ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2015

Mock Exam 1

ETH Zurich
November 4, 2015

Name:

Group:
Question 1 /7.5
Question 2 / 14
Question 3 / 14
Total / 35.5

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2015

1 Multiple choice (7.5 points)

Put checkmarks in the checkboxes corresponding to the correct statements. There is at least
one correct answer per question. A correctly checked or unchecked box is worth 0.5 points. An
incorrectly checked or unchecked box is worth 0 points. Completely unanswered questions are
worth 0 points.

Example:

Which of the following statements are true?

a. The sun is a mass of incandescent gas. X 0.5 points
b. 2x4=38 O 0 points
c. “Rosti” is a kind of sausage. X 0 points
c. C is an object-oriented programming language. [J 0.5 points

1. Control structures and recursion.
a. If we know that a loop decreases its variant and that it never goes below 5,

then we know that the loop terminates.

b. The loop invariant is checked at the end of loop initialization (before entering
the loop itself).

c. The loop invariant tells us how many times the loop will be executed.

d. In Eiffel a procedure can have an empty body (do end).

e. The inspect instruction can be applied to expressions of any type.

O

ooo 0O

2. Objects and classes
a. All entities store references to run-time objects.
b. Different entities can reference the same object.
c. Clients of a class X can see all features declared in class X.
d. A class needs to tell its clients whether a query is an attribute or a function.
e. Objects can be created from every class.

oooono

3. Design by Contract
a. For a feature with postcondition false, any implementation is correct.
b. Every procedure ensures that the postcondition true holds.
c. The class invariant needs to hold before every procedure call.
d. For functions, the precondition may not refer to the Result expression and
the postcondition may not refer to the arguments of the function.
e. A feature with precondition false is accepted by the compiler.

oooo

O

1.1 Solution

1. Control structures and recursion
a. If we know that a loop decreases its variant and that it never goes below 5,

then we know that the loop terminates.

b. The loop invariant is checked at the end of loop initialization (before entering
the loop itself).

c. The loop invariant tells us how many times the loop will be executed.

d. In Eiffel a procedure can have an empty body (do end).

e. The inspect instruction can be applied to expressions of any type.

X

OXO X

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2015

2. Objects and classes

All entities store references to run-time objects.

Different entities can reference the same object.

Clients of a class X can see all features declared in class X.

A class needs to tell its clients whether a query is an attribute or a function.
Objects can be created from every class.

o po o
D0D0ORO

3. Design by Contract
a. For a feature with postcondition false, any implementation is correct.
b. Every procedure ensures that the postcondition true holds.
c. The class invariant needs to hold before every procedure call.
d. For functions, the precondition may not refer to the Result expression and
the postcondition may not refer to the arguments of the function.
e. A feature with precondition false is accepted by the compiler.

OoOXxO

X

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2015

2 Specifying Software through Contracts (14 points)

A range of integers can be conveniently represented using the boundary values of the range,
e.g., the range of integers between m and n (inclusive) can be represented using [m,n]. Given
a range R, we use Si to denote the set of integers within R, i.e.

St = {2 |m <z <n}.

For example, S} 31 = {1,2,3} and S5 1 = 0.

Listing 1 shows a class RANGE, which abstracts integer ranges and provides functions that
operate on them. The preconditions of the functions are already defined in the class; the
function results, however, are only given in the comments in terms of the boundary values and
the integer sets corresponding to the operand ranges. For example, the comment of function
1s_equal stipulates that Result should be True if and only if Current and other represent the
same set of integers, and the comment of function add specifies the integer set of Result should
be equal to the union of the sets of Current and other.

Read through the code, then complete the postconditions so that they reflect the function
comments.

Please note:

e The number of dotted lines is not indicative of the number of missing contract clauses.

e You need to write True at places where you think no explicit contract is necessary: leaving
a postcondition empty gives you 0 point for that section.

e The following features from class INTEGER may be useful:

class INTEGER

feature
maz (other: INTEGER): INTEGER
—— The greater of current integer and ‘other’.

min (other: INTEGER): INTEGER

—— The smaller of current integer and ‘other’.

—— Other features omitted.
end

Listing 1: Class RANGE

note
description: ” A range of integers.”

class RANGE
inherit

ANY
redefine is_equal end

create make

ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer

Fall 2015

feature{ NONE} —— Initialization

make (I, r : INTEGER)
do
left =1
right = r
end

feature —— Access.

left: INTEGER
—— Lower boundary of the range.
—— Scurrent = {z | left < x < right}

right: INTEGER
—— Upper boundary of the range.
- SCurrent = {l ‘ left S X S ’f'Zght}

feature —— Query

is_equal (other: like Current): BOOLEAN
—— Result = (SCurrent = Sother)
require
other /= Void
ensure

is_empty: BOOLEAN
—— Result = (SCurrent - ®)
require
True
ensure

is_sub_range_of (other: like Current): BOOLEAN
—— Result = (SCu,rremt g Soth,er)
require
other /= Void

ensure

is_super_range_of (other: like Current): BOOLEAN
—— Result = (SCu’r'r'ent 2 Sothe'r')

ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer

Fall 2015

require
other /= Void

ensure

left_overlaps (other: like Current): BOOLEAN
—— Result = (left € (SCur'r(znt N Soth,m‘))
require
other /= Void

ensure

right_overlaps (other: like Current): BOOLEAN
—— Result = (right € (Scurrent N Sother))
require
other /= Void

ensure

overlaps (other: like Current): BOOLEAN
—— Result = (SCu’rrent N Sothe'r 7& (b)

require
other /= Void
ensure
feature —— Operation

add (other: like Current): RANGE
- SRssult — (SC'U,T'Tent U Sothe'r')
require
other /= Void
result_is_-range : is_emply or other.is_empty or overlaps (other)
ensure

Result /= Void

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2015

subtract (other: like Current): RANGE

- SResult = (SCu'r‘rent - Sother)
require:
other /= Void
result_is_range : not overlaps (other)
or left_overlaps (other) or right_overlaps (other)
ensure
Result /= Void

end

ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer

Fall 2015

2.1 Solution

Listing 2: Class RANGE

note
description: ” A range of integers.”

class RANGE
create make
feature{ NONE} —— Initialization

make (I, r: INTEGER)

do
left :=1
right = r
end
feature —— Access.

left: INTEGER
—— Lower boundary of the range.
- SCurrent = {‘E ‘ left <z < ’I“Zght}

right: INTEGER
—— Upper boundary of the range.
I SCurrent — {x ‘ left S a5 S ’fZght}

feature —— Query

is-equal (other: like Current): BOOLEAN
== IRagulit = (SCurrent — Sother)
require
other /= Void
ensure
Result = ((is_empty and other.is_empty) or
(left = other. left and right = other.right))

is_empty: BOOLEAN
—— Result = (SCu’r'r'ent = [b)
require
True
ensure
Result = left > right

is_sub_range_of (other: like Current): BOOLEAN
—— Result = (SCurrent - Sother)
require
other /= Void
ensure

Result = (is_empty or (other.left <= left and right <= other.right))

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2015

is_super_range_of (other: like Current): BOOLEAN
—— Result = (SCurrent 2 Soth@’r')
require
other /= Void
ensure
Result = (other.is_.empty or (left <= other.left and other.right <= right))

left_overlaps (other: like Current): BOOLEAN
—— Result = (left S (SCur'r(znt N Soth,m‘))
require
other /= Void
ensure
Result = (not is_empty and other.left <= left and left <= other.right)

right_overlaps (other: like Current): BOOLEAN
—— Result = (right € (Scurrent N Sother))
require
other /= Void
ensure
Result = (not is_empty and other.left <= right and right <= other.right)

overlaps (other: like Current): BOOLEAN
—— Result = (SCur'rent N SotheT 7é (b)
require
other /= Void
ensure
Result = not is_empty and not other.is_empty and
(is_sub_range_of (other) or is_super_range_of (other) or
left_overlaps (other) or right_overlaps (other))

feature —— Operation

add (other: like Current): RANGE
- SResult = (SC'urrent U Sother)
require
other /= Void
result_is_-range : is_empty or other.is_empty or overlaps (other)
ensure
Result /= Void
is_empty implies Result.is_equal (other)
other.is_empty implies Result.is_equal (Current)
not (is_empty or other.is_empty) implies
(Result.left = left.min (other. left) and
Result.right = right. maz (other. right))

subtract (other: like Current): RANGE
- SResult - (SCurrent - Sothm’)
require:
other /= Void
result_is_range : not overlaps (other)
or left_overlaps (other) or right_overlaps (other)

ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer

Fall 2015

ensure

Result /= Void

not overlaps (other) implies Result.is_equal (Current)

left_overlaps (other) and not right_overlaps (other) implies
Result.left = other.right + 1 and Result.right = right

right_overlaps (other) and not left_overlaps (other) implies
Result.left = left and Result.right = other.left — 1

left_overlaps (other) and right_overlaps (other) implies
Result.is_empty

end

10

1

3

5

7

11

13

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2015

3 Doubly linked lists (14 points)

In the lecture you have been taught about singly linked lists, which enables list traversal in
one direction. In this task you have to implement a data structure called a doubly linked
list, which should allow traversal in both directions. The structure consists of two classes:
INTEGER_LIST_CELL and INTEGER_LIST. An object of type INTEGER_LIST_CELL holds
an INTEGER as the cell content and has a previous and a next reference to two other objects
of type INTEGER_LIST_CELL. By attaching the previous and next references correctly, two
or more cells can be connected to form a list. The class INTEGER_LIST offers functionality to
access the first and the last cell of a list, to add a new cell at the end, and to look for a specific
value in the list. In Figure 1 you see a drawing of a doubly linked list.

INTEGER_LIST_CELL INTEGER_LIST_CELL INTEGER_LIST_CELL

preV|ous preV|0us pl’EVIOUS

[35T e [35p[e]y
Void

Void

first

INTEGER_LIST

Figure 1: Doubly linked list

Read through the class INTEGER_LIST_CELL in Listing 4. You will need the features of
this class for the rest of the task.

1. Implement the feature extend of class INTEGER_LIST (see Listing 3). This feature takes
an INTEGER as argument, generates a new object of type INTEGER_LIST_CELL with
the given INTEGER as content and puts the new cell at the end of the list. Make sure
that your implementation satisfies the given postcondition of the feature.

2. Implement the feature has of class INTEGER_LIST (see Listing 3). This feature checks
if the value it receives as argument is contained in any cell of the list. In the example of
Figure 1, the first cell contains the value 18, the second cell contains the value 3, and the
third one contains the value 12.

Listing 3: Class INTEGER_LIST
class INTEGER_LIST

create
make_empty

feature —— Initialization

make_empty
—— Initialize the list to be empty.
do
first := Void
last = Void

count := 0

11

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2015

end
15
feature —— Access
17
first : INTEGER_LIST_CELL
19 —— Head element of the list, Void if the list is empty

21 last: INTEGER_LIST_CELL
—— Tail element of the list, Void if the list is empty
23
feature —— Measurement
25
count: INTEGER
27 —— Number of cells in the list
29 feature —— Element change
extend (a-value: INTEGER)
31 —— Append an integer list cell with content ‘a_value’ at the end of the list .
local
33 el: INTEGER_LIST_CELL
do
R 5
R
B0
P
.
D
A
O
PP
1

5

D
B
B

B

67

69

71

73

(0]

7

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer

Fall 2015

ensure
one_more: count = old count + 1
first_set : count = 1 implies first.value = a_value
last_set : last.value = a_value

end

feature —— Status report

empty: BOOLEAN
—— Is the list empty?
do
Result := (count = 0)
end
has (a-value: INTEGER): BOOLEAN
—— Does the list contain a cell with value ‘a_value’?
local
do
end

13

ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer

Fall 2015

end

Listing 4: Class INTEGER_LIST_CELL

class INTEGER_LIST_CELL
2

create
4 set_value

6 feature —— Access

8 walue: INTEGER
—— Content that is stored in the list cell
10
next: INTEGER_LIST_CELL
12 —— Reference to the next integer list cell of a list

14 previous: INTEGER_LIST_-CELL
—— Reference to the previous integer list cell of a list

16
feature —— Element change
18
set_value (z: INTEGER)
20 —— Set ‘value’ to ‘x’.
do
22 value = x
ensure
24 value_set: value = x
end
26
set_next (el: INTEGER_LIST-CELL)
28 —— Set ‘next’ to ‘el .
do
30 next := el
ensure
32 next_set: mext = el
end
34
set_previous (el: INTEGER_LIST_-CELL)
36 —— Set ‘previous’ to ‘el ’.
do
38 previous = el
ensure
40 previous_set: previous = el
end
42
end
Solution
Listing 5: Solution class INTEGER_LIST
1 class

14

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2015

INTEGER_LIST
3
create
5 make_empty

7 feature —— Initialization

9 make_empty
—— Initialize the list to be empty.

11 do
first := void
13 last := wvoid
count := 0
15 end
17 feature —— Access

19 first: INTEGER_LIST_-CELL
—— Head element of the list, Void if the list is empty

21

last: INTEGER_LIST_CELL
23 —— Tail element of the list, Void if the list is empty
25 feature —— Element change

27 extend (a-value: INTEGER)

—— Append a integer list cell with content ‘a_value’ at the end of the list .
29 local

el: INTEGER_LIST_CELL

31 do
create el. set_value (a_value)
33 if empty then
first = el
35 else
last . set_next (el)
37 el. set_previous (last)
end
39 last := el
count := count + 1
41 ensure
one_more: count = old count + 1
43 first_set : count = 1 implies first.value = a_value
last_set : last .value = a_value
45 end
47 feature —— Measurement

49 count: INTEGER
—— Number of cells in the list
51
feature —— Status report
53

15

ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer

Fall 2015

has (a-value: INTEGER): BOOLEAN

55 —— Does the list contain a cell with value ‘a_value’?
local
57 cursor: INTEGER_LIST_CELL
do
59 from
cursor := first
61 until
cursor = Void or Result
63 loop
if cursor.value = a_value then
65 Result := True
end
67 cursor := cursor.next
end
69 end

71 empty: BOOLEAN
—— Is the list empty?

73 do

Result := (count = 0)
() end
77 end

Listing 6: Class INTEGER_LIST_CELL
1class INTEGER_LIST_CELL

3 create
set_value
5
feature —— Access
7
value: INTEGER
9 —— Content that is stored in the list cell

11 next: INTEGER_LIST_-CELL
—— Reference to the next integer list cell of a list

13

previous: INTEGER_LIST_-CELL
15 —— Reference to the previous integer list cell of a list
17 feature —— Element change

19 set-value (z: INTEGER)
—— Set ‘value’ to ‘x’.

21 do

value := x
23 ensure

value_set: value = x
25 end

16

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2015

27 set_next (el: INTEGER_LIST_-CELL)
—— Set ‘next’ to ‘el .

29 do

next := el
31 ensure

next_set: next = el
33 end

35 set_previous (el: INTEGER_LIST-CELL)

—— Set ‘previous’ to ‘el .

37 do
previous = el
39 ensure
previous_set: previous = el
41 end
43 end

17

	Multiple choice (7.5 points)
	Solution

	Specifying Software through Contracts (14 points)
	Solution

	Doubly linked lists (14 points)

