ETH:zurich

Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 2:

ROS and Roboscoop

Robots of today ©

» Many sensors and actuators
> Able to operate in familiar or expected environments
» Able to perform specialized tasks

Robots of the future ©

C-3PO R2-D2

» Provides etiquette, customs, > Rescues people and robots
and translation assistance > Repairs other robots and

» Has own thoughts and complex hardware and
feelings software

Advanced robots must be able to operate and perform

=1%\ tasksin complex, unknown environments.

As robotics advances, we must be aware that robots can

be both helpful and harmful. n

Concurrency in robotics

Advanced robotic systems have many hardware components
that can operate concurrently.

» Sensors and actuators can run in parallel.

» Locomotion and manipulators can run concurrently.

Concurrency in robotics

Multiprocessing, parallelism

Process1 |— HHHHH H H CPU 1
== 1] |- =2

Instructions

» Multiprocessing: the use of more than one processing unit in
a system

» Parallel execution: processes running at the same time

(]
4

P1: Move @ P2:Scan

\

Multitasking, concurrency

11 1) Wit

Instructions

» Interleaving: several tasks active, running one at a time
» Multitasking: the OS runs interleaved executions
» Concurrency: multiprocessing and/or multitasking

- . Obstacle

P1: Go to goal ' P2: Avoid obstacle

\
—-—

Concurrency

Benetfits of introducing concurrency into programs:

» Efficiency: time (load sharing), cost (resource sharing)
» Availability: multiple access

» Convenience: perform several tasks at once

» Modeling power: describe systems that are inherently
parallel

Roboscoop

Concurrency framework for robotics

Roboscoop software architecture

Roboscoop

SCOOP

ROS

Library (set of primitives and tools for their
coordination)

* Integration with other robotics frameworks

External calls

O-0O Structure
Coordination
Concurrency

Communication

Navigation, image processing, coordinate
transforms, visualization, ...

10

ROS: Robot Operating System ©

ROS: Open-source, meta-operating system for robots

ROS provides the services of an operating system, including
» hardware abstraction,

» low-level device control,

» implementation of commonly-used functionality,

» message-passing between processes, and

» package management

Quigely, M., et al. “ROS: an open-source Robot Operating System,” IEEE International Conference on Robotics
and Automation. 2009.

http://www.ros.org 11

ROS ©

Goals of ROS

» Support code reuse in robotics research and development.

» Enable executables to be individually designed and loosely
coupled at runtime through its distributed framework of
processes.

» Group processes for easy sharing and distribution.

» Enable the distribution of collaboration through its
repositories.

Properties of ROS

» Thin

» Peer-to-Peer

» Multi-lingual: C++, Python, Lisp

12

ROS communication

Topic

Publication @

Subscription

Topic

13

ROS node ©

Node
» A process that performs computation
» Interchangeable with a software module

» Can generate data for and receive data from other nodes

A system is typically comprised of many nodes: robot control

node, localization node, path planning node, perception node,
etc.

Benefits of using nodes

» Fault-tolerance: crashes are isolated to individual nodes
» Reduction of code complexity

14

ROS topic ©

Topic
» Named bus over which nodes exchange messages
» Has anonymous publish/subscribe semantics.

A node can publish and/or subscribe to multiple topics.
A topic supports multiple publishers and subscribers.

Objec t Viewer Path

Ul
Detection \\ // Planner

| PUblicatiOH Goal Pose SUbSCTiptiOIl 1

(Topic)

15

ROS message ©

Message: Strictly typed data structure used for
communication between nodes

Message description specification UES

> Build-in types uint32 y

> Names of Messages defined on their |Sensor_msgs/LasersScan s
own uint8[] data

> Fixed- or variable-length arrays: float32[10] a

» Header type: std_msgs/Header: Header header
uint32 seq, time stamp, int32 z=123
string frame_id string s=foo

» Constants

Messages can be arbitrarily nested structures and arrays.
16

common_msgs ©

common_imsgs

» Messages that are widely used by other ROS packages

» Provide a shared dependency to multiple stacks, eliminating
a circular dependency

Types of common_msgs

» geometry_msgs: Point, Pose, Transform, Vector, Quaternion,
etc.

» nav_msgs: MapMetaData, Odometry, Path, etc.
» sensor_msgs: LaserScan, PointCloud, Range, etc.

17

ROS service ©

Service: A pair of strictly typed messages for synchronous
transactions

Service description specification int16 x
» Request messages uint32 y
» Response messages

Two messages are concatenated together witha“---". | stping s

A service cannot be embedded inside another service.

Only one node can advertise a service of any particular name.

Service Invocation
Node |« Node

>

Response
18

ROS master ©

Master

» Provides naming and registration services to nodes
» Tracks publishers and subscribers to topics and services
» Enables individual nodes to locate one another

: ST M
-e(Xmé%fc..?...> Master 4----L-I-{)f.gfnbe(

Ytls _______ I
O S L s~ 0 N . ™ 8 Mage)
Image
Camera ,
Viewer

I—> Images e T)

Publication Subscription

19

ROS topic transport protocol

TCPROS

» Provides a simple, reliable
communication stream

» TCP packets always arrive in
order

> Lost packets are resent until
they arrive.

UDPROS

» Packets can be lost, contain
errors, or be duplicated.

» Is useful when multiple
subscribers are grouped on
a single subnet

> Is useful when latency is
more important than
reliability, e.g.,
teleoperation, audio
streaming

» Suited for a lossy WiFi or
cell modem connection.

20

ROS topic connection example ©

Master

requestTopic(“image viewer”, “image”, [[TCPROS, “sub:567]])
<

II’

Camera [1, “initialize communication”, [TCPROS, “pub:234”]]

Image

Viewer

Image data message

- XMLRPC - TCPROS .

ROS package

Package
> A software unit with useful functionality

» Aims to provide enough functionality to be useful but still
lightweight and reusable in other software.

» Can contain ROS runtime processes (nodes), a ROS-
dependent library, datasets, configuration files, etc.

Useful packages for the class

E

g

TF: coordinate transformation RViz: 3D visualization

22

TF: Coordinate Transformation

Obstacle @

Sensor

L4
L4
L4

L]
L/
L

L4
L
L/
L
L4
L4

! 4
@
K
. N
of /

..
*
*
.. ‘0‘
& .
] ‘Q
& *
L ‘0
& .
.. 0“
o® ' static tf::TransformBroadcaster br;
tf::Transform transform;
World :

transform.setOrigin(tf::Vector3(x, y, 0.0));
transform.setRotation(tf::Quaternion(theta, 0, 0));
br.sendTransform(tf::StampedTransform(transform,

ros::Time::now(), "world", “robotl”);
23

Demo

» ROS publish/subscribe
» TF
» RViz

24

ROS coordinate frame conventions

Axis orientation
» x: forward, y:left, z: up
Rotation representation
» Quaternion: x,y, zZ, W
> Compact representation
> No singularities
» Rotation matrix
» No singularities
» roll: x, pitch: y, yaw: z
> No ambiguity in order
> Used for angular velocities

25

ROS units

Standard SI units

Base Units Derived Units

Quantity | Unit Quantity Unit
Length | Meter Angle Radian

Mass Kilogram | Frequency | Hertz
Time Second Force Newton
Current | Ampere | Temperatu| Celsius

re
Power Watt
Voltage Volt

26

Build system: CMake ©

Build system

» A software tool for automating program compilation,
testing, etc.

» Maps a set of source code (files) to a target (executable
program, library, generated script, exported interface)

» Must fully understand the build dependencies
CMake

» Cross-platform build system

» Controls the build process using a CMakeLists.txt file
» Creates native maketfile in the target environment

cmake_minimum_required(VERSION 2.8.3)
project(ProjectName)
add_executable(ExecutableName file.cpp)

27

ROS build system: catkin ©

catkin
» Official build system of ROS

» (CMake with some custom CMake macros and Python scripts

» Supports for automatic 'find package' infrastructure and
building multiple, dependent projects at the same time

» Simplifies the build process of ROS’s large, complex, and
highly heterogeneous code ecosystem

Advantages of using catkin

» Portability through Python and pure CMake

» Independent of ROS and usable on non-ROS projects
» Out-of-source builds: can build targets to any folder

http://wiki.ros.org/catkin/Tutorials 28

Dependency management: package.xml

<package>
<name>foo</name>
<version>1.2.3</version>
<description>
This package provides foo capability.
</description>

<license>BSD</license>

<url>http://www.ethz.ch/foo</url>
<author>Me</author>

<build depend>roscpp</build depend>
<run_depend>roscpp</run_depend>

<test depend>python-mock</test depend>
</package>

<maintainer email=“me@ethz.ch">Me</maintainer>

= Required tags

—

<buildtool_depend>catkin</buildtool_depend> Package’s build system tools

Packages needed at build time

Packages needed at run time

Additional packages for unit testing

http://wiki.ros.org/catkin/package.xml

29

Dependency management: CMakeLists.txt

cmake_minimum_required(VERSION 2.8.3) Mimimum Cmake version

project(foo) Project name
find_package(catkin REQUIRED COMPONENTS roscpp) Dependent packages

catkin_package(Installs package.xml and generates code for find_package
INCLUDE_DIRS include Include paths for the package
LIBRARIES ${PROJECT_NAME} Exported libraries from the project
CATKIN_DEPENDS roscpp Other catkin projects this project depends on

) DEPENDS opencv Non-catkin CMake projects this project depends on

include directories(include ${catkin_ INCLUDE_DIRS}) Location of header files

add_executable(foo src/foo.cpp) Anexecutable target to be built

add_library(moo src/moo.cpp) Libraries to be built

target_link_libraries(foo moo) Libraries the executable target links against

http://wiki.ros.org/catkin/CMakeLists.txt

30

Roboscoop software architecture

Roboscoop

SCOOP

ROS

Library (set of primitives and tools for their
coordination)

* Integration with other robotics frameworks

External calls

O-0O Structure
Coordination
Concurrency

Communication

Navigation, image processing, coordinate
transforms, visualization, ...

31

SCOOQOP: a brief introduction ©

Simple Concurrent Object Oriented Programming

» Easy parallelization

» One more keyword in Eiffel (separate)

» Natural addition to O-O framework

» Retains natural modes of reasoning about programs

» Coordination is easy to express: close correspondence with
behavioral specification!

[1] Ramanathan, G. et al.: Deriving concurrent control software from behavioral specifications. IEEE/RS]

International Conference on Intelligent Robots and Systems, pages 1994-1999 >

Object and processor architecture

PRIMITIVE_
BEHAVIOR

PRIMITIVE_
BEHAVIOR

STOP_
SIGNALER

ROBOT_
CONTROL stop

drive

DIFFERENTIAL_ ROBOT_STATE_
DRIVE SIGNALER

33

To go straight, to avoid obstacles ... ©

Get the state of the robot

separate: objects are potentially in a
» Location and orientation different region
» Linear and angular velocity | r: separate ROBOT_STATE_SIGNALER
» Sensory information d: separate DIFFERENTIAL_DRIVE
s: separate STOP_SIGNALER

%

Control the velocity
Stop if there is a request for stopping (e.g., emergency stop)

4

: : Obstacle
P1: Go straight P2: Avoid obstacle

e

34

separate calls ©

feature
robot: separate ROBOT_STATE SIGNALER -- Current robot's state
drive: separate DIFFERENTIAL_ DRIVE -- Control robot's velocity
stop: separate STOP_SIGNALER -- Whether stop requested
start -- Start the control
local
a, b: separate PRIMITIVE BEHAVIOR
do
create a.make (stop)
create b.make (stop)
start _robot behaviors (a, b)
end

start_robot behaviors (a, b: separate PRIMITIVE BEHAVIOR)
do
a.repeat _until stop requested (
agent a.avoid obstacle (robot, drive, stop))
b.repeat_until stop requested (
agent b.go straight (robot, drive, stop))

end
35

Synchronization through preconditions ©

go _straight (a_robot: separate ROBOT_STATE SIGNALER;
a_drive: separate DIFFERENTIAL_ DRIVE;
a_stop: separate STOP_SIGNALER)
-- Move robot unless stopped or an obstacle detected.
require
(not a_robot.is moving and not a_robot.has obstacle)
or a_stop.is_stop requested
do
if a_stop.is stop requested then
a_drive.stop
else
a_drive.send velocity (0.03, 0.0) -- 3cm/sec, no spinning
end
end

36

How do we cancel all processors?

GO_STRAIGHT stop.is_stop_requested
(BEHAVIOR1)

STOP_
SIGNALER
is_stop_requested: BOOLEAN

set_stop (val: BOOLEAN)

AVOID_OBSTACLE _~=~7
(BEHAVIOR 2)

stop.is_stop_requested

%p.set_stop (FRLHD)

APPLICATION

37

Roboscoop

Coordination layer above SCOOP
Three-layer architecture
Synchronization: wait conditions

Interoperability through ROS (external calls)

38

Roboscoop repository structure

thymio_app { app.e] { controller] { }
{ controller J { sequencer J { Ssensor }

roboscoop_lib { common] { util] { signaler }
{ ros J { msg J { actuator }
roboscoop_ros { msg] { STC]

39

Communication with ROS nodes: publication ©

roboscoop_lib/_ ROS

thymio a roboscoop_lib
ymio_app P_ cpp

Topic name:
/aseba/events/sound_cmd

ROS_PUBLISHER
publisher.h

ASEBA_MSG Message type:
asebaros/AsebaEvent

time stamp
uint16 source
pub: ROS_PUBLISHER[ASEBA_MSG] int16|] data
msg: ASEBA_MSG

create msg.make with two_values (@, sound_id)

create pub.make with topic (“/aseba/events/sound cmd”)

pub.publish (msg)
40

Communication with ROS nodes: subscription ©

roboscoop_lib/ ROS
_Cpp

Topic name:
/thymio_driver/odometry

thymio_app roboscoop_lib

ROS_SUBSCRIBER .
subscriber.h Message type:
ODOMETRY_MSG IlaV_msgs/Odometry

Header header

string child_frame_id
PoseWithCovariance pose
TwistWithCovariance twist

subscriber: separate ROS_SUBSCRIBER[ODOMETRY_MSG]
signaler: separate ODOMETRY_SIGNALER

separate subscriber as sub, signaler as sig do
sub.subscribe (“/thymio_driver/odometry”, agent sig.update_odometry)

end

41

Communication with ROS nodes: application ©

class YOUR_APPLICATION feature

thymio: separate THYMIO ROBOT -- The robot.
ros_spinner: separate ROS_SPINNER -- ROS spinner object for communication.

some_feature
local
robo _node: separate ROBOSCOOP_NODE
do
-- Initialize this application as a ROS node.
robo_node := (create {ROS_NODE_STARTER}).roboscoop_ node

-- Create a robot object.
create thymio.make

-- Listen to ROS.
create ros_spinner.make
start_spinning (ros_spinner)

-- Launch Thymio.
launch_robot (thymio)
end

42

	Robotics Programming Laboratory��Bertrand Meyer�Jiwon Shin
	Robots of today
	Robots of the future
	Concurrency in robotics
	Concurrency in robotics
	Multiprocessing, parallelism
	Multitasking, concurrency
	Concurrency
	Roboscoop
	Roboscoop software architecture
	ROS: Robot Operating System
	ROS
	ROS communication
	ROS node
	ROS topic
	ROS message
	common_msgs
	ROS service
	ROS master
	ROS topic transport protocol
	ROS topic connection example
	ROS package
	TF: Coordinate Transformation
	Demo
	ROS coordinate frame conventions
	ROS units
	Build system: CMake
	ROS build system: catkin
	Dependency management: package.xml
	Dependency management: CMakeLists.txt
	Roboscoop software architecture
	SCOOP: a brief introduction
	Object and processor architecture
	To go straight, to avoid obstacles …
	separate calls
	Synchronization through preconditions
	How do we cancel all processors?
	Roboscoop
	Roboscoop repository structure
	Communication with ROS nodes: publication
	Communication with ROS nodes: subscription
	Communication with ROS nodes: application

