
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer	

Exercise Session 5

2

Today

Ø  Attributes, formal arguments, and local variables
Ø  Control structures

3

Declared inside a feature clause, but outside other features

class C
feature

 attr1 : CA1

 f (arg1 : A …)
 do
 …
 end

…
end

Visible anywhere inside the class
Visible outside the class (depending on their visibility)

Attributes

4

Declared after the feature name, in parenthesis:
feature

 f (arg1 : C1 ; …; argn : CN)
 require ...
 local
 …
 do
 …
 ensure ...
 end

Visible only inside the feature body and its contracts

Formal arguments

5

Some variables are only used by one routine.
Declare them as local:
feature

 f (arg1 : A …)
 require ...
 local
 x, y : B
 z : C
 do
 …
 ensure ...
 end

Visible only inside the feature body

Local variables

6

Summary: The scope of names

Attributes:
Ø  declared inside a feature clause, but outside other

features
Ø  visible inside the class
Ø  visible outside the class (depending on their visibility)

Formal arguments:
Ø  declared after the feature name, in parenthesis
Ø  visible only inside the feature body and its contracts

Local variables:
Ø  declared in a local clause inside the feature
Ø  visible only inside the feature body

7

Compilation error? (1)
class PERSON
feature

 name : STRING

 set_name (a_name : STRING)
 do
 name := a_name
 end

 exchange_names (other : PERSON)
 local
 s : STRING
 do
 s := other.name
 other.set_name (name)
 set_name (s)
 end

 print_with_semicolon
 do
 create s.make_from_string (name)
 s.append (“;”)
 print (s)
 end

end

Error: this variable
was not declared

8

Compilation error? (2)

class PERSON
feature

 … -- name and set_name as before

 exchange_names (other : PERSON)
 local
 s : STRING
 do
 s := other.name
 other.set_name (name)
 set_name (s)
 end

 print_with_semicolon
 local
 s : STRING
 do
 create s.make_from_string (name)
 s.append (“;”)
 print (s)
 end

end

OK: two different local
variables in two routines

9

An example of side effects

class PERSON

feature

 …
 name : STRING

 print_with_semicolon
 local
 s : STRING
 do
 create s.make_from_string (name)
 s.append (“;”)
 print (s)
 end

 print_with_sticky_semicolon
 do
 name.append (“;”)
 print (name)
 end

end

Now the semicolon sticks
to the attribute.

This is called side effect

Remember that strings in
Eiffel are mutable by

default!

10

Compilation error? (3)

class PERSON
feature

 … -- name and set_name as before

 s : STRING

 exchange_names (other : PERSON)
 do
 s := other.name
 other.set_name (name)
 set_name (s)
 end

 s : STRING

 print_with_semicolon
 do
 create s.make_from_string (name)
 s.append (“;”)
 print (s)
 end

end

Error: an attribute
with the same name
was already defined

11

Compilation error? (4)

class PERSON
feature

 … -- name and set_name as before

 exchange_names (other : PERSON)
 do
 s := other.name
 other.set_name (name)
 set_name (s)
 end

 print_with_semicolon
 do
 create s.make_from_string (name)
 s.append (‘;’)
 print (s)
 end

 s : STRING

end

OK: a single attribute
used in both routines

12

Local variables vs. attributes

Ø  Which one of the two correct versions
(2 and 4) do you like more? Why?

Ø  When is it better to use a local variable instead of an
attribute (and vice versa) ?

class PERSON
feature
 -- name and set_name as before

 exchange_names (other : PERSON)
 do
 s := other.name
 other.set_name (name)
 set_name (s)
 end

 print_with_semicolon
 do
 create s.make_from_string (name)
 s.append (‘;’)
 print (s)
 end

 s : STRING
end

class PERSON
feature
 -- name and set_name as before

 exchange_names (other : PERSON)
 local
 s : STRING
 do
 s := other.name
 other.set_name (name)
 set_name (s)
 end

 print_with_semicolon
 local
 s : STRING
 do
 create s.make_from_string (name)
 s.append (“;”)
 print (s)
 end
end

13

Result

Ø You can use the predefined local variable Result inside
(you needn’t and shouldn’t declare it)

Ø  The return value of a function is whatever value the
Result variable has at the end of the function execution

Ø  At the beginning of a routine’s body, Result (and the
local variables) is initialized with the default value of its
type

Ø  Every local variable is declared with some type; and
what is the type of Result?

 It’s the function’s return type!

14

Compilation error? (5)

class PERSON
feature

 … -- name and set_name as before
 exchange_names (other : PERSON)
 do
 Result := other.name
 other.set_name (name)
 set_name (Result)
 end

 name_with_semicolon : STRING
 do
 create Result.make_from_string (name)
 Result.append (‘;’)
 print (Result)
 end

end

Error: Result can
not be used in a

procedure

15

Ø  In object-oriented computation each routine call is
performed on a certain object
Ø  From inside a routine we can access this object using
the predefined entity Current

Current

(STATION)

x.change_name (y) change_name (n: STRING)
 do
 …
 city.internal_stations.extend (Current, n)

 end

Ø What is the type of Current?

16

Ø  If the target of a feature call is Current, it is omitted:
Current.f (a)

f (a)

Revisiting qualified vs. unqualified feature calls

Ø Such a call is unqualified
Ø Otherwise, if the target of a call is specified

explicitly, the call is qualified
x.f (a)

17

Qualified or unqualified?

Are the following feature calls, with their
feature names underlined, qualified or unqualified?
What are the targets of these calls?

1)  x.y

2) x

3) f (x.a)

4) x.y.z

5) x (y.f (a.b))

6) f (x.a).y (b)

7)   Current.x

qualified

unqualified

unqualified

qualified

unqualified

qualified

qualified

18

Assignment to attributes

Ø  Direct assignment to an attribute is only allowed if an
attribute is called in an unqualified way:

 y := 5
 x.y := 5
 Current.y := 5

Ø There are two main reasons for this rule:
1.  A client may not be aware of the restrictions on

the attribute value and interdependencies with
other attributes => class invariant violation
(Example?)

2.  Guess! (Hint: uniform access principle)

OK

Error

? Error

19

Constant attributes

Ø  It is possible to declare constant attributes, that is,
attributes having a fixed value that cannot change during
the program execution.

class CAR
feature

 …
 …
 number_of_gears: INTEGER = 5
 …
 set_number_of_gears (new_number: INTEGER)
 do

 number_of_gears := new_number
 end

end

Error: constant
attributes are

readonly

Constant attribute

20

Entity: the final definition

Ø  variable attribute
Ø  constant attribute

Only a variable can be used in a creation instruction and in
the left part of an assignment

An entity in program text is a “name” that directly
denotes an object. More precisely: it is one of

Ø attribute name

Ø formal argument name
Ø local variable name
Ø Result
Ø Current

Read-write entities / variables

Read-only entities

21

Find 5 errors

class VECTOR
feature

 x, y : REAL

 copy_from (other : VECTOR)
 do
 Current := other
 end

 copy_to (other : VECTOR)
 do
 create other
 other.x := x
 other.y := y
 end

 reset
 do
 create Current
 end

end

Current is not a variable and
can not be assigned to

other is a formal argument
(not a variable) and thus can

not be used in creation

other.x is a qualified attribute
call (not a variable) and thus

can not be assigned to

the same reason for other.y

Current is not a variable and
thus can not be used in creation

22

Structured programming

Ø  In structured programming instructions can be
combined only in three ways (constructs):

s_1 c

s_2
s_1 s_2

c

s

sequential
composition

conditional loop

True False
False

True

Ø  Each of these blocks has a single entry and exit and is
itself a (possibly empty) compound

Compound

Condition

23

Conditional

Ø  Basic syntax:
 if c then
 s_1
 else
 s_2
 end

Ø  Could c be an integer expression?
Ø  No. c is a boolean expression (e.g., entity, query
call of type BOOLEAN)

Ø Are these valid conditionals?

Condition

Compound

Compound

if c then
 s_1
end

if c then

end

if c then
else
end

Yes, else is optional Yes, s_1 could be
empty.

Yes, s_1 and s_2
could be both empty.

24

Calculating function’s value

f (max : INTEGER ; s : STRING): STRING
 do
 if s.is_equal (“Java”) then
 Result := “J**a”
 else
 if s.count > max then
 Result := “<an unreadable German word>”
 end
 end
 end

Calculate the value of:
Ø  f (3, “Java”)
Ø  f (20, “Immatrikulationsbestätigung”)
Ø  f (6, “Eiffel”)

→ “J**a”
→ “<an unreadable
German word>”

→ Void

25

Write a routine...

Ø  ... that computes the maximum of two
integers

 max (a, b : INTEGER) : INTEGER

Ø  ... that increases the time by one second inside class
TIME

class TIME

 hour, minute, second : INTEGER

 second_forth
 do ... end
 ...

end

26

Comb-like conditional

If there are more than two alternatives, you can use the
syntax:

if c_1 then

 s_1
elseif c_2 then

 s_2
...
elseif c_n then

 s_n
else

 s_e
end

instead of:

if c_1 then

 s_1
else

 if c_2 then
 s_2
 else
 ...
 if c_n then
 s_n
 else
 s_e
 end
 ...
 end

end

Condition

Compound

One word!

27

Multiple choice

If all the conditions have a specific structure, you can
use the syntax:

 inspect expression
 when const_1 then
 s_1
 when const_2 then
 s_2
 ...
 when const_n1 .. const_n2 then
 s_n
 else
 s_e
 end

Integer or character
expression

Integer or character
constant

Compound

Interval

28

Lost in conditions

Rewrite the following multiple choice:
Ø  using a comb-like conditional
Ø  using nested conditionals

inspect user_choice
when 0 then
 print (“Hamburger”)
when 1 then
 print (“Coke”)
else
 print (“Not on the menu!”)
end

if user_choice = 0 then
 print (“Hamburger”)
elseif user_choice = 1 then
 print (“Coke”)
else
 print (“Not on the menu !”)
end

if user_choice = 0 then
 print (“Hamburger”)
else
 if user_choice = 1 then
 print (“Coke”)
 else
 print (“Not on the menu!”)
 end
end

29

Loop: Basic form

Compound

Boolean expression

Compound

Syntax:
 from
 initialization

 until
 exit_condition
 loop
 body

 end

30

Compilation error? Runtime error?

f (x, y : INTEGER): INTEGER
 do
 from
 until (x // y)
 loop
 "Print me!"
 end
 end

Compilation error:
integer expression
instead of boolean

Compilation error:
expression instead

of instruction

Correct

f (x, y : INTEGER) : INTEGER
 local
 i : INTEGER
 do
 from i := 1 until (True)
 loop
 i := i * x * y
 end
 end

Correct, but
non-terminating

f
 do
 from
 until False
 loop

 end
 end

31

Simple loop

How many times will the body of the following
loop be executed?

In Eiffel we usually start counting from 1

10

i : INTEGER
...
from

 i := 1
until

 i > 10
loop

 print (“ I will not say bad things about assistants”)
 i := i + 1

end
…
from

 i := 10
until

 i < 1
loop

 print (“ I will not say bad things about assistants”)
end

Caution! Loops can be infinite!

∞

32

invariant
 inv

Loop: More general form

Compound

Optional

Boolean expression

Boolean expression

Compound

variant
 var

Syntax:
 from
 initialization

 until
 exit_condition
 loop
 body

 end Integer expression

Optional

33

Invariant and variant

Loop invariant (do not confuse with class invariant)
Ø  holds before and after the execution of loop body
Ø  captures how the loop iteratively solves the

problem: e.g. “to calculate the sum of all n elements
in a list, on each iteration i (i = 1..n) the sum of
first i elements is obtained”

Loop variant
Ø  integer expression that is nonnegative after

execution of from clause and after each execution
of loop clause and strictly decreases with each
iteration

Ø  a loop with a correct variant can not be infinite
(why?)

34

sum (n: INTEGER): INTEGER
 -- Compute the sum of the numbers from 0 to `n‘
require 0 <= n
local i: INTEGER
do

 from
 Result := 0
 i := 1
 invariant
 1 <= i and i <= n+1
 Result = (i * (i – 1)) // 2
 until
 i > n
 loop
 Result := Result + i
 i := i + 1
 variant
 n – i + 1
 end

ensure Result = (n * (n + 1)) // 2
end

Example – sum of the first n integers

What are the loop
invariants and
variants here?

35

What does this function do?

 (n : INTEGER) : INTEGER
 require
 n >= 0
 local
 i : INTEGER
 do
 from
 i := 2
 Result := 1
 until
 i > n
 loop
 Result := Result * i
 i := i + 1
 end
 end

f factorial

36

What are the invariant and variant of
the “factorial” loop?

 from
 i := 2
 Result := 1
 invariant
 ?
 until
 i > n
 loop
 Result := Result * i
 i := i + 1
 variant
 ?
 end

i = 2; Result = 1 = 1! i = 3; Result = 2 = 2! i = 4; Result = 6 = 3!

Invariant and variant

Result = factorial (i - 1)

n – i + 2

37

Writing loops

Implement a function that calculates
Fibonacci numbers, using a loop

fibonacci (n : INTEGER) : INTEGER

 -- n-th Fibonacci number
 require
 n_non_negative : n >= 0
 ensure
 first_is_zero : n = 0 implies Result = 0
 second_is_one : n = 1 implies Result = 1
 other_correct : n > 1 implies Result = fibonacci (n - 1) +

fibonacci (n - 2)
 end

38

Writing loops (solution)
fibonacci (n : INTEGER) : INTEGER

 local
 a, b, i : INTEGER
 do
 if n <= 1 then
 Result := n
 else
 from
 a := 0
 b := 1
 i := 1

 until
 i = n
 loop
 Result := a + b
 a := b
 b := Result
 i := i + 1

 end
 end
 end

 invariant

 variant

 a = fibonacci (i - 1)
 b = fibonacci (i)

 n - i

39

Summary

Ø  Attributes, formal arguments, and local variables
Ø  Scope

Ø  Control structures

