E,H Ziirich

Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 8: Robot Perception



Perception

http://pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html#Caltech

Given visual input, understand the information the input contains
U Object location: object detection

U Type of object:object classification

U Exact object name:object recognition

U Overall scene:scene understanding



Type of data ©
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Structured light ©
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Near IR light source

Carmine 1.09
U Operating range: 0.35 Mz 1.4 m
U Spatial resolution: 0.9 mm at 0.5m

U Depth resolution: 0.1 cm at 0.5m




Structured light




Segmentation

Segmentation: decomposition of an image into consistent regions
U Data that belong to the same region have similar properties

i Similar color, texture, surface normal, etc.
U Data that belong to different regions have different properties

u Different color, texture, surface normal, etc.

U Segmentation as clustering
i Partitioning: divide an image into coherent regions

i Grouping: group together elements of similar properties



Image segmentation ©

U Divide an image into sensible regions using pixel intensity, color, texture,

etc.

U Background subtraction
U Clustering

U Graph-based



Background subtraction

http://vip.bu.edu/files/2010/02/FDR_FPR_control_comparison1594x636.jpg



Background subtraction

U Subtract an estimate of the appearance of the background from the

Image

U Consider areas of large absolute difference to be foreground

Issues

U Obtaining a good estimate of the background is nontrivial
i Changes in environment, lighting, weather, etc.
i Use a moving average

U Threshold
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Agglomerative clustering

U Consider each data point as a cluster

U Recursively merge the clusters with the smallest intercluster distance

until the result is satisfactory

TN
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Agglomerative clustering

http://www.cse.buffalo.edu/~jcorso/r/files/multilevel_square.png

12



Agglomerative clustering

Issues

U Inter-cluster distance
i Distance between closest elements
i Distance between farthest elements
i Average distance between elements

U Number of clusters
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K-means clustering ©

U0 Choose k data points as seed points

U Recursively assign each data point to the cluster whose center is the

closest and recalculate the cluster mean until the center does not change
U Minimize the within cluster sum of squares

i Tries to produce k clusters of equal size
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K-means clustering

http :// en.wikipedia.org/wiki/Segmentation_(image_processing)
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K-means clustering

Issues
U Segments are not connected in image
i Using pixel coordinates would break up large regions

U Determining k is non-trivial
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Efficient graph-basedimage segmentation

U Represent image as graph, each pixel being a node of graph
U Edges are formed between neighboring pixels

U Merge the nodes such that nodes belonging to the same segment more

similar to one another than nodes at the boundary of two segments
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Efficient graph-based image segmentation
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Efficient graph-based image segmentation ©
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Efficient graph-based image segmentation ©
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U Regions of consistent properties are grouped together

Issues

U Number and quality of segments depend on the parameter k, smoothing

factor , and minimum number of nodes
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Range data segmentation

U Generally, we can use image segmentation algorithms by replacing

Intensity, color, or texture by depth, surface normal, etc.

Surface normal computation
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Ground segmentation

http://www -personal.acfr.usyd.edu.au/p.morton/media/img/data_ground.png

©
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Ground segmentation

U Extract all points below a certain height

Issues
U Data are noisy

i Objects will also lose information
U Wall cannot be segmented out

U Ground is not always planar
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Plane segmentation

http://kos.informatik.uni

-osnabrueck.de/icar2013/segmentation.png
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Plane segmentation ©

U Find a plane that minimize the average distance between a set of points

and the surface

U Recursively merge the surface patches

Issues

U Not every object is planar

i Curved objects will be segmented into several segments
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Feature extraction

Feature: a piece of information relevant for solving a computational task,

e.g., locating an object in an image

U Raw data
0 Histogram
U Pyramid of histograms

U Shape
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Histogram

U Compute a histogram of intensity or color

U Compute the correlation between example and test

Issues
U Loss of the structural information

U Dimensionality
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Scale Invariant FeatureTransform ©
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Scale Invariant Feature Transform (SIFT) ©
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U ldentify locations and scales that are identifiable from different views of

the same object

L(X, y,6) = G(x, y,5) * 1(X, y)
D(x,Vy,S¢) =L(x, VY, k) -L(X,y,0)

i

i

U Detect extrema (local minimum or maximum)
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Scale Invariant Feature Transform
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Image gradients Keypoint descriptor

Removepoints of low contrast or poorly localized on an edge

Orientation assignment
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Create akeypoint descriptor: 16 histograms (4x4 grid), each witl8

orientation bins, containing a total of 128elements.
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Histogram of Oriented Gradient

U Divide the image into small rectangular or radial cells

U Each cell accumulates a weighted local-D histogram of gradient

directions over the pixels of the cell

U Normalize each cell by the energy over larger regions
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Shape factor

U Compute eigenvectors:iA, A,, A,
i Point/Spherical: A, MA, MA,
i Planar:A;MA, » A,

i Elongated:A;» A, MA,

Issues
U Many different objects have similar shape factor

U Shape factor of an object can depend on the point of view
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Tensor voting
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U 2x2 or 3x3 matrix that captures boththe orientation information and its

confidence/saliency
i Shape defines the type of information (point, surface, etc.)
i Size representghe saliency

U Each token is first decomposed into the basis tensors, and then

broadcasts itsinformation to its neighbors.

Medioni, G., Lee, M., Tang. C. 2000. Eomputational Framework for Segmentation andGrouping.
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Tensor voting

U The magnitude of the vote decays with distance andcurvature:
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U Accumulate the votes by adding the matrices

U Analyze the tensor byeigendecomposition
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Spin image ©
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Spin image
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Spin image ©

U Collect a histogram of points
i The resolution of the histogram
i The size of the histogram
0 To comparetwo spinimages P and Q
i Compute the correlation between two images
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i Can also apply PCA, remove the mean spin image and compute

the Euclidean norm
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Classifier
U Take a set of labeled examples
U Determine a rule that assign a label to any new example using the
labeled examples
U Training dataset (x;, ;)
i X;: measurements of the properties of objects
i y;: label
U Goal: given a new, plausiblex, assign it a label y.
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Bayes classifier ©

p(k | x) = 2222 o p(x k) pk)

Given x
U Assign label k tox if
o p(k|x)>p(i|x)forallinn E pAkK|A) > threshold
U Assign a random k label between k 38 FIKJ- If
o p(ky| x)K  Bp(k|x)>p(i|x)forallillk
U Do not assign a labelif
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