E,H Ziirich

Chair of Software Engineering

Einfihrung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 5

Today

» Attributes, formal arguments, and local variables
> Control structures

Attributes

Declared inside a feature clause, but outside other features

class C
feature

(attrl: CA1)

f (argl: A .)
do

end

;nd

Visible anywhere inside the class
Visible outside the class (depending on their visibility)

Formal arguments

Declared after the feature name, in parenthesis:
feature
f (argl : C1, .., argn:CN)
require ...
local

do

ensure ...
end

Visible only inside the feature body and its contracts

Local variables

Some variables are only used by one routine.
Declare them as local:
feature
f (argl: A.)
require ...
local
X, y:B
z. C

do

ensure ...
end
Visible only inside the feature body

Summary: The scope of names ©

Attributes:

> declared inside a feature clause, but outside other
features

> visible inside the class

> visible outside the class (depending on their visibility)
Formal arguments:

> declared after the feature name, in parenthesis

> visible only inside the feature body and its contracts
Local variables:

> declared in a local clause inside the feature
> visible only inside the feature body

Compilation error? (1)

class PERSON
feature

name . STRING

set_name (a_name : STRING)
)
name := a_name
end

exchanfe_names (other : PERSON)
loca
s: STRING
do
s := other.name
other.set_name (name)
set_name (s)
end

print_with_semicolon

do
create s.make_from_string (name)
s.append (“.”)
dnr'/m" (s)
en

end

Compilation error? (2)

class PERSON
feature
-- name and set_name as before

exchange_names (other : PERSON)

local
s: STRING
do
s := other.name
other.set_name (name)
set_name (s)
end
, , , OK: two different local
pmnf_w::‘h_slem/co/on variables in two routines
oca
s: STRING
do
create s.make_from_string (name)
s.append (“;”)
print (s)
end

end

An example of side effects

class PERSON
feature

Hame : STRING

print_with_semicolon

local
s: STRING
do
create s.make_from_string (name)
s.append (“.”)
print (s)
end

print_with_sticky_semicolon
do

Ve I

«.»y | Now the semicolon sticks
name.append (*:") to the attribute.
print (name)

end This is called side effect

end

(Remember That sTrings in)
Eiffel are mu’rlable y

Compilation error? (3)

class PERSON
feature
-- name and set_name as before

s: STRING

exchange_names (other : PERSON)

do
s := other.name
other.set_name (name)
set_name (s)
end
s: STRING
print_with_semicolon
do
create s.make_from_string (name)
s.append (“;”)
print (s)
end

end

10

Compilation error? (4)

class PERSON
feature
-- name and set_name as before

exchange_names (other : PERSON)

do
s := other.name
other.set_name (name)
set_name (s)

end

OK: a single attribute

used in both routines

print_with_semicolon

do
create s.make_from_string (name)
s.append (")
print (s)
end
s: STRING

end

11

Local variables vs. attributes

> Which one of the two correct versions
(2 and 4) do you like more? Why?

class PERSON class PERSON
feature feature
-- name and set_name as before -- name and set_name as before
exchange_names (other : PERSON) exchange_names (other : PERSON)
local do
s: STRING s:= other.name
do other.set_name (name)
s:= other.name set_name (s)
other.set_name (name) end
set_name (s)
end print_with_semicolon
do
print_with_semicolon create s.make_from_string (name)
local s.append (*;")
s: STRING print (s)
do end
create s.make_from_string (name)
s.append (“;”) s: STRING
print (s) end
end
end

> When is it better to use a local variable instead of an
attribute (and vice versa) ?

12

Result

»You can use the predefined local variable Result inside
(you needn’ t and shouldn’ t declare it)

> The return value of a function is whatever value the
Result variable has at the end of the function execution

> At the beginning of a routine’ s body, Result (and the
local variables) is initialized with the default value of its

Type
> Every local variable is declared with some type; and
what is the type of Result?

It’ s the function’ s return typel

13

Compilation error? (5)

class PERSON
feature

-- name and set_name as before
exchange names (other : PERSON)

do
Result := other.name
other.set_name (name)

set_name (Result)

end

name_with_semicolon : STRING

do
create Result.make_from_string (name)
Result.append (°;")
print (Result)

end

end

14

Current ©

> In object-oriented computation each routine call is
performed on a certain object

» From inside a routine we can access this object using
the predefined entity Current

x.change_name (y) change_name (n: STRING)
do
<€

|] city.internal_stations.extend (Current, n)

end
L]

(STATION)

>

» What is the type of Current?

15

Revisiting qualified vs. unqualified feature calls ©

> If the target of a feature call is Current, it is omitted:

Current.f (a)
f(a)

» Such a call is unqualified

» Otherwise, if the target of a call is specified
explicitly, the call is qualified

x.f (a)

16

Qualified or unqualified?

Are the following feature calls, with their
feature names underlined, qualified or unqualified:
What are the targets of these calls?

)xy qualified
2)x unqualified
3)f (x.a) unqualified
4)x.y.z qualified
5)x (y.f (a.b)) (unqualified
6)f (x.a).y (b) - qualified
7) Current.x . qualified |

17

Assignment to attributes

> Direct assignment to an attribute is only allowed if an
attribute is called in an unqualified way:

y:=5 oK
Xy:i=H : Error
Current.y = 5 - Error '

> There are two main reasons for this rule:

1. A client may not be aware of the restrictions on
the attribute value and interdependencies with
other attributes => class invariant violation
(Example?)

2. Guess! (Hint: uniform access principle)

18

Constant attributes

» It is possible to declare constant attributes, that is,
attributes having a fixed value that cannot change during

the program execution.

class CAR
feature

number_of_gears: INTEGER = 5 % T T—— |

set_number_of_gears (new_number: INTEGER)
do

humber_of_gears := new_nhumber

end

Error: constant
attributes are
readonly

end
19

Entity: the final definition ©

An entity in program text is a “name” that directly
denotes an object. More precisely: it is one of

>attribute name
>[variable attribute]< Read-write entities / variables]

>|constant attribute
>forma| argument name
>|ocal variable name
>Result
>{Iur'r'en'r

Read-only entities J

Only a variable can be used in a creation instruction and in
the left part of an assignment

20

Find 5 errors

class VECTOR
feature
x,y: REAL

copy._from (other:

do
Current := other
end
copy_to (other: VECTOR)
do
create other
other.x = x
other.y =y
end
reseft
do

create Current
end
end

21

Structured programming ©

» In structured programming instructions can be
combined only in three ways (constructs):

Condition |
é True
L True False

| Compound | l vchlse
s 1 s 2 s
sequen.'rl.al conditional loop
composition

» Each of these blocks has a single entry and exit and is
itself a (possibly empty) compound

22

Conditional
> Basic syfr"\% Condition
if ¢ then
o1 Compound
else
o Compound
end

» Could ¢ be an integer expression?

> No. ¢ is a boolean expression (e.g., entity, query
call of type BOOLEAN)

> Are these valid conditionals?

if ¢ then if ¢ then if ¢ then
s 1 else
end end end
Yes, else is optional Yes, s_1could be Yes,s land s 2

empty. could be both empty.

23

Calculating function’ s value

f (max: INTEGER ; s: STRING): STRING
do

if s.is_equal (“Java”) then
Result := “J**a”

else
if s.count > max then

Result := “«<an unreadable German word>”"

end

end

end

Calculate the value of:
> f(3,“Java”) — “Trxq”
> (20, “Immatrikulationsbestdtigung”)
> f (6, Eiffel’) — Void

— “<an unreadable
German word>”

24

Write a routine...

> ... that computes the maximum of two
Integers

max (a, b: INTEGER) : INTEGER

> ... that increases the time by one second inside class
TIME

class TIME
hour, minute, second : INTEGER

second_forth
do ... end

end

25

Comb-like conditional

©

If there are more than two alternatives, you can use the

syntax:
:! Condition
if ¢_1then

45‘41)_ Compound

elseif ¢_2 then

5—24 One word! \

elseif ¢_nthen
s n

else

end

instead of:

if ¢_1then
s 1
else
if ¢ _2then
s 2
else

if ¢_nthen
s.n

else
s e

end

end
end

26

Multiple choice ©

If all the conditions have a specific structure, you can
inspect expression

use the syntax:
Integer or character
2“ expression \
when const_1then

s 1 ‘Integer or character
when const_2 then ;‘m”““m
- § Compound

when const_nl .. const_nZ2 then
s n

else Interval

S_é

end

27

Lost in conditions

Rewrite the following multiple choice:
> using a comb-like conditional

> using hested conditionals

inspect user_choice
when O then
print (“Hamburger™)
when 1 then
print (“Coke”)
else
print (“Not on the menul™)
end

if user _choice = O then
print (“Hamburger™)
elseif user choice = 1 then
print (“Coke™)
else
print (“Not on the menu |")
end

if user_choice = O then
print (“Hamburger™)
else
if user choice = 1 then
print (“Coke™)
else
print (“Not on the menul”)
end
end

28

Loop: Basic form ©

Syntax:
from
iniﬁa/izaﬁon_< Compound l
until
exit_condition % Boolean expression
loop
body ———=——1__ Compaund__|

end

29

Compilation error? Runtime error?

f(x, y: INTEGER): INTEGER ¢
do Compilation error: do
from integer expression fr'orn
until (x // y) 4 instead of boolean :.m‘l'll False
loop ! Compilation error: oop
end

7 (x, y: INTEGER) : INTEGER
local
i+ INTEGER e

"p,. -) expression instead
Print mel's.S |ch“eins"?r'ulc‘rioﬁa end nocn?tr‘;iﬁwfi'n b’l}lifn
end end aring
\

do
from /:= 1 until (True)
loop
end

end 30

Correct

Simple loop

How many times will the body of the following
loop be executed?

i INTEGER
from [=]% In Eiffel we usually start counting from 1 I
until
loop
print (“ I will not say bad things about assistants”)
[i=i+1
end
from
/= 10
until , —
<1 l Caution! Loops can be infinite! |
loop

print (“ I will not say bad things about assistants”)

31

Loop: More general form

Syntax:
from

initialization LCompound

invariant _/_1 Optional
nv

until i Boolean expression
exif_condifion% Boolean expression

body ———————|__ Compound_|
variant % Optional
var

end ﬁ Integer expression

loop

Invariant and variant ©

Loop invariant (do not confuse with class invariant)
> holds before and after the execution of loop body

> captures how the loop iteratively solves the
problem: e.g. “to calculate the sum of all nelements

in a list, on each iteration / (i = 1..n) the sum of
first / elements is obtained”

Loop variant

> integer expression that is nonnegative after
execution of from clause and after each execution
of loop clause and strictly decreases with each

iteration
> a loop with a correct variant can not be infinite
(why?)

33

Example — sum of the first n integers

sum (n: INTEGER): INTEGER

-- Compute the sum of the numbers from O to "'n°
require 0 <= n
local /: INTEGER

do

from
Result := 0
/=1
invariant
1<=7and 7<= n+l
Result=(i*(i-1)//2
until
/>N
loop
Result := Result + /
[i=7+1
variant
n-i+1
end

ensure Result=(n*(n+1))//2

end

p- ™
What are the loop

invariants and

variants here?

What does this function do?

factorial (n: INTEGER) : INTEGER
require
n>=0
local
i INTEGER
do
from
[:= 2
Result := 1
until
/>N
loop
Result := Result * /
[i=7+1
end
end

35

Invariant and variant

What are the invariant and variant of
the “factorial” loop?

from
/=2
Result := 1
invariant
Result = factorial (i - 1) Result = 6 = 3|
until
/>N
loop
Result := Result * /
= i+1
variant
n-i+2

end

36

Writing loops

Implement a function that calculates
Fibonacci numbers, using a loop

fibonacci (n: INTEGER) : INTEGER
-- n-th Fibonacci number
require
n_non_negative . n>= 0
ensure
first_is_zero: n= 0 implies Result = O
second_is_one: n= 1 implies Result = 1

other_correct: n> 1 implies Result = fibonacci (n- 1) +
fibonacci (n - 2)

end

37

Writing loops (solution)

fiblonaclc/(n: INTEGER) : INTEGER
oca
a b, i: INTEGER
do
if n<= 1 then
Result := n
else
from
a.=0
b:=1
/=1
invariant
a = fibonacci %i‘- 1)
b = fibonacci (i)
until
i=n
loop
Result :=a+ b
a:=b
b := Result
ri=7+1
variant
n-i
end
end
end

38

Summary

» Attributes, formal arguments, and local variables
> Scope
> Control structures

39

