
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer	

Exercise Session 2

2

Organizational

Ø  Assignments
Ø  One assignment per week
Ø  Will be put online Monday (around 18:00)
Ø  Should be handed in within nine days

(Wednesday, before 23:59)
Ø  Grading

Ø  Assignments : not graded
Ø  feedback can be offered on request

Ø  Mock exams : graded but do not affect the final
grade

Ø  Final exam : graded
Ø  Group mailing list

Ø  Is everybody subscribed (got an email)?

3

Today

Ø  Give you the intuition behind object-oriented (OO)
programming

Ø  Teach you about formatting your code
Ø  Differentiate between

Ø  feature declaration and feature call
Ø  commands and queries

Ø  Understand feature call chains
Ø  Get to know the basics of EiffelStudio

4

Classes and objects

Ø  The main concept in Object-Oriented programming is the
concept of Class.

Ø  Classes are pieces of software code meant to model
concepts, e.g. “student”, “course”, “university”.

Ø  Several classes make up a program in source code form.

Ø  Objects are particular occurrences (“instances”) of
concepts (classes), e.g. “student Reto” or “student Lisa”.

Ø  A class STUDENT may have zero or more instances.

5

Classes and objects (continued)
Ø  Classes are like templates (or molds) defining status and

operations applicable to their instances.

Ø  A sample class STUDENT can define:
Ø  A student’s status: id, name and birthday
Ø  Operations applicable to all students: subscribe to a

course, register for an exam.

Ø  Each instance (object) of class STUDENT will store a
student’s name, id and birthday and will be able to
execute operations such as subscribe to a course and
register for an exam.

Ø  Only operations defined in a class can be applied to its
instances.

6

Features

Ø  Feature declaration vs. feature call
Ø  You declare a feature when you write it into a class.

 set_name (a_name: STRING)
 -- Set `name’ to `a_name’.
 do
 name := a_name
 end
 name: STRING

Ø  You call a feature when you apply it to an object.
The object is called the target of this feature call.
•  a_person.set_name (“Peter”)

Ø  Arguments, if any, need to be provided in feature calls.
•  computer.shut_down
•  computer.shut_down_after (3)‏

Ø  A feature is an operation that may be applied to all
the objects of a class.

7

Features: Exercise

Ø  Class BANK_ACCOUNT defines the following operations:
Ø  deposit (a_num: INTEGER)
Ø  withdraw (a_num: INTEGER)
Ø  close

Ø  If b: BANK_ACCOUNT (b is an instance of class
BANK_ACCOUNT) which of the following feature calls are
possible?

Ø  b.deposit (10)
Ø  b.deposit
Ø  b.close
Ø  b.close (“Now”)
Ø  b.open
Ø  b.withdraw (100.50)
Ø  b.withdraw (0)

Hands-On

8

Feature declaration

Class name

Comment

Feature
 body

Instructions

Feature names

Class text

class PREVIEW

feature

 explore
 -- Explore Zurich.
 do
 central_view•highlight
 zurich_map •animate
 end

end

9

Style rules

Class names are in upper-case

Use tabs, not spaces, to
highlight the structure of the
program: it is called indentation.

For feature names, use full
words, not abbreviations.
Always choose identifiers that
clearly identify the intended role

Use words from natural language
(preferably English) for the
names you define

For multi-word identifiers, use
underscores

class
 PREVIEW

feature

 explore
 -- Explore Zurich.
 do
 central_view.highlight
 zurich_map.animate

 end
end

Tabs

10

Another example

class
 BANK_ACCOUNT

feature

 deposit (a_sum: INTEGER)
 -- Add `a_sum' to the account.
 do
 balance := balance + a_sum
 end

balance: INTEGER

end

The state of the object is defined by the values of its
attributes

Within comments, use ` and ‘ to
quote names of arguments and
features. This is because they

will be taken into account by the
automatic refactoring tools.

Attribute

Routine

11

Kinds of features: commands and queries

Ø  Commands
Ø  Modify the state of objects
Ø  Do not have a return value
Ø  May or may not have arguments
Ø  Examples: register a student to a course, assign an id to a

student, record the grade a student got in an exam
Ø  … other examples?

Ø Queries
Ø  Do not modify the state of objects
Ø  Do have a return value
Ø  May or may not have arguments
Ø  Examples: what is the age of a student? What is the id of a

student? Is a student registered for a particular course?
Ø  … other examples?

12

Exercise: query or command?

Ø  Tell the balance of a bank account
Ø  Withdraw 400 CHF from a bank account
Ø  Who is the owner of a bank account?
Ø  List the clients of a bank whose total deposits are over

100,000 CHF.
Ø  Change the account type of a client
Ø  How much money can a client withdraw at a time?
Ø  Set a minimum limit for the balance of accounts
Ø  Deposit 300 CHF into a bank account

Hands-On

13

Command-query separation principle

“Asking a question shouldn’t change the answer”

 i.e. a query

14

Query or command?

class DEMO

feature

 procedure_name (a1: T1; a2, a3: T2)
 -- Comment
 do
 …
 end

 function_name (a1: T1; a2, a3: T2): T3
 -- Comment
 do
 Result := …
 end

 attribute_name: T3
 -- Comment

end

Ø  no result
Ø  body

Ø  result
Ø  body

Ø  result
Ø  no body

command

query

query

Predefined variable
denoting the result

15

Feature Feature

Features: the full story

Command

Query

Feature

Function

No result

Memory

Computation

Client view
(specification)

Internal view
(implementation)

Returns result

Attribute

Procedure

Memory

Computation

Routine

Feature

16

General form of feature call instructions

Object1.query1.command (object2.query2, object3)

targets arguments

Ø  Where are query1, query2 defined?
Ø  Where is command defined?

Hands-On

Ø  Targets and arguments can be query calls themselves.

17

Qualified vs. unqualified feature calls

Ø  All features have to be called on some target (object.)
Ø  The current object is the name of the target object from the

perspective of the feature that was called. I.e., when x.f is called,
Current is x during the execution of f.
Ø  A qualified feature call has an explicit target.
Ø  An unqualified feature call has Current as an implicit target.

 assign_same_name (a_name: STRING; a_other_person: PERSON)
 -- Set `a_name’ to current person and
`a_other_person’.
 do
 a_other_person.set_name(a_name)
 set_name (a_name)
 end

 person1.assign_same_name(“Hans”, person2)

Qualified call
Unqualified call, same as

Current.set_name (a_name)

assign_same_name set_name
call

caller callee

18

EiffelStudio

Ø  EiffelStudio is a software tool (IDE) to develop Eiffel
programs.

Ø  Help & Resources
Ø  Online guided tour: in EiffelStudio help menu
Ø  http://eiffel.com/developers/presentations/
Ø  http://www.eiffel.com/
Ø  http://dev.eiffel.com/
Ø  http://docs.eiffel.com/
Ø  http://www.ecma-international.org/publications/

files/ECMA-ST/ECMA-367.pdf

Integrated Development Environment

19

Components

Ø  editor
Ø  context tool
Ø  clusters pane
Ø  features pane
Ø  compiler
Ø  project settings
Ø  ...

20

Editor

Ø  Syntax highlighting
Ø  Syntax completion
Ø  Auto-completion (CTRL+Space)
Ø  Class name completion (CTRL+SHIFT+Space)
Ø  Smart indenting
Ø  Block indenting or unindenting (TAB and SHIFT+TAB)
Ø  Block commenting or uncommenting (CTRL+K and

SHIFT+CTRL+K)
Ø  Infinite level of Undo/Redo (reset after a save)
Ø  Quick search features (first CTRL+F to enter words

then F3 and SHIFT+F3)
Ø  Pretty printing (CTRL+SHIFT+P)

21

Compiler highlights

Ø  Melting: uses quick incremental recompilation
to generate bytecode for the changed parts
of the system. Used during development
(corresponds to the button “Compile”).

Ø  Freezing: uses incremental recompilation to
generate more efficient C code for the
changed parts of the system. Initially the
system is frozen (corresponds to “Freeze…”).

Ø  Finalizing: recompiles the entire system
generating highly optimized code. Finalization
performs extensive time and space
optimizations (corresponds to “Finalize…”),
this may take longer.

22

Debugger: setup

Ø  The system must be melted/frozen (finalized systems
cannot be debugged).

Ø  Setting and unsetting breakpoints
Ø  An efficient way consists of dropping the

feature you want the breakpoint in, into the
context tool.

Ø  Alternatively, you can select the flat view.
Ø  Then click on one of the little circles in the left

margin to enable/disable single breakpoints.
Ø  Use the toolbar debug buttons to enable or disable all

breakpoints globally.

23

Debugger: run

Ø  Run the program by clicking on the Run button.
Ø  Pause by clicking on the Pause button or wait for a

triggered breakpoint.
Ø  Analyze the program:

Ø  Use the call stack pane to browse through the
call stack.

Ø  Use the object tool to inspect the current
object, the locals and arguments.

Ø  Run the program or step over (or into) the next
statement, or out of the current one.

Ø  Stop the running program by clicking on the Stop
button.

24

Found a bug in EiffelStudio?

If EiffelStudio happens to crash:

Ø  You should submit an official bug report by pressing
the button that appears when EiffelStudio crashes

Ø  Login: ethinfo1, Password: ethinfo1

25

How to submit a bug 1: submit bug

26

How to submit a bug 2: login

27

How to submit a bug 3: submit

