
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 2:

ROS and Roboscoop

2

Robots of today

 Many sensors and actuators
 Able to operate in familiar or expected environments
 Able to perform specialized tasks

3

Robots of the future

C-3PO
 Provides etiquette, customs,

and translation assistance
 Has own thoughts and

feelings

R2-D2
 Rescues people and robots
 Repairs other robots and

complex hardware and
software

Advanced robots must be able to operate and perform

tasks in complex, unknown environments.

As robotics advances, we must be aware that robots can

be both helpful and harmful.

4

Concurrency in robotics

Advanced robotic systems have many hardware components
that can operate concurrently.
 Sensors and actuators can run in parallel.
 Locomotion and manipulators can run concurrently.

5

Concurrency in robotics

6

Multiprocessing, parallelism

 Multiprocessing: the use of more than one processing unit in
a system

 Parallel execution: processes running at the same time

Process 1 CPU 1

Process 2 CPU 2
Instructions

P1: Move P2: Scan

7

Multitasking, concurrency

 Interleaving: several tasks active, running one at a time
 Multitasking: the OS runs interleaved executions
 Concurrency: multiprocessing and/or multitasking

Process 1

CPU

Process 2

Instructions

P1: Go to goal P2: Avoid obstacle

Obstacle

8

Concurrency

Benefits of introducing concurrency into programs:
 Efficiency: time (load sharing), cost (resource sharing)
 Availability: multiple access
 Convenience: perform several tasks at once
 Modeling power: describe systems that are inherently

parallel

9

Roboscoop

Concurrency framework for robotics

10

Roboscoop software architecture

• Library (set of primitives and tools for their
coordination)

• Integration with other robotics frameworks
• External calls

Roboscoop

• O-O Structure
• Coordination
• Concurrency

SCOOP

• Communication
• Navigation, image processing, coordinate

transforms, visualization, …
ROS

11

ROS: Robot Operating System

ROS: Open-source, meta-operating system for robots
ROS provides the services of an operating system, including
 hardware abstraction,
 low-level device control,
 implementation of commonly-used functionality,
 message-passing between processes, and
 package management

Quigely, M., et al. “ROS: an open-source Robot Operating System,” IEEE International Conference on Robotics
and Automation. 2009.

http://www.ros.org

12

ROS

Goals of ROS
 Support code reuse in robotics research and development.
 Enable executables to be individually designed and loosely

coupled at runtime through its distributed framework of
processes.

 Group processes for easy sharing and distribution.
 Enable the distribution of collaboration through its

repositories.
Properties of ROS
 Thin
 Peer-to-Peer
 Multi-lingual: C++, Python, Lisp

13

ROS communication

Node

Topic Topic

Publication

Subscription

NodeNode

14

ROS node

Node
 A process that performs computation
 Interchangeable with a software module
 Can generate data for and receive data from other nodes

A system is typically comprised of many nodes: robot control
node, localization node, path planning node, perception node,
etc.
Benefits of using nodes
 Fault-tolerance: crashes are isolated to individual nodes
 Reduction of code complexity

15

ROS topic

Topic
 Named bus over which nodes exchange messages
 Has anonymous publish/subscribe semantics.

A node can publish and/or subscribe to multiple topics.
A topic supports multiple publishers and subscribers.

Object
Detection

Path
Planner

Publication Subscription

UI Viewer

Goal Pose
(Topic)

16

ROS message

Message: Strictly typed data structure used for
communication between nodes

Message description specification
 Build-in types
 Names of Messages defined on their

own
 Fixed- or variable-length arrays:
 Header type: std_msgs/Header:

uint32 seq, time stamp,
string frame_id

 Constants
Messages can be arbitrarily nested structures and arrays.

int16 x

uint32 y

sensor_msgs/LaserScan s

uint8[] data

float32[10] a

Header header

int32 z=123

string s=foo

17

common_msgs

common_msgs
 Messages that are widely used by other ROS packages
 Provide a shared dependency to multiple stacks, eliminating

a circular dependency

Types of common_msgs
 geometry_msgs: Point, Pose, Transform, Vector, Quaternion,

etc.
 nav_msgs: MapMetaData, Odometry, Path, etc.
 sensor_msgs: LaserScan, PointCloud, Range, etc.

18

ROS service

Service: A pair of strictly typed messages for synchronous
transactions
Service description specification
 Request messages
 Response messages
Two messages are concatenated together with a ‘---’.
A service cannot be embedded inside another service.
Only one node can advertise a service of any particular name.

Node Node
Service Invocation

int16 x

uint32 y

string s

Response

19

ROS master

Master
 Provides naming and registration services to nodes
 Tracks publishers and subscribers to topics and services
 Enables individual nodes to locate one another

Camera

Images

Master

Image
Viewer

SubscriptionPublication

20

ROS topic transport protocol

TCPROS
 Provides a simple, reliable

communication stream
 TCP packets always arrive in

order
 Lost packets are resent until

they arrive.

UDPROS
 Packets can be lost, contain

errors, or be duplicated.
 Is useful when multiple

subscribers are grouped on
a single subnet

 Is useful when latency is
more important than
reliability, e.g.,
teleoperation, audio
streaming

 Suited for a lossy WiFi or
cell modem connection.

21

ROS topic connection example

Camera
Image
Viewer

Master

requestTopic(“image_viewer”, “image”, [[TCPROS, “sub:567”]])

[1, “initialize communication”, [TCPROS, “pub:234”]]

Image data message

- XMLRPC - TCPROS

22

ROS package

Package
 A software unit with useful functionality
 Aims to provide enough functionality to be useful but still

lightweight and reusable in other software.
 Can contain ROS runtime processes (nodes), a ROS-

dependent library, datasets, configuration files, etc.

Useful packages for the class

TF: coordinate transformation RViz: 3D visualization

23

Obstacle

TF: Coordinate Transformation

World

Robot

Sensor

/world

/robot1

/sensor1 /sensor3

/robot2

/sensor2

static tf::TransformBroadcaster br;
tf::Transform transform;
transform.setOrigin(tf::Vector3(x, y, 0.0));
transform.setRotation(tf::Quaternion(theta, 0, 0));
br.sendTransform(tf::StampedTransform(transform,
ros::Time::now(), "world", “robot1”);

24

Demo

 ROS publish/subscribe
 TF
 RViz

25

ROS coordinate frame conventions

Axis orientation
 x: forward, y: left, z: up
Rotation representation
 Quaternion: x, y, z, w

 Compact representation
 No singularities

 Rotation matrix
 No singularities

 roll: x, pitch: y, yaw: z
 No ambiguity in order
 Used for angular velocities

26

ROS units

Standard SI units

Base Units Derived Units
Quantity Unit Quantity Unit
Length Meter Angle Radian

Mass Kilogram Frequency Hertz
Time Second Force Newton

Current Ampere Temperatu
re

Celsius

Power Watt
Voltage Volt

27

Build system: CMake

Build system
 A software tool for automating program compilation,

testing, etc.
 Maps a set of source code (files) to a target (executable

program, library, generated script, exported interface)
 Must fully understand the build dependencies
CMake
 Cross-platform build system
 Controls the build process using a CMakeLists.txt file
 Creates native makefile in the target environment

cmake_minimum_required(VERSION 2.8.3)
project(ProjectName)
add_executable(ExecutableName file.cpp)

28

ROS build system: catkin

catkin
 Official build system of ROS
 CMake with some custom CMake macros and Python scripts
 Supports for automatic 'find package' infrastructure and

building multiple, dependent projects at the same time
 Simplifies the build process of ROS’s large, complex, and

highly heterogeneous code ecosystem

Advantages of using catkin
 Portability through Python and pure CMake
 Independent of ROS and usable on non-ROS projects
 Out-of-source builds: can build targets to any folder

http://wiki.ros.org/catkin/Tutorials

29

<package>
<name>foo</name>
<version>1.2.3</version>
<description>
This package provides foo capability.

</description>
<maintainer email=“me@ethz.ch">Me</maintainer>
<license>BSD</license>

<url>http://www.ethz.ch/foo</url>
<author>Me</author>

<buildtool_depend>catkin</buildtool_depend>

<build_depend>roscpp</build_depend>

<run_depend>roscpp</run_depend>

<test_depend>python-mock</test_depend>
</package>

Dependency management: package.xml

http://wiki.ros.org/catkin/package.xml

Package’s build system tools

Packages needed at build time

Packages needed at run time

Additional packages for unit testing

Required tags

30

Dependency management: CMakeLists.txt

cmake_minimum_required(VERSION 2.8.3)

project(foo)

find_package(catkin REQUIRED COMPONENTS roscpp)

catkin_package(
INCLUDE_DIRS include
LIBRARIES ${PROJECT_NAME}
CATKIN_DEPENDS roscpp
DEPENDS opencv

)

include_directories(include ${catkin_INCLUDE_DIRS})

add_executable(foo src/foo.cpp)

add_library(moo src/moo.cpp)

target_link_libraries(foo moo)

http://wiki.ros.org/catkin/CMakeLists.txt

Mimimum Cmake version

Project name

Dependent packages

Include paths for the package
Exported libraries from the project
Other catkin projects this project depends on
Non-catkin CMake projects this project depends on

Location of header files

An executable target to be built

Libraries to be built

Libraries the executable target links against

Installs package.xml and generates code for find_package

31

Roboscoop software architecture

• Library (set of primitives and tools for their
coordination)

• Integration with other robotics frameworks
• External calls

Roboscoop

• O-O Structure
• Coordination
• Concurrency

SCOOP

• Communication
• Navigation, image processing, coordinate

transforms, visualization, …
ROS

32

SCOOP: a brief introduction

Simple Concurrent Object Oriented Programming
 Easy parallelization
 One more keyword in Eiffel (separate)
 Natural addition to O-O framework
 Retains natural modes of reasoning about programs
 Coordination is easy to express: close correspondence with

behavioral specification[1]

[1] Ramanathan, G. et al.: Deriving concurrent control software from behavioral specifications. IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 1994-1999

33

Object and processor architecture

ROBOT_
CONTROL

PRIMITIVE_
BEHAVIOR

STOP_
SIGNALER

DIFFERENTIAL_
DRIVE

a

stop

drive robot

ROBOT_STATE_
SIGNALER

PRIMITIVE_
BEHAVIOR

b

34

To go straight, to avoid obstacles …

Get the state of the robot
 Location and orientation
 Linear and angular velocity
 Sensory information

Control the velocity
Stop if there is a request for stopping (e.g., emergency stop)

P1: Go straight P2: Avoid obstacle

separate: objects are potentially in a
different region

r: separate ROBOT_STATE_SIGNALER
d: separate DIFFERENTIAL_DRIVE
s: separate STOP_SIGNALER

Obstacle

35

separate calls

feature
robot: separate ROBOT_STATE_SIGNALER -- Current robot's state
drive: separate DIFFERENTIAL_DRIVE -- Control robot's velocity
stop: separate STOP_SIGNALER -- Whether stop requested

start -- Start the control
local

a, b: separate PRIMITIVE_BEHAVIOR
do

create a.make (stop)
create b.make (stop)
start_robot_behaviors (a, b)

end

start_robot_behaviors (a, b: separate PRIMITIVE_BEHAVIOR)
do

a.repeat_until_stop_requested (
agent a.avoid_obstacle (robot, drive, stop))

b.repeat_until_stop_requested (
agent b.go_straight (robot, drive, stop))

end

36

Synchronization through preconditions

go_straight (a_robot: separate ROBOT_STATE_SIGNALER;
a_drive: separate DIFFERENTIAL_DRIVE;
a_stop: separate STOP_SIGNALER)
-- Move robot unless stopped or an obstacle detected.

require
(not a_robot.is_moving and not a_robot.has_obstacle)
or a_stop.is_stop_requested

do
if a_stop.is_stop_requested then

a_drive.stop
else

a_drive.send_velocity (0.03, 0.0) -- 3cm/sec, no spinning
end

end

37

How do we cancel all processors?

is_stop_requested: BOOLEAN

set_stop (val: BOOLEAN)

STOP_
SIGNALER

GO_STRAIGHT
(BEHAVIOR 1)

AVOID_OBSTACLE
(BEHAVIOR 2)

APPLICATION

stop.is_stop_requested

stop.is_stop_requested

stop.set_stop(FALSE)stop.set_stop(TRUE)

38

Roboscoop

Coordination layer above SCOOP
Three-layer architecture
Synchronization: wait conditions
Interoperability through ROS (external calls)

39

Roboscoop repository structure

thymio_app

roboscoop_lib

roboscoop_ros

controller sequencer sensor

common

ros

app.e controller

util

msg

signaler

actuator

msg src

...

40

Communication with ROS nodes: publication

thymio_app roboscoop_lib roboscoop_lib/_
cpp ROS

Topic name:
/aseba/events/sound_cmd

Message type:
asebaros/AsebaEvent

publisher.h
ROS_PUBLISHER

ASEBA_MSG

pub: ROS_PUBLISHER[ASEBA_MSG]

msg: ASEBA_MSG

create msg.make_with_two_values (0, sound_id)

create pub.make_with_topic (“/aseba/events/sound_cmd”)

...

pub.publish (msg)

time stamp
uint16 source
int16[] data

41

Communication with ROS nodes: subscription

ROSroboscoop_lib/
_cpproboscoop_libthymio_app

Topic name:
/thymio_driver/odometry

Message type:
nav_msgs/Odometry

subscriber.h
ROS_SUBSCRIBER

ODOMETRY_MSG

subscriber: separate ROS_SUBSCRIBER[ODOMETRY_MSG]

signaler: separate ODOMETRY_SIGNALER

...

separate subscriber as sub, signaler as sig do

sub.subscribe (“/thymio_driver/odometry”, agent sig.update_odometry)

end

Header header
string child_frame_id
PoseWithCovariance pose
TwistWithCovariance twist

42

Communication with ROS nodes: application

class YOUR_APPLICATION feature

thymio: separate THYMIO_ROBOT -- The robot.
ros_spinner: separate ROS_SPINNER -- ROS spinner object for communication.

some_feature
local

robo_node: separate ROBOSCOOP_NODE
do

-- Initialize this application as a ROS node.
robo_node := (create {ROS_NODE_STARTER}).roboscoop_node

-- Create a robot object.
create thymio.make

-- Listen to ROS.
create ros_spinner.make
start_spinning (ros_spinner)

-- Launch Thymio.
launch_robot (thymio)

end

	Robotics Programming Laboratory��Bertrand Meyer�Jiwon Shin
	Robots of today
	Robots of the future
	Concurrency in robotics
	Concurrency in robotics
	Multiprocessing, parallelism
	Multitasking, concurrency
	Concurrency
	Roboscoop
	Roboscoop software architecture
	ROS: Robot Operating System
	ROS
	ROS communication
	ROS node
	ROS topic
	ROS message
	common_msgs
	ROS service
	ROS master
	ROS topic transport protocol
	ROS topic connection example
	ROS package
	TF: Coordinate Transformation
	Demo
	ROS coordinate frame conventions
	ROS units
	Build system: CMake
	ROS build system: catkin
	Dependency management: package.xml
	Dependency management: CMakeLists.txt
	Roboscoop software architecture
	SCOOP: a brief introduction
	Object and processor architecture
	To go straight, to avoid obstacles …
	separate calls
	Synchronization through preconditions
	How do we cancel all processors?
	Roboscoop
	Roboscoop repository structure
	Communication with ROS nodes: publication
	Communication with ROS nodes: subscription
	Communication with ROS nodes: application

