

Chair of Software Engineering

Einführung in die Programmierung Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 5

Today

Attributes, formal arguments, and local variables Control structures

Attributes

Declared inside a feature clause, but outside other features

end

Visible anywhere inside the class Visible outside the class (depending on their visibility)

Formal arguments

Declared after the feature name, in parenthesis: **feature**

Visible only inside the feature body and its contracts

Local variables

Some variables are only used by one routine. Declare them as local:

feature

Attributes:

- > declared inside a feature clause, but outside other features
- visible inside the class
- visible outside the class (depending on their visibility)

Formal arguments:

- > declared after the feature name, in parenthesis
- visible only inside the feature body and its contracts
 Local variables:
 - declared in a local clause inside the feature
 - visible only inside the feature body

Compilation error? (1)

```
iands.
class PERSON
feature
   name : STRING
   set_name (a_name : STRING)
      do
         name := a_name
      end
   exchange_names(other: PERSON)
      local
         s: STRING
     do
         s := other.name
         other.set_name (name)
         set_name(s)
                                           Error: this variable
      end
                                            was not declared
   print_with_semicolon
      do
         create s.make_from_string (name)
         s.append (";")
print (s)
      end
end
```

Compilation error? (2)

class PERSON feature -- name and set_name as before ... exchange_names(other: PERSON) local s: STRING do s := other.name other.set_name (name) set_name (s) end OK: two different local print_with_semicolon variables in two routines local s: STRING do create s.make_from_string (name) s.append (";") print (s) end

end

Compilation error? (3)

Compilation error? (4)

Local variables vs. attributes

Which one of the two correct versions (2 and 4) do you like more? Why?

```
class PERSON
feature
  -- name and set_name as before
  exchange_names (other : PERSON)
       local
         s: STRING
       do
         s := other_name
         other.set_name(name)
         set name (s)
       end
       print_with_semicolon
         local
            s: STRING
         do
            create s.make_from_string (name)
            s.append (";")
            print (s)
         end
```

```
class PERSON
feature
  -- name and set_name as before
  exchange_names (other : PERSON)
     do
       s := other.name
       other.set_name(name)
       set name(s)
    end
  print with semicolon
       do
          create s.make_from_string (name)
         s.append(';')
          print (s)
       end
   s: STRING
end
```

end

> When is it better to use a local variable instead of an attribute (and vice versa)?

>You can use the predefined local variable Result inside (you needn't and shouldn't declare it)

The return value of a function is whatever value the Result variable has at the end of the function execution

> At the beginning of a routine's body, Result (and the local variables) is initialized with the default value of its type

Every local variable is declared with some type; and what is the type of Result?

It's the function's return type!

name_with_semicolon : STRING

do

create Result.make_from_string (name)
Result.append (';')
print (Result)

end

Current

> In object-oriented computation each routine call is performed on a certain object

From inside a routine we can access this object using the predefined entity Current

> What is the type of Current?

If the target of a feature call is Current, it is omitted:
Current.f(a)
f(a)

- > Such a call is unqualified
- Otherwise, if the target of a call is specified explicitly, the call is qualified

x.f(a)

Qualified or unqualified?

Are the following feature calls, with their feature names underlined, qualified or unqualified? What are the targets of these calls?

1) x.<u>y</u> 2)<u>x</u> 3) f(x.a)4) x.<u>y</u>.z 5)x(y.f(a.b))6) f(x.a).y(b)7) Current.x

> Direct assignment to an attribute is only allowed if an attribute is called in an unqualified way:

> There are two main reasons for this rule:

- A client may not be aware of the restrictions on the attribute value and interdependencies with other attributes => class invariant violation (Example?)
- 2. Guess! (Hint: uniform access principle)

 \succ It is possible to declare constant attributes, that is, attributes having a fixed value that cannot change during the program execution.

An entity in program text is a "name" that *directly* denotes an object. More precisely: it is one of

Only a variable can be used in a creation instruction and in the left part of an assignment

Find 5 errors

> In structured programming instructions can be combined only in three ways (constructs):

Each of these blocks has a single entry and exit and is itself a (possibly empty) compound

Conditional

> Could c be an integer expression?

> No. *c* is a boolean expression (e.g., entity, query call of type *BOOLEAN*)

Are these valid conditionals?

Calculating function's value

```
f (max : INTEGER ; s : STRING): STRING

do

if s.is_equal ("Java") then

Result := "J**a"

else

if s.count > max then

Result := "<an unreadable German word>"

end

end

end
```

Calculate the value of:

- > $f(3, "Java") \rightarrow "J**a"$
- > f(20, "Immatrikulationsbestätigung")
- > f(6, "Eiffel") → Void

→ "<an unreadable German word>"

Write a routine...

 \succ ... that computes the maximum of two integers

max(a, b: INTEGER): INTEGER

In that increases the time by one second inside class TIME

class TIME hour, minute, second : INTEGER

> second_forth do ... end

Comb-like conditional

If there are more than two alternatives, you can use the syntax:

instead of:

```
if c_1 then
   5_1
else
   if c_2 then
       <u>s_</u>2
   else
       if c_n then
          s_n
       else
           <u>s_</u>e
       end
   end
end
```

If all the conditions have a specific structure, you can use the syntax:

Lost in conditions

Rewrite the following multiple choice:

- using a comb-like conditional
- using nested conditionals if user_choice = 0 then

```
inspect user_choice
when 0 then
    print ("Hamburger")
when 1 then
    print ("Coke")
else
    print ("Not on the menu!")
end
```

```
print ("Hamburger")
elseif user_choice = 1 then
  print ("Coke")
else
  print ("Not on the menu !")
end
if user_choice = 0 then
   print ("Hamburger")
else
   if user_choice = 1 then
       print ("Coke")
   else
       print ("Not on the menu!")
   end
end
```

Loop: Basic form

Compilation error? Runtime error?


```
f(x, y: INTEGER): INTEGER
local
    i: INTEGER
do
    from i := 1 until (True)
    loop
        i := i * x * y
    end
end
```


Simple loop

How many times will the body of the following loop be executed?

Syntax:

Loop invariant (do not confuse with class invariant)

- holds before and after the execution of loop body
- captures how the loop iteratively solves the problem: e.g. "to calculate the sum of all n elements in a list, on each iteration i (i = 1..n) the sum of first i elements is obtained"

Loop variant

- integer expression that is *nonnegative* after execution of from clause and after each execution of loop clause and strictly *decreases* with *each iteration*
- > a loop with a correct variant can not be infinite (why?)

Example – sum of the first n integers

```
sum (n: INTEGER): INTEGER
 -- Compute the sum of the numbers from 0 to `n'
require 0 <= n
local i: INTEGER
do
        from
                Result := 0
                i := 1
        invariant
                1 \le i and i \le n+1
                Result = (i * (i - 1)) / / 2
        until
                i> n
        loop
                Result := Result + i
                i := i + 1
        variant
                n - i + 1
        end
ensure Result = (n * (n + 1)) / / 2
end
```

What are the loop invariants and variants here?

What does this function do?

```
factorial (n: INTEGER): INTEGER
          require
             n >= 0
          local
             i: INTEGER
          do
             from
                i := 2
                Result := 1
             until
                i > n
             loop
                Result := Result * i
                i := i + 1
             end
          end
```


Invariant and variant

What are the invariant and variant of the "factorial" loop? from *i* := 2 Result := 1 invariant **Result** = *factorial* (*i* - 1) until i> n loop Result := Result * i i := i + 1variant n - i + 2end


```
Result = 6 = 3!
```

Writing loops

Implement a function that calculates Fibonacci numbers, using a loop

Writing loops (solution)

```
fibonacci (n: INTEGER): INTEGER
   local
       a, b, i: INTEGER
   do
       if n <= 1 then
           Result := n
       else
           from
               a \coloneqq 0
               b := 1
               i :=
           invariant
               a = fibonacci (i - 1)
b = fibonacci (i )
           until
               i = n
           loop
               Result := a + b
               a := b
               b := Result
               i := i + 1
           variant
               n - 1
           end
        end
   end
```


Summary

> Attributes, formal arguments, and local variables

- Scope
- Control structures