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Today 

Ø  Attributes, formal arguments, and local variables 
Ø  Control structures 
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Declared inside a feature clause, but outside other features 
 
class C 
feature 

 attr1 : CA1 
   
 f  (arg1 : A …) 
  do 
   … 
  end  

… 
end 
 
Visible anywhere inside the class 
Visible outside the class (depending on their visibility) 

Attributes 
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Declared after the feature name, in parenthesis: 
feature 

 f  (arg1 : C1 ; …; argn : CN ) 
  require ... 
  local 
   … 
  do 
   … 
  ensure ... 
  end  

 
Visible only inside the feature body and its contracts 

Formal arguments 
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Some variables are only used by one routine. 
Declare them as local: 
feature 

 f  (arg1 : A …) 
  require ... 
  local 
   x, y : B 
   z : C 
  do 
   … 
  ensure ... 
  end  

Visible only inside the feature body 

Local variables 

 
 



6 

Summary: The scope of names 

Attributes: 
Ø  declared inside a feature clause, but outside other 

features 
Ø  visible inside the class 
Ø  visible outside the class (depending on their visibility) 

Formal arguments: 
Ø  declared after the feature name, in parenthesis 
Ø  visible only inside the feature body and its contracts 

Local variables: 
Ø  declared in a local clause inside the feature 
Ø  visible only inside the feature body 
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Compilation error? (1) 
class PERSON 
feature 

 name : STRING 
 

 set_name (a_name : STRING)  
  do  
   name := a_name  
  end 

 
 exchange_names (other : PERSON) 
  local 
   s : STRING 
  do  
   s := other.name 
   other.set_name (name) 
   set_name (s) 
  end 

 
 print_with_semicolon 
  do 
   create s.make_from_string (name)  
   s.append (“;”)  
   print (s) 
  end 

end 

 
 

Error: this variable 
was not declared 
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Compilation error? (2) 

 
 

class PERSON 
feature 

 …  -- name and set_name as before 
 

 exchange_names (other : PERSON) 
  local 
   s : STRING 
  do  
   s := other.name 
   other.set_name (name) 
   set_name (s) 
  end 

 
 print_with_semicolon 
  local 
   s : STRING 
  do 
   create s.make_from_string (name)  
   s.append (“;”)  
   print (s) 
  end 

end 

OK: two different local 
variables in two routines 
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An example of side effects 

 
 

class PERSON 
 
feature 

 … 
 name : STRING   
  
 print_with_semicolon 
  local 
   s : STRING 
  do 
   create s.make_from_string (name)  
   s.append (“;”)  
   print (s) 
  end 

 
 print_with_sticky_semicolon 
  do 
   name.append (“;”)  
   print (name) 
  end 

end 

Now the semicolon sticks 
to the attribute.  

This is called side effect 

Remember that strings in 
Eiffel are mutable by 

default! 
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Compilation error? (3) 

 
 

class PERSON 
feature 

 …  -- name and set_name as before 
 

 s : STRING 
 

 exchange_names (other : PERSON) 
  do  
   s := other.name 
   other.set_name (name) 
   set_name (s) 
  end 

 
 s : STRING 

 
 print_with_semicolon 
  do 
   create s.make_from_string (name)  
   s.append (“;”)  
   print (s) 
  end 

end 

Error: an attribute 
with the same name 
was already defined 
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Compilation error? (4) 

 
 

class PERSON 
feature 

 …  -- name and set_name as before 
 

 exchange_names (other : PERSON) 
  do  
   s := other.name 
   other.set_name (name) 
   set_name (s) 
  end 

 
 print_with_semicolon 
  do 
   create s.make_from_string (name)  
   s.append (‘;’)  
   print (s) 
  end 

 
  s : STRING 

end 

OK: a single attribute 
used in both routines 
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Local variables vs. attributes 

Ø  Which one of the two correct versions 
(2 and 4) do you like more? Why? 

Ø  When is it better to use a local variable instead of an 
attribute (and vice versa) ? 

 
 

class PERSON 
feature 
    -- name and set_name as before 
 
    exchange_names (other : PERSON) 
      do  
            s := other.name 
            other.set_name (name) 
            set_name (s) 
        end 
 
    print_with_semicolon 
        do 
            create s.make_from_string (name)  
                s.append (‘;’)  
                print (s) 
        end 
 
    s : STRING 
end 

class PERSON 
feature 
    -- name and set_name as before 
 
    exchange_names (other : PERSON) 
        local 
                s : STRING 
        do  
                s := other.name 
                other.set_name (name) 
                set_name (s) 
            end 
 
            print_with_semicolon 
                local 
                    s : STRING 
                do 
                    create s.make_from_string (name)  
                    s.append (“;”)  
                    print (s) 
                end 
end 
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Result 

Ø You can use the predefined local variable Result inside 
(you needn’t and shouldn’t declare it) 

Ø  The return value of a function is whatever value the 
Result variable has at the end of the function execution 

Ø  At the beginning of a routine’s body, Result (and the 
local variables) is initialized with the default value of its 
type  

Ø  Every local variable is declared with some type; and 
what is the type of Result?    

 
 

 It’s the function’s return type!    
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Compilation error? (5) 

 
 

class PERSON 
feature 

 …  -- name and set_name as before 
 exchange_names (other : PERSON) 
  do  
   Result := other.name 
   other.set_name (name) 
   set_name (Result) 
  end 

 
 name_with_semicolon : STRING 
  do 
   create Result.make_from_string (name)  
   Result.append (‘;’)  
   print (Result) 
  end 

end 

Error: Result can 
not be used in a 

procedure 
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Ø  In object-oriented computation each routine call is 
performed on a certain object 
Ø  From inside a routine we can access this object using 
the predefined entity Current 

Current 

 
 

(STATION ) 

x.change_name (y) change_name (n: STRING) 
 do 
  … 
  city.internal_stations.extend (Current, n) 

    end     

Ø What is the type of Current?  
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Ø  If the target of a feature call is Current, it is omitted: 
Current.f (a)  

f (a) 

Revisiting qualified vs. unqualified feature calls 

 
 

Ø Such a call is unqualified 
Ø Otherwise, if the target of a call is specified 

explicitly, the call is qualified 
x.f (a) 
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Qualified or unqualified? 

Are the following feature calls, with their 
feature names underlined, qualified or unqualified?  
What are the targets of these calls? 

1)  x.y 

2) x 

3) f (x.a) 

4) x.y.z 

5) x (y.f (a.b)) 

6) f (x.a).y (b) 

7)   Current.x 

 
 

qualified 

unqualified 

unqualified 

qualified 

unqualified 

qualified 

qualified 
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Assignment to attributes 

Ø  Direct assignment to an attribute is only allowed if an 
attribute is called in an unqualified way: 

 y := 5 
 x.y := 5 
 Current.y := 5 

 
 

 
 

Ø There are two main reasons for this rule: 
1.  A client may not be aware of the restrictions on 

the attribute value and interdependencies with 
other attributes => class invariant violation 
(Example?) 

2.  Guess! (Hint: uniform access principle) 

OK 

Error 

? Error 
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Constant attributes 

Ø  It is possible to declare constant attributes, that is, 
attributes having a fixed value that cannot change during 
the program execution. 

  
 

 
 

 
 
 
 
 
class CAR 
feature 

 … 
 … 
 number_of_gears: INTEGER = 5 
 … 
 set_number_of_gears (new_number: INTEGER) 
  do 

   number_of_gears := new_number 
  end 
  

end 

Error: constant 
attributes are 

readonly 

Constant attribute 
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Entity: the final definition 

 
 

Ø  variable attribute 
Ø  constant attribute 

Only a variable can be used in a creation instruction and in 
the left part of an assignment   

An entity in program text is a “name” that directly 
denotes an object. More precisely: it is one of 

Ø attribute name 
 
 
Ø formal argument name 
Ø local variable name 
Ø Result 
Ø Current 

Read-write entities / variables 

Read-only entities 
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Find 5 errors 

class VECTOR 
feature 

 x, y : REAL 
 

 copy_from (other : VECTOR) 
  do  
   Current := other  
  end 

 
 copy_to (other : VECTOR) 
  do 
   create other 
   other.x := x 
   other.y := y 
  end 

 
 reset 
  do 
   create Current 
  end 

end 

 
 

Current is not a variable and 
can not be assigned to 

other is a formal  argument 
(not a variable) and thus can 

not be used in creation 

other.x is a qualified attribute 
call (not a variable) and thus 

can not be assigned to 

the same reason for other.y 

Current is not a variable and 
thus can not be used in creation 
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Structured programming 

Ø   In structured programming instructions can be 
combined only in three ways (constructs): 

 
 

s_1 c 

s_2 
s_1 s_2 

c 

s 

sequential 
composition 

conditional loop 

True False 
False 

True 

Ø  Each of these blocks has a single entry and exit and is 
itself a (possibly empty) compound 

Compound 

Condition 
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Conditional 

Ø  Basic syntax: 
 if c then 
  s_1 
 else 
  s_2 
 end 

Ø  Could c be an integer expression? 
Ø  No. c is a boolean expression (e.g., entity, query 
call of type BOOLEAN) 

Ø Are these valid conditionals? 

Condition 

Compound 

Compound 

if c then 
  s_1 
end 

if c then 
  
end 

if c then 
else  
end 

Yes, else is optional Yes, s_1 could be 
empty. 

Yes, s_1 and s_2 
could be both empty. 
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Calculating function’s value 

f (max : INTEGER ; s : STRING): STRING 
    do 
        if s.is_equal (“Java”) then 
            Result := “J**a” 
        else 
            if s.count > max then 
                Result := “<an unreadable German word>” 
            end 
        end 
    end 
 

Calculate the value of:  
Ø  f (3, “Java”) 
Ø  f (20, “Immatrikulationsbestätigung”) 
Ø  f (6, “Eiffel”)  

→ “J**a”  
→ “<an unreadable 
German word>”  

→ Void 
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Write a routine... 

Ø  ... that computes the maximum of two 
integers 

  max (a, b : INTEGER) : INTEGER 
 
Ø  ... that increases the time by one second inside class 
TIME 
 
class TIME 

 hour, minute, second : INTEGER 
 

 second_forth 
  do ... end 
 ... 

end 
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Comb-like conditional 

If there are more than two alternatives, you can use the 
syntax: 
 
if c_1 then 

 s_1 
elseif c_2 then 

 s_2 
... 
elseif c_n then 

 s_n  
else 

 s_e 
end 

instead of: 
 
if c_1 then 

 s_1 
else 

 if c_2 then 
  s_2 
 else 
  ... 
  if c_n then 
   s_n 
  else 
   s_e 
  end 
  ... 
 end  

end 

Condition 

Compound 

One word! 
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Multiple choice 

If all the conditions have a specific structure, you can 
use the syntax: 
 

  inspect expression 
  when const_1 then 
   s_1 
  when const_2 then 
   s_2 
  ... 
  when const_n1 .. const_n2 then 
   s_n 
  else 
   s_e 
  end 

Integer or character 
expression 

Integer or character 
constant 

Compound 

Interval 
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Lost in conditions 

Rewrite the following multiple choice: 
Ø  using a comb-like conditional 
Ø  using nested conditionals 

inspect user_choice 
when 0 then 
    print (“Hamburger”) 
when 1 then 
    print (“Coke”) 
else 
    print (“Not on the menu!”) 
end 

if user_choice = 0 then 
    print (“Hamburger”) 
elseif user_choice = 1 then 
    print (“Coke”) 
else 
    print (“Not on the menu !”) 
end 

if user_choice = 0 then 
    print (“Hamburger”) 
else 
    if user_choice = 1 then 
        print (“Coke”) 
    else 
        print (“Not on the menu!”) 
    end 
end 
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Loop: Basic form 

Compound 

Boolean expression 

Compound 

Syntax: 
  from 
   initialization 

 
 

  until 
   exit_condition 
  loop 
   body 

 
 

  end 
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Compilation error? Runtime error?  

f (x, y : INTEGER): INTEGER 
 do 
  from 
  until (x // y) 
  loop 
   "Print me!" 
  end 
 end 

Compilation error: 
integer expression 
instead of boolean 

Compilation error: 
expression instead 

of instruction 

Correct 

f (x, y : INTEGER) : INTEGER 
 local 
  i : INTEGER 
 do 
  from i := 1 until (True) 
  loop 
   i := i * x * y 
  end 
 end 

Correct, but 
non-terminating 

f 
 do 
  from  
  until False 
  loop 

 
  end 
 end 
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Simple loop 

How many times will the body of the following  
loop be executed? 

In Eiffel we usually start counting from 1 

10 

i : INTEGER 
... 
from 

 i := 1 
until 

 i > 10 
loop 

 print (“ I will not say bad things about assistants”) 
 i := i + 1 

end 
… 
from 

 i := 10 
until 

 i < 1 
loop 

 print (“ I will not say bad things about assistants”) 
end 

Caution! Loops can be infinite! 

∞ 
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invariant 
 inv 

Loop: More general form 

Compound 

Optional 

Boolean expression 

Boolean expression 

Compound 

variant 
 var 

Syntax: 
  from 
   initialization 

 
 

  until 
   exit_condition 
  loop 
   body 

 
 

  end Integer expression 

Optional 
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Invariant and variant 

Loop invariant (do not confuse with class invariant) 
Ø   holds before and after the execution of loop body 
Ø  captures how the loop iteratively solves the 

problem: e.g. “to calculate the sum of all n elements 
in a list, on each iteration i (i = 1..n) the sum of 
first i elements is obtained” 

Loop variant 
Ø  integer expression that is nonnegative after 

execution of from clause and after each execution 
of loop clause and strictly decreases with each 
iteration 

Ø  a loop with a correct variant can not be infinite 
(why?) 
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sum (n: INTEGER): INTEGER 
  -- Compute the sum of the numbers from 0 to `n‘ 
require 0 <= n 
local i: INTEGER 
do 

 from 
  Result := 0 
  i := 1 
 invariant 
  1 <= i and i <= n+1 
  Result = (i * (i – 1)) // 2 
 until 
  i > n 
 loop 
  Result := Result + i 
  i := i + 1 
 variant 
  n – i + 1 
 end 

ensure Result = (n * (n + 1)) // 2 
end 
 
 

Example – sum of the first n integers 

What are the loop 
invariants and 
variants here? 
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What does this function do? 

    (n : INTEGER) : INTEGER 
  require 
   n >= 0 
  local 
   i : INTEGER 
  do 
   from 
    i := 2 
    Result := 1 
   until 
    i > n 
   loop 
    Result := Result * i 
    i := i + 1 
   end 
  end 

f factorial 
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What are the invariant and variant of  
the “factorial” loop? 

 from 
  i := 2 
  Result := 1 
 invariant 
  ? 
 until 
  i > n 
 loop 
  Result := Result * i 
  i := i + 1 
 variant 
  ? 
 end 

 

i = 2;    Result = 1 = 1! i = 3;    Result = 2 = 2! i = 4;    Result = 6 = 3! 

Invariant and variant 

Result = factorial (i - 1) 

n – i + 2 
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Writing loops 

Implement a function that calculates 
Fibonacci numbers, using a loop 
 
fibonacci (n : INTEGER) : INTEGER 

  -- n-th Fibonacci number 
 require 
  n_non_negative : n >= 0 
 ensure 
  first_is_zero : n = 0 implies Result = 0 
  second_is_one : n = 1 implies Result = 1 
  other_correct : n > 1 implies Result = fibonacci (n - 1) + 

fibonacci (n - 2) 
 end 
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Writing loops (solution) 
fibonacci (n : INTEGER) : INTEGER 

 local 
  a, b, i : INTEGER 
 do 
  if n <= 1 then 
   Result := n 
  else      
   from 
    a := 0 
    b := 1 
    i := 1 

 
 
 

   until 
    i = n 
   loop 
    Result := a + b 
    a := b 
    b := Result 
    i := i + 1 

 
 

   end 
   end 
 end 

 
 

   invariant 

   variant 

    a = fibonacci (i - 1) 
    b = fibonacci (i ) 

    n - i 
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Summary 

Ø  Attributes, formal arguments, and local variables 
Ø  Scope 

Ø  Control structures 


