
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 1:

Introduction to robotics

Introduction to software engineering

2

After completing this laboratory course, you will understand:

 Basic software engineering principles and methods

 Most common architectures in robotics

 Coordination and synchronization methods

 How software engineering applies to robotics

and have gained experience in programming a small robotics
system

Objectives

3

Practical details

Lecturers

 Prof. Dr. Bertrand Meyer

 Dr. Jiwon Shin

Assistants

 Andrey Rusakov

 Ganesh Ramanathan

Course page

 http://se.inf.ethz.ch/courses/2015b_fall/rpl

Forum

 https://piazza.com/class/idbqs3jsxfn6zn

http://se.inf.ethz.ch/courses/2015b_fall/rpl
https://piazza.com/class/idbqs3jsxfn6zn

4

Practical details

Schedule

 Monday, 16:15 – 18:00, WEH D 4

 Thursday, 15:15 – 17:00, WEH D 4

This is a hands-on laboratory class. You will develop software
for your own robot. Lectures and exercise sessions will be much
more interactive than in traditional courses.

Your fellow classmates are your best resources. We encourage
you to talk to each other and help each other. For online
communication, use the forum to post your questions and
answer questions other have.

5

Practical details

Laboratory space

 WEH D 4 is open exclusively to you.

 In a week, you can pick up keys to the building and to the room.

 Please lock the room when you leave and close the main door when
you enter and leave.

 Please keep the space tidy!

Hardware

 Starting next Monday, you can get a robot, a sensor, and some cables to
be used for the class.

 We ask you to deposit 50 CHF for the hardware. You will get the money
back when you return the hardware.

 We expect you to have a laptop. If you do not have one, please contact
us.

6

Grading

The grade for this laboratory course is based entirely on the project.

Every assignment has an individual component (50%) and a group
component (50%). For the group portion, you may work in a group of 2 to 3
people.

You must submit your work at every evaluation point and participate in the
final competition to receive a grade for this class. You must pass both
individual component and group component to pass this course.

 Assignment 1 (8 Oct/19 Oct): control and obstacle avoidance

 Assignment 2 (3 Nov/9 Nov): path planning

 Assignment 3 (23 Nov/30 Nov): object recognition

 Final competition (7 Dec/17 Dec): search and rescue

7

Project grading

In-class Demonstration: 50%

 Precise evaluation criteria will be defined at the beginning of
each phase

Software Quality: 50%

 Choice of abstractions and relations

 Correctness of implementation

 Extendibility and reusability

 Comments and documentation, including ”README”

8

Topics

Control and obstacle avoidance

 ROS and Roboscoop, Modern software engineering
tools SCOOP, Robot control and obstacle avoidance,
Design patterns

Path planning

 Path planning

Object recognition

 Robot perception

Search and rescue

 Localization, Software architecture in robotics

9

Lecture schedule

1. Introduction to robotics and software engineering

2. ROS and Roboscoop

3. Control / Modern software engineering tools

4. SCOOP

5. Obstacle avoidance

6. Design patterns

Assignment 1: control and obstacle avoidance

7. Path planning

8. Robot perception

Assignment 2: path planning

9. Localization

10. Software architecture for robotics

Assignment 3: Object recognition

Assignment 4: Search and rescue

10

Software engineering
 Object-Oriented Software Construction, Meyer

 Design Patterns, Gamma, Helm, Johnson, Vlissides

 Pattern-Oriented Software Architecture: Volume 2, Schmidt, Stal, Rohnert,
Buschmann

Robotics
 Probabilistic Robotics, Thrun, Burgard, Fox

 Introduction to Autonomous Mobile Robots, by Siegwart, Nourbakhsh,
Scaramuzza

Programming language
 Touch of Class, Meyer

 The C++ Programming Language, Stroustrup

Recommended literature

11

Robots as automata

Robot knight (1495)
Leonardo da Vinci

Writer (1774)
Pierre Jaquet-Droz

Digesting duck (1738)
Jacques de Vaucanson

12

Robots of the 20th century

Surveillance robot

Exploration robot
Industrial robot

Entertainment robot

13

Robots of today

Service robot

Industrial robotExploration robot

Entertainment robot

Surveillance robot

Autonomous vehicle

14

Robotics

Robot: A machine capable of carrying out a complex series of
actions automatically, especially one programmable by a
computer

Robotics: The branch of technology that deals with the design,
construction, operation, and application of robots – Oxford
dictionary

Components of robotics

 Perception: vision, touch, range, sound

 Actuation: manipulation, locomotion

 Cognition: navigation, recognition, planning, interaction

15

Challenges in robotics: uncertainty!

Solved challenges

 Navigation in static environment – Clausiusstrasse

 Recognition of known objects – face, simple objects

 Manipulation of simple, rigid objects – beer fetching

Open challenges

 Navigation in dynamic environment – Bahnhofstrasse

 Scene understanding – a group of people at a party

 Manipulation of complex, deformable objects – laundry
folding

 Learning over time and knowledge transfer

http://www.willowgarage.com/blog/2010/07/06/beer-me-robot
http://www.willowgarage.com/blog/2011/06/06/solving-laundry-uc-berkeley

16

Robot for the class

Differential drive

Proximity sensors

RGB + D camera

17

What people did last year

18

Introduction to software engineering

(and software architecture)

19

Software engineering

“The application of engineering to software”

Engineering (Wikipedia): “the discipline, art and profession of
acquiring and applying technical, scientific, and mathematical
knowledge to design and implement materials, structures,
machines, devices, systems, and processes that safely realize a
desired objective or invention”

A simpler definition of engineering: the application of scientific
principles to the construction of artifacts

http://en.wikipedia.org/wiki/Process_(engineering)

20

For this course

The application of engineering principles and techniques,
based on mathematics, to the development and operation of
possibly large software systems satisfying defined standards of
quality

21

Parnas’s view

(Cited in Ghezzi et al.)

“The multi-person construction of multiversion software”

22

“Large” software systems

What may be large: any or all of

 Source size (lines of code, LoC)

 Binary size

 Number of users

 Number of developers

 Life of the project (decades...)

 Number of changes, of versions

(Remember Parnas’s definition)

23

Process and product

Software engineering affects both:

 Software products

 The processes used to obtain and operate them

Products are not limited to code. Other examples include
requirements, design, documentation, test plans, test results,
bug reports

Processes exists whether they are formalized or not

24

Software quality factors

Correctness
Robustness
Security
Ease of use
Ease of learning
Efficiency

Process

Product

Extendibility
Reusability
Portability

Immediate

Long-term

Timeliness
Cost-effectiveness

Predictability
Reproducibility
Self-improvement

Security
Robustness

Errors

Correctness

Specification

“Reliability”

Hostility

25

Software engineering today

Three cultures:

 Process

 Agile

 Object

The first two are usually seen as exclusive, but all have major
contributions to make.

26

The process culture

Emphasize:

 Plans

 Schedules

 Documents

 Requirements

 Specifications

 Order of tasks

 Commitments

Examples: Rational Unified Process, CMMI, Waterfall…

27

CMMI basic ideas

CMMI is a catalog of approved practices and goals

Basic goal: determine the maturity level of the process of an
organization

Focused on process, not technology

Emphasizes reproducibility of results

(Moving away from “heroic” successes to controlled processes)

Emphasizes measurement, based on statistical quality control
techniques pioneered by W. Edward Deming & others

Relies on assessment by external team

28

CMMI maturity levels

Process unpredictable,
poorly controlled and
reactive

Process characterized for
projects and is often
reactive

Process characterized for
the organization and is
proactive

Process measured
and controlled

Focus on process
improvement

Optimizing

Quantitatively
Managed

Defined

Performed

Managed

Optimizing

Defined

1

2

3

4

5

29

Agile

Examples: Extreme Programming (XP), Scrum

Emphasizes:

 Short iterations

 Emphasis on working code

 Emphasis on testing

 De-emphasis of plans and documents

 De-emphasis of upfront specifications and design

 Communication: customer involvement

 Specific practices, e.g. Pair Programming

30

Agile principles

Organizational

 1 Place the customer at the center

 2 Develop minimal software:

• 2.1 Produce minimal functionality

• 2.2 Produce only the product requested

• 2.3 Develop only code and tests

 3 Accept disciplined change

• 6.1 Do not change requirements during an iteration

 4 Let the team self-organize

 5 Maintain a sustainable pace

Technical

 6 Produce frequent working iterations

 7 Treat tests as a key resource:

• 7.1 Do not start any new development until all tests pass

• 7.2 Test first

 8 Express requirements through scenarios

31

Six task groups of software engineering

Describe

Implement

Assess

Manage

Operate

Notate

Requirements, documentation …

Design, programming

V&V*, esp. testing

*Validation & Verification

Plans, schedules, communication, reviews…

Deployment, installation

Languages for programming etc.

32

Software lifecycle models

Describe an overall distribution of the software construction
into tasks, and the ordering of these tasks

They are models in two ways:

 Provide an abstracted version of reality

 Describe an ideal scheme, not always followed in
practice

33

Lifecycle: the waterfall model

Feasibility
study

Requirements

Specification

Global
design

Detailed
design

Implemen-
tation

V & V

Distribution

Royce, 1970 (original article actually
presented the model to criticize it!)

Succession of steps, with possibility at
each step to question and update the
results of the preceding step

34

A V-shaped variant

FEASIBILITY STUDY

REQUIREMENTS
ANALYSIS

GLOBAL DESIGN

DETAILED DESIGN

DISTRIBUTION

IMPLEMENTATION

UNIT
VALIDATION

SUBSYSTEM
VALIDATION

SYSTEM
VALIDATION

35

Arguments for the waterfall

(After B.W. Boehm: Software engineering economics)

 The activities are necessary
• (But: merging of middle activities)

 The order is the right one.

36

Merging of middle activities

Feasibility
study

Requirements

Specification

Global
design

Detailed
design

Implemen-
tation

V & V

Distribution

37

Arguments for the waterfall

(After B.W. Boehm: Software engineering economics)

 The activities are necessary

• (But: merging of middle activities)

 The order is the right one.

38

Problems with the waterfall

 Late appearance of actual code

 Lack of support for requirements
change — and more generally for
extendibility and reusability

 Lack of support for the maintenance
activity (70% of software costs?)

 Division of labor hampering
Total Quality Management

 Impedance mismatches

 Highly synchronous model

Feasibility
study

Requirements

Specification

Global
design

Detailed
design

Implemen-
tation

V & V

Distribution

39

Lifecycle: “impedance mismatches”

As Management requested it As the Project Leader defined it As Systems designed it

As Programming developed
it

As Operations installed it What the user wanted

(Pre-1970 cartoon; origin unknown)

40

A modern variant

41

The spiral model (Boehm)

Apply a waterfall-like approach to successive prototypes

Iteration 1

Iteration 2

Iteration 3

42

The Spiral model

43

“Prototyping” in software

The term is used in one of the following meanings:

 1. Experimentation:

• Requirements capture

• Try specific techniques: GUI, implementation
(“buying information”)

 2. Pilot project

 3. Incremental development

 4. Throw-away development
(Fred Brooks, The Mythical Man-Month, 1975:
“Plan to throw one away, you will anyhow”).

44

The problem with throw-away development

Software development is hard because of the need to reconcile
conflicting criteria, e.g. portability and efficiency

A prototype typically sacrifices some of these criteria

Risk of shipping the prototype

In the 20th-anniversary edition of his book (1995), Brooks
admitted that “plan to throw one away” is bad advice

45

The agile view

Iterative development

Short iterations (“sprints”), typically 1 month

Every iteration should produce a working system

46

Seamless, incremental development

Seamless development:

 Single set of notation, tools, concepts, principles throughout

 Continuous, incremental development

 Keep model, implementation and documentation consistent

Reversibility: can go back and forth

These are in particular some of the ideas behind the Eiffel method

47

Seamless development

 Single notation, tools, concepts,
principles

 Continuous, incremental
development

 Keep model, implementation and
documentation consistent

 Reversibility: go back and forth

Example classes:

PLANE, ACCOUNT,
TRANSACTION…

STATE,
COMMAND…

HASH_TABLE…

TEST_DRIVER…

TABLE…

Analysis

Design

Implemen-
tation

V&V

Generali-
zation

48

Generalization

Prepare for reuse. For example:

 Remove built-in limits

 Remove dependencies on
specifics of project

 Improve documentation,
contracts...

 Abstract

 Extract commonalities and
revamp inheritance hierarchy

Few companies have the guts to
provide the budget for this

B

A*

Y

X

Z

A D I V G

49

Finishing a design

It seems that the sole purpose of the work
of engineers, designers, and calculators is to
polish and smooth out, lighten this seam, balance
that wing until it is no longer noticed, until it is no longer a wing
attached to a fuselage, but a form fully unfolded, finally freed
from the ore, a sort of mysteriously joined whole, and of the same
quality as that of a poem. It seems that perfection is reached, not
when there is nothing more to add, but when there is no longer
anything to remove.

(Antoine de Saint-Exupéry,
Terre des Hommes, 1937)

50

Finishing a design

Il semble que tout l’effort industriel de l'homme,

tous ses calculs, toutes ses nuits de veille sur

les épures, n'aboutissent […] qu'à la seule simplicité, comme s'il
fallait l’expérience de plusieurs générations pour dégager peu à
peu la courbe d'une colonne, d'une carène, ou d'un d'avion,
jusqu'à leur rendre la pureté élémentaire de la courbe d'un sein ou
d'une épaule. Il semble que le travail des ingénieurs, […] des
calculateurs du bureau d'études ne soit ainsi, en apparence, que
de polir et d’effacer, d’alléger […] Il semble que la perfection soit
atteinte non quand il n’y a plus rien à ajouter, mais quand il n’y a
plus rien à retrancher.

(Antoine de Saint-Exupéry,
Terre des Hommes, 1937)

51

Steve Jobs, 1998

That's been one of my
mantras -- focus and
simplicity. Simple can be
harder than complex:
You have to work hard to
get your thinking clean to
make it simple. But it's
worth it in the end
because once you get there, you can move mountains.

52

Reversibility

Analysis

Design

Implemen-
tation

V&V

Generali-
zation

53

The cluster model

Cluster 1
Cluster 2A

D

I

V&V

G

A

D

I

V&V

G

A

D

I

V&V

G

A

D

I

V&V

G

54

Extremes

Cluster 1

Cluster 2

A
D

I

V&
V
G

A
D

I

V&
V
G

A
D

I

V&
V
G

A

D

I

V&V

G

“Trickle” “Clusterfall”

A

D

I

V&V

G

A

D

I

V&V

G

Cluster 1 Cluster 2

55

Dynamic rearrangement

Cluster 1
A

D

I

V&V

G

Cluster 2

A

D

I

V&V

G
A

D

I

V&V

G

Cluster 3

A

D

I

V&V

G

Cluster 4

56

Bottom-up order of cluster development

Cluster 1
A

D

I

V&V

G

A D I

V
&

V

G

Cluster 2
A

D

I

V&V

G

A D I

V
&

V

G

Cluster n
A

D

I

V&V

G

A D I

V
&

V

G

Time

Base technology

Specialized functions

Start with most
fundamental
functionalities, end
with user interface

57

Seamless development with EiffelStudio

Diagram Tool

• System diagrams can be produced automatically from
software text

•Works both ways: update diagrams or update text –
other view immediately updated

No need for separate UML tool

Metrics Tool

Profiler Tool

Documentation generation tool

...

58

Complementary approaches

Seamless development: “vertical”

Agile: horizontal

59

Lifecycle models: summary

Software development involves fundamental tasks such as
requirements, design, implementation, V&V, maintenance…

Lifecycle models determine how they will be ordered

The Waterfall is still the reference, but many variants are
possible, e.g. Spiral, Cluster

Seamless development emphasizes the fundamental unity of
the software process

