
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

Solution 9: Data structures

ETH Zurich

1 Choosing data structures

1. You can use a doubly-linked list. An arrayed list is also suitable if it is implemented as
a circular buffer (that is, the list can start from any element in the array), in which case
inserting in the beginning of the list is also efficient. A disadvantage of an arrayed list is
that adding a station will sometimes take longer (when the array does not have any more
free slots and has to be reallocated), an advantage is fast access by index, which is not
mentioned in the scenario, but is always good to have.

A disadvantage of a doubly-linked list is high memory overhead: in addition to the refer-
ence to a station object each list element stores two other references (to the next and the
previous element). Arrayed list also has a memory overhead (free array slots), however for
common implementations this overhead will not be as high.

2. A hash table with names (strings) as keys and phone numbers as values, because hash
table allows efficient access by key.

3. A stack, because the step that was added last is always the first to roll back.

4. A linked list, because it supports efficient insertion of the elements of the second list into
the proper place inside the first list while merging. The insertion is done by re-linking
existing cells and does not require creating a copy of either of the lists.

5. A queue, because the first call added to the data structure should be the first one to be
processed.

2 Short trips: take two

Listing 1: Class SHORT TRIPS

note
description: ”Short trips.”

class
SHORT TRIPS

inherit
ZURICH OBJECTS

feature −− Explore Zurich

highlight short distance (s: STATION)
−− Highight stations reachable from ‘s’ within 3 minutes.

require

1



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

station exists: s /= Void
do
create times
highlight reachable (s, 3 ∗ 60)

end

feature {NONE} −− Implementation

times: V HASH TABLE [STATION, REAL 64]
−− Table that maps a station to the maximum time that was left after visiting that

station.
−− Stations that were never visited, are not in the table.

highlight reachable (s: STATION; t: REAL 64)
−− Highlight stations reachable from ‘s’ within ‘t’ seconds.

require
station exists: s /= Void
times exists: times /= Void

local
line: LINE
next: STATION

do
if t >= 0.0 and (not times.has key (s) or else times [s] < t) then

times [s] := t
Zurich map.station view (s).highlight
across

s.lines as li
loop

line := li.item
next := line.next station (s, line.north terminal)
if next /= Void then

highlight reachable (next, t − s.position.distance (next.position) / line.speed)
end
next := line.next station (s, line.south terminal)
if next /= Void then

highlight reachable (next, t − s.position.distance (next.position) / line.speed)
end

end
end

end

end

3 Bags

Listing 2: Class LINKED BAG

class
LINKED BAG [G]

feature −− Access

2



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

occurrences (v: G): INTEGER
−− Number of occurrences of ‘v’.

local
c: BAG CELL [G]

do
from

c := first
until

c = Void or else c.value = v
loop

c := c.next
end
if c /= Void then
Result := c.count

end
ensure

non negative result: Result >= 0
end

feature −− Element change

add (v: G; n: INTEGER)
−− Add ‘n’ copies of ‘v’.

require
n positive: n > 0

local
c: BAG CELL [G]

do
from

c := first
until

c = Void or else c.value = v
loop

c := c.next
end
if c /= Void then

c.set count (c.count + n)
else
create c.make (v)
c.set count (n)
c.set next (first)
first := c

end
ensure

n more: occurrences (v) = old occurrences (v) + n
end

remove (v: G; n: INTEGER)
−− Remove as many copies of ‘v’ as possible, up to ‘n’.

require
n positive: n > 0

local

3



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

c, prev: BAG CELL [G]
do
from

c := first
until

c = Void or else c.value = v
loop

prev := c
c := c.next

end
if c /= Void then
if c.count > n then

c.set count (c.count − n)
elseif c = first then

first := first.next
else

prev.set next (c.next)
end

end
ensure

n less: occurrences (v) = (old occurrences (v) − n).max (0)
end

subtract (other: LINKED BAG [G])
−− Remove all elements of ‘other’.

require
other exists: other /= Void

local
c: BAG CELL [G]

do
from

c := other.first
until

c = Void
loop

remove (c.value, c.count)
c := c.next

end
end

feature {LINKED BAG} −− Implementation

first: BAG CELL [G]
−− First cell.

end

4



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

4 MOOC: Genericity, Data Structures

Genericity

• Assume you have a class SORTED LIST [G −> COMPARABLE] with, among others,
routine

sort
−− Sort the elements of current.

do
...

end

Assume to have, in another class, the variable definition slp: SORTED LIST [PERSON].
The following statement is true: the definition would compile if class PERSON does inherit
from COMPARABLE.

• Assume you have just created an object of type LIST [PERSON]. What happens if you try
to add an object of type CAR to the list? Assume CAR does not inherit from PERSON.
The answers that apply are: “It will not work. I will get a compile time error” and “It
will not work. The only objects allowed into the list are those of type PERSON and its
descendants”.

• Assume you have just created an object of type LIST [PERSON]. What happens if you
try to add an object of type STUDENT to the list? Assume STUDENT does inherit
from PERSON. The answers that apply are: “It will work: I can add a STUDENT to
a LIST [PERSON] if STUDENT inherits from PERSON’ and “It will work: not only I
can add a STUDENT to a LIST [PERSON] if STUDENT inherits from PERSON, but I
can always add to the list an object of class PERSON and of any class inheriting from
PERSON.”

• Assume you have created an object of type LIST [PERSON], and filled it in with objects
of types STUDENT and TEACHER. What happens if you try to retrieve an object from
the list? Assume STUDENT and TEACHER do inherit from PERSON. The answers that
apply are: “It will work: I can retrieve a STUDENT from a LIST [PERSON], and the
same for a TEACHER, given that I know that STUDENT and TEACHER both inherit
from PERSON” and “It will work: it’s just that every time I retrieve an object, I don’t
know if it will be of type STUDENT or TEACHER”.

• The true statements about classes and types are: “Any non-generic class is a type”, “For
a generic class to be a type, we need to provide an actual type for the generic parameter”,
and “Any type is a class.”.

• Declaring a class as ARRAY [ARRAY [STRING]] is legal for the Eiffel compilers you are
using in this course: True.

Data Structures

• Which basic data structure stores items in contiguous memory locations, each identified
by an integer index? An array, an arrayed list (a list implemented using an array)

• Which basic data structure does not provide access to all stored items, but only to the
one which was added first? An arrayed queue (a queue implemented using an array), a
linked queue (a queue implemented using a linked list).

5



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

• The following statements about hash tables are true: Hash tables are a particular kind
of associative arrays; A hash table allows to access items via integer keys; Which hash
function we use can influence the efficiency of all operations in a hash table.

• Assume you need a data structure in which you can insert elements in the middle efficiently.
Which data structure and which implementation would you choose? A linked list.

• Assume you have to write a program that has to find the exit of a labyrinth. You have
to store the path you are currently exploring, be able to go back one step whenever you
find yourself in a dead-end, and explore a new possibility from there. Assuming you don’t
want to use recursion, which data structure would you choose? A stack.

• Assume you have to write a program supporting the operation of merging two sorted lists
into one ”in place” (without creating a copy of the lists). Which kind of data structure
would be more efficient to use? A linked list.

6


	Choosing data structures
	Short trips: take two
	Bags
	MOOC: Genericity, Data Structures

