add new element.

do
… if a_element < item then
…

end

end

The generic parameter G
must be a class inheriting
from COMPARABLE

17

Creating instances of constraint generics classes

-- Valid declarations
li: MY_LIST [INTEGER]
ls: MY_LIST [STRING]
lr: MY_LIST [REAL]
ld: MY_LIST [DOUBLE]
…

-- Invalid declarations
la: MY_LIST [ACCOUNT]
lb: MY_LIST [BANK]
lm: MY_LIST [MAIN]
…

Classes	 ACCOUNT,	
BANK &	 MAIN don’t	
inherit	 from	
COMPARABLE

18

1.8 INFORMATION HIDING
Part 1: Language constructs

19

Procedure: doesn’t return a result
§ Yields a command
§ Calls are instructions

Function: returns a result

f (arg : TYPE; ...): RESULT_TYPE
... (The rest as before) ...

§ Yields a query
§ Calls are expressions

Two kinds of routine

20

FeatureFeature

Features: the full story

Command

Query

Feature

Function

No result

Memory

Computation

Client view
(specification)

Internal view
(implementation)

Returns result

Attribute

Procedure

Memory

Computation

Routine

Feature

21

The Uniform Access principle

It doesn‘t matter to the client
whether you look up or compute

22

Uniform Access: an example

balance = list_of_deposits.total – list_of_withdrawals.total

list_of_deposits

list_of_withdrawals

balance

list_of_deposits

list_of_withdrawals
(A2)

(A1)

A call such as
your_account.balance

could use an attribute or a function

balance
stored	 in	
attribute

balance
always	 	
calculated	
from	
deposits	 and	
withdrawals

23

Exporting (making public) an attribute

In Eiffel, exporting an attribute means exporting it read-only

From the outside, it is not shown as an attribute, just as a
query: it could be a function

In contrast: in C++, Java & C#, if you make an attribute* x
public, it is available for both read and write:

Ø v := a1.x
Ø a1.x := v

As a result, it is almost always a bad idea to export an
attribute.

* (field, member variable)

24

Getter functions

In C++, Java & C#, the standard technique, if private_x
is secret, is to export an associated getter function:

x : T
do

Result := private_x
end

Eiffel needs no getter functions: just export the attribute
This is safe: the attribute is exported

Ø Only for reading

Ø Without the information that it is an attribute: it could be
a function (Uniform Access principle)

25

Status of calls in a client with a1: A:

Information hiding

class
A

feature
f ...
g ...

feature {NONE}

h, i ...

feature {B, C}

j, k, l ...

feature {A, B, C}

m, n ...
end

Ø a1.f, a1.g: valid in any client

Ø a1.h: invalid everywhere

(including in A’s own text!)

Ø a1.j: valid only in B, C and their descendants

(not valid in A!)

Ø a1.m: valid in B, C and their descendants,
as well as in A and its descendants

26

Information hiding

Information hiding only applies to use by clients, i.e. using dot
notation or infix notation, as with a1.f (Qualified calls).

Unqualified calls (within class) not subject to information hiding:

class A feature {NONE }
h do ... end

feature

f
do

...; h ; ...
end

end

27

PART 2: CONTRACTS

28

Contracts

A contract is a semantic condition characterizing usage
properties of a class or a feature

Three principal kinds:

Ø Precondition
Ø Postcondition
Ø Class invariant

29

Design by Contract

Together with the implementation (“how”) of each software
element, describe “what” it is supposed to do: its contract

Three basic questions about every software element:
Ø What does it assume?

Ø What does it guarantee?

Ø What does it maintain?

Precondition

Postcondition

Invariant

30

Contracts in programming languages

Eiffel: integrated in the language

Java: Java Modeling Language (JML), iContract etc.

.Net languages: Code Contracts (a library)

Spec# (Microsoft Research extension of C#): integrated in the language

UML: Object Constraint Language

etc.

31

Property that a feature imposes on every client:

A client calling a feature must make sure that the precondition
holds before the call

A client that calls a feature without satisfying its precondition
is faulty (buggy) software.

Precondition

factorial (i: INTEGER): INTEGER
require

valid_arg: i >= 0
do
…

end

A feature with no require clause
is always applicable, as if it had

require
always_OK: True

32

Another example:

extend (a_element: G)
require

valid_elem: a_element /= void
not_full: not is_full

do … end

Precondition

A feature with a require clause
require
label_1: cond_1
label_2: cond_2 …
label_n: cond_n

is equivalent to
require
label: cond_1 and cond_2 and … cond_n

33

Assertions

not_too_small: i >= 0

Assertion

Condition
(Boolean expression)

Assertion tag

34

Let’s code…

Go	 to:

https://codeboard.io/projects/9137

Task:	 in	 class	 CUSTOMER,	 write	 a	 precondition	
for	 the	 creation	 routine	
make_with_name_and_age

Task:	 create	 an	 invalid	 CUSTOMER object	 and	
try	 to	 run	 your	 program.	 What	 happens?

Task:	 fix	 your	 CUSTOMER object	 to	 satisfy	 the	
precondition	 of	 the	 creation	 routine

35

Precondition: obligation for clients
Postcondition: benefit for clients

extend (a_element: G)
ensure

inserted: i_th (count) = a_element

index (a_element: G): INTEGER
ensure

exists: result > 0 implies i_th (result) = a_element
no_exists: result = -1 implies not is_inserted (a_element)

Postconditions

36

Let’s code…

Go	 to:

https://codeboard.io/projects/9137

Task:	 in	 class	 CUSTOMER,	 write	 a	
postcondition for	 the	 creation	 routine	
make_with_name_and_age

Task:	 modify	 the	 implementation	 of	
make_with_name_and_age such	 that	 it	 breaks	
your	 postcondition.	 Run	 the	 program.	 What	
happens?

37

Old notation

Usable in postconditions only

Denotes value of an expression as it was on routine entry

Example (in a class ACCOUNT):

balance : INTEGER
-- Current balance.

deposit (v : INTEGER)
-- Add v to account.

require
positive: v > 0

do
…

ensure
added: balance = old balance + v

end

38

Postcondition principle

A feature that fails to ensure its postcondition
is buggy software.

A feature must make sure that, if its precondition held
at the beginning of its execution, its postcondition will
hold at the end.

39

Invariant

An invariant states properties about an object that are true

• after the object has been initialized
• before and after every routine call

(but not necessarily in between a call)

The invariant is listed after the
last feature block.

Example (from class ARRAY):

invariant
area_exists: area /= Void
consistent_size: capacity = upper - lower + 1
non_negative_count: count >= 0
index_set_has_same_count: valid_index_set

A class with no invariant is
the same a

invariant
always_OK: True

40

A class with contracts

class
BANK_ACCOUNT

create
make

feature
make (n : STRING)

-- Set up with name n
require

n /= Void

do
name := n
balance := 0

ensure
name = n

end

name : STRING
balance : INTEGER
deposit (v : INTEGER)

-- Add amount v
do

balance := balance + v
ensure

balance = old balance + v
end

Invarian
t

name /= Void
balance >= 0

end
ensure

name = n

require
n /= Void

ensure
balance = old balance + v

invariant
name /= Void
balance >= 0

41

Let’s code…

Go	 to:

https://codeboard.io/projects/9137

Task:	 in	 class	 ACCOUNT,	 replace	 all
-‐-‐ Important:	 …
comments	 with	 contracts

42

Contracts and inheritance (Example)

ACCOUNT

SPECIAL_
ACCOUNT

class
ACCOUNT_MANAGER

feature -‐-‐ Operations

init_new_account(a_acc: ACCOUNT)

do
-‐-‐ do all initialization
a_acc.set_balance(0)

end

ACCOUNT_
MANAGER

class
ACCOUNT

feature -‐-‐ Operations

set_balance(a_balance: DOUBLE)
require
non_neg: a_balance >= 0

do
balance := a_balance

end

class
SPECIAL_ACCOUNT

inherit
ACCOUNT redefine set_balance end

feature -‐-‐ Operations

set_balance(a_balance: DOUBLE)
require
min_bal: a_balance > 100

do
balance := a_balance

end

Must not strengthen
precondition because
of polymorphism and
dynamicbinding.

43

Contracts and inheritance

Invariant Inheritance rule:
The invariant of a class automatically includes the
invariant clauses from all its parents,

“and”-ed.

When redeclaring a routine, we may only:
Keep or weaken the precondition

Keep or strengthen the postcondition

44

Assertion redeclaration rule in Eiffel

A simple language rule does the trick!

Redefined version may have nothing (assertions kept by default), or

require else new_pre
ensure then new_post

Resulting assertions are:
Ø original_precondition or new_pre

Ø original_postcondition and new_post

