Mock Exam 2

ETH Zurich

December 2, 2015

Name: ____________________________

Group: ____________________________

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 1</td>
<td>/ 11</td>
</tr>
<tr>
<td>Question 2</td>
<td>/ 16</td>
</tr>
<tr>
<td>Question 3</td>
<td>/ 14</td>
</tr>
<tr>
<td>Total</td>
<td>/ 41</td>
</tr>
</tbody>
</table>
1 Contracts (11 points)

We are interested in a software system simulating a cellular automaton. The universe is represented by a finite square grid composed of square cells (there is at least 1). Each cell can be in two states: alive or dead. Every cell, depending on its position in the grid, can have from a minimum of 3 neighbors (a cell in a corner) to a maximum of 8 neighbors (a cell in the middle).

The evolution of the automaton from one generation to the next is fully determined by the following set of rules:

- Any living cell with less than 2 living neighbors dies in the next generation.
- Any living cell with 2 or 3 living neighbors lives in the next generation.
- Any living cell with more than 3 living neighbors dies in the next generation.
- Any dead cell with exactly 3 living neighbors becomes alive in the next generation.
- Any dead cell with a number of living neighbors different from 3 stays dead in the next generation.

The evolution from one generation into the next happens by applying the above rules simultaneously to every cell in the grid (see Figures 1 and 2).

![Figure 1: Sample first generation. A black square is a living cell.](image1.png)

Figure 1: Sample first generation. A black square is a living cell.

![Figure 2: Second generation, computed from the first according to the given set of rules.](image2.png)

Figure 2: Second generation, computed from the first according to the given set of rules.

Your task is to add appropriate contracts (preconditions, postconditions and class invariants) to the excerpt of class `CELL_GRID` below, so that the informal specification above and the feature comments are reflected in each class interface.

Please note that the number of dotted lines does not indicate the number of missing contracts. It might also be useful to have a look at the excerpt of class `ARRAY_2` shown below.

1.1 Solution

```java
class CELL_GRID
create
    make

feature {NONE} -- Initialization
```
make (a_dimension: INTEGER)
 -- Initialize grid’s dimension to ‘a_dimension’ and its cells to dead.
 require
 dim_positive: a_dimension >= 1
 do
 -- Implementation omitted.
 ensure
 dim_set: dim = a_dimension
 current_grid_initialized_to_default : current_grid. all_default
 end

feature -- Access

 dim: INTEGER
 -- Grid dimension.

 cell_at (i, j: INTEGER): BOOLEAN
 -- Value of cell at (i, j).
 require
 i_within_bounds: i >= 1 and i <= dim
 j_within_bounds: j >= 1 and j <= dim
 do
 -- Implementation omitted.
 ensure
 right_cell : Result = current_grid.item (i, j)
 end

feature -- Status Setting

 set_cell_status (b: BOOLEAN; i, j: INTEGER)
 -- Set status of cell at (i, j).
 require
 i_within_bounds: i >= 1 and i <= dim
 j_within_bounds: j >= 1 and j <= dim
 do
 -- Implementation omitted.
 ensure
 cell_status_set : cell_at (i, j) = b
 end

feature -- Basic operations

 compute_next_generation
 -- Compute next_grid, copy it to current_grid and re-initialize next_grid.
 do
 -- Implementation omitted
 end

feature {NONE} -- Implementation

 current_grid: ARRAY2 [BOOLEAN]
Grid representation as a matrix of boolean cells ("True" means alive for a cell).

\[\text{new_state_of_cell} (i, j, \text{living_neighbors}: \text{INTEGER}): \text{BOOLEAN} \]
\[\text{-- Apply Conway’s Game of Life rules to compute new state for cell at (i,j) given a number of ‘living_neighbors’}. \]

\[\text{require} \]
\[i\text_within_bounds: i >= 1 \text{ and } i <= \text{dim} \]
\[j\text_within_bounds: j >= 1 \text{ and } j <= \text{dim} \]
\[\text{living_neighbors_within_bounds: living_neighbors} >= 0 \text{ and } \text{living_neighbors} <= 8 \]

\[\text{do} \]
\[\text{-- Implementation omitted.} \]

\[\text{ensure} \]
\[\text{death_rule_1: current_grid.item} (i, j) \text{ and (living_neighbors < 2 or living_neighbors > 3) implies not Result} \]
\[\text{life_rule: current_grid.item} (i, j) \text{ and (living_neighbors = 2 or living_neighbors = 3) implies Result} \]
\[\text{birth_rule: not current_grid.item} (i, j) \text{ and (living_neighbors /= 3) implies Result} \]
\[\text{death_rule_2: not current_grid.item} (i, j) \text{ and (living_neighbors /= 3) implies not Result} \]

\[\text{end} \]

\[\text{invariant} \]
\[\text{current_grid_exists: current_grid /= Void} \]
\[\text{grid_dimension_positive: dim > 0} \]
\[\text{current_grid_dimension_is_dim: current_grid.width = dim and current_grid.height = dim} \]

\[\text{end} \]
2 Data Structures (16 points)

In this task you are going to implement several operations for a generic class $\text{SET}[G]$.

A set is a collection of distinct objects. Every element of a set must be unique; no two members may be identical. All set operations preserve this property. The order in which the elements of a set are listed is irrelevant (unlike for a sequence or tuple). Therefore the two sets \{5, 10, 12\} and \{10, 12, 5\} are identical.

There are several fundamental operations for constructing new sets from given sets.

- **Union**: The union of A and B, denoted by $A \cup B$, is the set of all elements that are members of either A or B.
- **Intersection**: The intersection of A and B, denoted by $A \cap B$, is the set of all elements that are members of both A and B.
- **Relative complement of B in A** (also called the set-theoretic difference of A and B), denoted by $A \setminus B$ (or $A - B$), is the set of all elements that are members of A but not members of B.

The Jaccard index (or coefficient) measures similarity between sample sets, and is defined as the size of the intersection divided by the size of the union of the sample sets (see Figure 3). If both sets are empty the Jaccard coefficient is defined as 1.0.

$$J(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Figure 3: Jaccard index definition for non-empty sets A and B.

Your task is to fill in the gaps of class $\text{SET}[G]$ below. Please note:

- Your code should satisfy the contracts and provide new contracts where necessary.
- The set should never contain **Void** elements.
- The number of dotted lines does not indicate the number of missing contract clauses or code instructions.
- The implementation of class $\text{SET}[G]$ is based on an arrayed list. The arrayed list is set up to use object comparison, so features like `has` and `prune` use object equality instead of reference equality when comparing elements from the set. The following features of class ARRAYED_LIST may be useful:

```java
class ARRAYED_LIST[G]

feature
has (v: G): BOOLEAN
    -- Does current include ‘v’?

start
    -- Move cursor to first position if any.

extend (v: G)
    -- Add ‘v’ to the end.
```
prune \((v: G)\)

\[\begin{align*}
\text{-- Remove first occurrence of \textquote{v}, if any, after cursor position.} \\
\text{-- Move cursor to right neighbor.}
\end{align*}\]

\[\begin{align*}
\text{-- Other features are omitted.}
\end{align*}\]

end

2.1 Solution

class \texttt{SET \([G]\)}

create

\begin{verbatim}
create make_empty
\end{verbatim}

feature \{NONE\} \text{-- Initialization}

\begin{verbatim}
make_empty
\begin{align*}
\text{-- Create empty Current.} \\
\text{do} \\
\text{create content.make (0)} \\
\text{content.compare_objects} \\
\text{ensure} \\
\text{empty_content: content.is_empty}
\end{verbatim}

end

feature \text{-- Access}

\begin{verbatim}
count: INTEGER \\
\begin{align*}
\text{-- Cardinality of the current set.} \\
\text{do} \\
\text{Result := content.count}
\end{verbatim}

end

is_empty: BOOLEAN

\[\begin{align*}
\text{-- Is current set empty?} \\
\text{do} \\
\text{Result := count = 0}
\end{align*}\]

end

has \((v: G): BOOLEAN\)

\[\begin{align*}
\text{-- Does current set contain \textquote{v}?} \\
\text{require} \\
\text{v /\!\!\!\!\!= Void} \\
\text{do} \\
\text{Result := content.has (v)}
\end{align*}\]

end

add \((v: G)\)

\[\begin{align*}
\text{-- Add \textquote{v} to the current set.} \\
\text{require}
\end{align*}\]
\[v \neq \text{Void} \]

do
 \text{if not has (v) then}
 \text{content.extend (v)}
end
\text{ensure}
 \text{in_set_already: old has (v) implies (count = old count)}
 \text{added_to_set: not old has (v) implies (count = old count + 1)}
end

\text{remove (v: G)}
 \text{--- Remove 'v' from the current set.}
\text{require}
 v \neq \text{Void}
\do
 \text{if has (v) then}
 \text{content.start}
 \text{content.prune (v)}
end
\ensure
 \text{removed_count_change: old has (v) implies (count = old count - 1)}
 \text{not_removed_no_count_change: not old has (v) implies (count = old count)}
 \text{item_deleted: not has (v)}
end

\text{duplicate: like Current}
 \text{--- Deep copy of Current.}
\do
 \text{create Result.make_empty}
 \text{across content as c}
 \text{loop}
 \text{Result.add (c.item)}
 end
\ensure
 \text{same_size: Result.count = count}
 \text{same_content: across content as c all Result.has (c.item) end}
end

\text{feature} \text{--- Set operations.}

\text{union (another: like Current): like Current}
 \text{--- Union product of the current set and 'another' set.}
\text{require}
 another \neq \text{Void}
\do
 \text{Result := another.duplicate}
 \text{across content as c}
 \text{loop}
 \text{Result.add (c.item)}
 end
\ensure
 \text{not_smaller: Result.count >= count and Result.count >= another.count}
end

intersection (another: like Current): like Current
 -- Intersection product of the current set and 'another' set.
 require
 another /= Void
 do
 create Result.make_empty
 across content as c
 loop
 if another.has (c.item) then
 Result.add (c.item)
 end
 end
 ensure
 not_bigger: Result.count <= count and Result.count <= another.count
end

difference (another: like Current): like Current
 -- Set-theoretic difference of the current set and 'another' set.
 require
 another /= Void
 do
 create Result.make_empty
 across content as c
 loop
 if not another.has (c.item) then
 Result.add (c.item)
 end
 end
 ensure
 not_bigger_than: Result.count <= count
 not_smaller_than: Result.count >= count - another.count
end

feature -- Set metrics.

jaccard_index (another: like Current): REAL_64
 -- Jaccard similarity coefficient between current set and 'another' set.
 require
 another /= Void
 do
 if not (is_empty and another.is_empty) then
 Result := intersection (another).count / union (another).count
 else
 Result := 1.0
 end
 ensure
 bounds: Result >= 0.0 and Result <= 1.0
 empty_case: (is_empty and another.is_empty) implies Result = 1.0
end
feature {NONE} -- Implementation

 content: ARRAYED_LIST[G]
 -- Items of the set.

invariant

 content_exists : content /= Void
 content_object_comparison: content.object_comparison
 non_negative_cardinality : count >= 0

end
3 Recursion (14 points)

The N-queens problem is the problem of positioning N queens on an \(N \times N \) board such that no queen can attack another (i.e., share the same row, column, or diagonal). The N-queens problem can be solved recursively: having a solution for the first 4 rows of the board can be used to build a solution for the 5\(^{th} \) row, as is being done in Figure 4.

![Figure 4: An example of a partial solution](image)

A safe location is one which cannot be attacked by any of the currently placed queens.

A routine to solve the N-queens problem, complete (partial: SOLUTION), does as follows: if the partial solution is not yet complete, then for each safe location in the current row, add the safe location to the solution and use this new solution to solve the problem for the next row. The current row is partial.row_count + 1; for example in Figure 4 the partial solution has row_count equal to 4, thus the current row is 5. If the solution is already complete then it is added to the list of solutions.

You must complete the implementation of PUZZLE (which has an attribute solutions to store all solutions) below by filling in the body of complete and attack_each_other. Note that a solution can be added to the list of solutions using the extend feature from LIST.

3.1 Solution

```plaintext
note
description: "N-queens puzzle."

class
PUZZLE

feature -- Access

size: INTEGER
-- Size of the board.

solutions: LIST [SOLUTION]
-- All solutions found by the last call to 'solve'.

feature -- Basic operations

solve (n: INTEGER)
-- Solve the puzzle for 'n' queens.
```
require
 solvable: n > 3 -- All puzzles with size > 3 are solvable

do
 size := n
 create {LINKED_LIST[SOLUTION]} solutions.make
 complete (create {SOLUTION}.make_empty)
ensure
 solutions_exists : not solutions.is_empty
 complete_solutions: across solutions as s all s.item.row_count = n end
end

feature {NONE} -- Implementation

complete (partial: SOLUTION)
 -- Find all complete solutions that extend the partial solution ‘partial’
 -- and add them to ‘solutions’.
require
 partial_exists: partial /= Void
local
 c: INTEGER
do
 if partial.row_count = size then
 solutions.extend (partial)
 else
 from
 c := 1
 until
 c > size
 loop
 if not under_attack (partial, c) then
 complete (partial.extended_with (c))
 end
 c := c + 1
 end
 end
end

under_attack (partial: SOLUTION; c: INTEGER): BOOLEAN
 -- Is column ‘c’ of the current row under attack
 -- by any queen already placed in partial solution ‘partial’?
require
 partial_exists: partial /= Void
local
 current_row, row: INTEGER
do
 current_row := partial.row_count + 1
 from
 row := 1
 until
 Result or row > partial.row_count
 loop
 Result := attack_each_other (row, partial.column_at (row), current_row, c)
row := row + 1
end
end

attack_each_other (row1, col1, row2, col2: INTEGER): BOOLEAN
−− Do queens in positions (‘row1’, ‘col1’) and (‘row2’, ‘col2’) attack each other?
do
Result := row1 = row2 or
 col1 = col2 or
 (row1 − row2).abs = (col1 − col2).abs
end

end