Diss. ETH No. 15500

From Patterns to Components

A dissertation submitted to the
Swiss Federal Institute of Technology Zurich

(ETH Ziirich)

for the degree of
Doctor of Sciences

presented by
Karine Arnout

accepted on the recommendation of
Prof. Dr. Bertrand Meyer, examiner
Prof. Dr. Peter Miiller, co-examiner
Prof. Dr. Emil Sekerinski, co-examiner

Doctoral Thesis ETH No. 15500

From Patterns to Components

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of
Doctor of Sciences

presented by
Karine Marguerite Alice ARNOUT
Diplome d’ingénieur en télécommunications, ENST Bretagne

born 18.05.1978
French citizen

accepted on the recommendation of

Prof. Dr. Bertrand Meyer, examiner

Prof. Dr. Peter Miiller, co-examiner
Prof. Dr. Emil Sekerinski, co-examiner

2004

A mes parents,
A mes grands-parents,

Pour toi Eric.

Short contents

Short contents
Acknowledgments
Preface

Abstract

Résumé

Introduction
Contents

PART A: OVERVIEW

1 Main contributions

New pattern classification

Pattern Library

Pattern Wizard

Chapter summary

PART B: DESIGN PATTERNS ARE GOOD,
COMPONENTS ARE BETTER

2 The benefits of reuse
Software reuse

Expected benefits
Contracts and reuse
Chapter summary

3 Design patterns
Overview

The benefits

The limits

Chapter summary

4 Previous work

Extensions and refinements of patterns
Aspect implementation

Language support

Chapter summary

5 Turning patterns into components: A preview

A built-in pattern: Prototype

A componentizable pattern: Visitor

A non-componentizable pattern: Decorator
Chapter summary

6 Pattern componentizability classification
Componentizability criteria

Componentization statistics
Detailed classification

_ o q Ut W

23

25
25
26
27
28

29

31
31
35
36
38

39
39
43
44
46

47
47
59
62
62

65
68
74
&3

85
85

86
87

Role of specific language and library mechanisms
Chapter summary
PART C: COMPONENTIZABLE PATTERNS

7 Observer and Mediator
Observer pattern

Mediator pattern

Chapter summary

8 Abstract Factory and Factory Method
Abstract Factory pattern

Factory Library

Abstract Factory vs. Factory Library

Factory Method pattern

Chapter summary

9 Visitor

Visitor pattern

Towards the Visitor Library

Gobo Eiffel Lint with the Visitor Library
Componentization outcome

Chapter summary

10 Composite
Composite pattern
Composite Library
Componentization outcome
Chapter summary

11 Flyweight

Flyweight pattern
Flyweight Library
Componentization outcome
Chapter summary

12 Command and Chain of Responsibility
Command pattern

Command Library

Chain of Responsibility pattern

Chain of Responsibility Library

Chapter summary

13 Builder, Proxy and State
Builder pattern

Proxy pattern

State pattern

Chapter summary

90
94
95

97
97
106
116

117
117
119
125
128
130

131
131
133
138
144
144

147
147
150
160
160

161
161
169
184
185

187
187
190
200
202
206

207
207
217
224
230

2

14 Strategy

Strategy pattern

Strategy Library
Componentization outcome
Chapter summary

15 Memento

Memento pattern

Towards a reusable Memento Library

Componentization outcome
Chapter summary

233
233
235
241
241

243
243
246
251
251

PART D: NON-COMPONENTIZABLE PATTERNS

16 Decorator and Adapter
Decorator pattern

Adapter pattern

A reusable Adapter Library?
Chapter summary

17 Template Method and Bridge

Template Method pattern
Bridge pattern
Chapter summary

18 Singleton

Singleton pattern

Once creation procedures
Frozen classes
Componentization outcome
Chapter summary

19 TIterator

Iterator pattern

Iterators in Eiffel structure libraries
Book library example
Language support?
Componentization outcome
Chapter summary

20 Facade and Interpreter
Facade pattern

Interpreter pattern

Chapter summary

PART E: APPLICATIONS

21 Pattern Wizard

Why an automatic code generation tool?

Tutorial

Design and implementation
Related work

Chapter summary

PART F: ASSESSMENT AND FUTURE WORK

22 Limitations of the approach

One pattern, several implementations

Language dependency
Componentizability vs. usefulness
Chapter summary

23 More steps towards quality components

More patterns, more components
Contracts for non-Eiffel components

Quality through contract-based testing

Chapter summary

253

255
255
259
264
273

275
275
278
286

289
289
299
300
302
303

305
305
306
308
309
311
311

313
313
316
319
321

323
323
324
330
338
339
341

343
343
345
351
351

353
353
354
360
367

Conclusion

PART G: APPENDICES

A Eiffel: The Essentials

A.1 Setting up the vocabulary

A.2 The basics of Eiffel by example
A.3 More advanced Eiffel mechanisms
A.4 Towards an Eiffel standard

A.5 Business Object Notation (BON)

B Glossary

C Bibliography
Index
Curriculum vitae

CONTENTS

369

371
373
373
375
381
390
394
397
403

417
423

Acknowledgments

The work presented in this thesis is of course mine, but it could not have been of the
same quality or even possible without the help of several persons whom I would like
to thank warmly.

First, I would like to thank Bertrand Meyer who gave me the great
opportunity to do my Ph.D. with him at ETH Zurich. It was an honor for me and a
great chance too. Being at Eiffel Software in Santa Barbara, California, where 1
worked before starting my Ph.D or here at ETH Zurich, Bertrand conveyed the same
enthusiasm and passion. It has been a real pleasure to work with him.

I would also like to thank Eric Bezault who supported me a lot during these
two years. He was always present when I needed him, cheering me up when I was
in low spirits. He was also there to help me with my work, giving me advice, and
feedback by reading all my papers, even several versions of the same paper. He was
also the first one to read this thesis and contributed invaluable comments and
suggestions. Thank you Eric, with all my heart.

I also want to thank my two Ph.D. co-referees, Peter Miiller and Emil
Sekerinski, who gave me precious feedback on earlier versions of this thesis. Their
comments and suggestions enabled me to improve both the contents and writing
style of this dissertation, making it, I hope, easier and more interesting to read.

I also thank the other members of the Chair of Software engineering —
Volkan Arslan, Arnaud Bailly, Till Bay, Ruth Biirkli, Susanne Cech, Adam Darvas,
Werner Dietl, Piotr Nienaltowski, Michela Pedroni, Joseph Ruskiewicz, Bernd
Schoeller, Sébastien Vaucouleur — and Per Madsen — Ph.D. student from Aalborg
University, Danemark, who stayed in the team during the winter semester 2003 —
for their support and their kindness.

I also thank the students with whom I worked during these two years, in
particular the students of the course “Advanced Topics in Object Technology”,
which I assisted during the summer semester 2003, and those I supervised during
their semester project, master project, or both — Till Bay, Ilinca Ciupa, Daniel
Gisel, Nicole Greber, Anders Haugeto, Christof Marti, and Dominik Wotruba.

I also thank Raphaél Simon and Emmanuel Stapf, my supervisors at Eiffel
Software. They made me discover Eiffel by giving me the opportunity to work on
challenging projects in the area of Eiffel and .NET. I learnt a lot from them and
really enjoyed working with them. I am also grateful to Annie Meyer for her
constant support when I was at Eiffel Software, and also afterwards.

I also thank Philippe Lahire from the University of Nice in France for his
kindness and for his contribution to some joined research about automatic testing.

4 ACKNOWLEDGMENTS

I would also like to thank my former professors at the Ecole Nationale
Supérieure des Télécommunications de Bretagne (ENSTBr) in France, in particular
Bernard Prou for his kind support during my first year at the ENSTBr, Antoine
Beugnard and Robert Ogor who made me discover object technology and software
engineering, and Jean-Marc Jézéquel who encouraged me when I decided to start a
Ph.D. at ETH Zurich.

Finally, I would like to thank my parents who always supported me and
encouraged me in my studies. | would not be writing this thesis today without their
constant support and devotion. Merci beaucoup, papa et maman, pour votre amour
et votre soutien.

Preface

Ensuring trust into the software has become more and more important over the past
few years with the spread of computers everywhere. Computers (and software) are
not limited to the domains of computer science anymore. They are present in a
variety of applications ranging from mobile phones and ATM machines to cars and
satellites. They are widely used in mission-critical and even life-critical systems like
health-care devices, airplanes, trains, missiles, etc. Hence quality is paramount. This
is the “Grand Challenge of Trusted Components” that Bertrand Meyer describes.

This work takes up the challenge and contributes a few new high-quality
(trusted) components. I am using Bertrand Meyer’s definition of component: for me,
a software component is a reusable software element, typically some library classes,
usually in source form (not binary form), which differs from Clemens Szyperski’s
view of components.

Starting from one design pattern (the Observer), 1 reviewed all patterns
described in the book by Gamma et al. to evaluate their componentizability and
build the corresponding software component whenever applicable. The working
hypothesis is that design patterns are good but components are better. Indeed,
patterns have many beneficial consequences: they provide a repository of knowledge
(design ideas) that newcomers can learn and apply to their software, yielding better
architectures; they provide a common vocabulary that facilitates exchanges between
programmers and managers, etc. But patterns are not reusable as code: developers
must implement them anew for each application, which is a step backward from
reuse. The motivation of this thesis was to provide users with a “Pattern Library”, a
set of components capturing the intent of the underlying design patterns that they
can reuse directly. I call “componentization” this process of transforming patterns
into components.

The first pattern analysis — targeting the Observer pattern — was also the
first successful “componentization”: it resulted in the Event Library, covering the
Observer pattern and the general idea of publish-subscribe and event-driven
development. Other successful stories followed, including a Factory Library (chapter
8), a Visitor Library (chapter 9), and a Composite Library (chapter 10). To prove the
usability of such “componentized” versions of design patterns, I modified an
existing Eiffel tool (Gobo Eiffel Lint) that was extensively relying on the Visitor
pattern to use the Visitor Library; the experience (reported in section 9.3) was
successful.

Several object-oriented mechanisms of Eiffel proved useful to componentize
patterns: genericity (constrained and unconstrained), multiple inheritance, agents.
The support for Design by Contract™ was also a key to the success of this work.

Meyer 2007?a], p 11.

Meyer 2003a].

Meyer 1997].

Szyperski 1998].

Gamma 1995].

“componentization”
is defined on page 26.

Arnout 2003b].

The first mention of
the word “compo-
nentization” was in

Arnout 2003b].

Gamma 1995], p
293-303.

Meyer 2003b] and
Arslan 2003].

Bezault 2003].

Dubois 1999] and

chapter 25 of [Meyer
200?b].

Because this thesis relies on some mechanisms that are specific to the Eiffel
language, the resulting components are also — for some of them — Eiffel-specific.
This is a limitation. However, the componentization process per se is not Eiffel-
specific and one can imagine having a Composite Library or a Chain of
Responsibility Library written in C# as soon as C# supports genericity.

Nevertheless, a few patterns resisted my attempts at componentization. Some
are too much context-dependent, hence not componentizable. Some require context
information but this information can be filled in by the user through “skeleton”
classes. For patterns of the second category, I developed a Pattern Wizard to
generate skeletons automatically and make it easier to programmers to apply these
patterns by avoiding writing code as much as possible.

I expect my work to be a “little bit” that will count to build more reliable
software and contribute to the “Grand Challenge of Trusted Components”.

PREFACE

See “Conventions”

page 14 for a defini-
tion of “componen-

tizable patterns” and
“non-componentiz-
able patterns”.

See chapter 21.

Meyer 1999].
Meyer 2003a].

Abstract

If design patterns are reusable design solutions to recurring design problems, they
are not reusable in terms of code. Programmers need to implement them again and
again when developing new applications. The challenge of this thesis was to bring
design patterns to a higher degree of reusability: transform design patterns into
reusable components that programmers could use and reuse without recoding the
same functionalities anew for each new development.

The contributions of this thesis do not only target program implementers.
They should also be useful to program designers, library developers, and
programming language designers. Indeed, the transformation of patterns into
components, which I call “componentization”, revealed that the traditional
architecture of some design patterns was not optimal. Rethinking the design yielded
solutions that are easier to use, easier to extend, and covering a wider range of
application problems. Besides, considering programming language extensions
permitted to find better solutions in some cases.

This thesis reviews all patterns described in Design Patterns by level of
componentizability (possibility to transform a design pattern into a reusable
component) and describes the corresponding software component whenever
applicable. It uses Meyer’s definition of component: a reusable software element,
typically some library classes, usually in source form (not binary form), which
differs from Szyperski’s view of components. The reusable components (the Pattern
Library) are written in Eiffel because the language offers several object-oriented
mechanisms that were useful for the pattern componentization: genericity
(constrained and unconstrained), multiple inheritance, agents. The support for
Design by Contract™ was also a key to the success of this work. However, the
approach is not bound to Eiffel. It would be easy to develop the Pattern Library in
another programming language on condition that this language provides the object-
oriented mechanisms needed for the componentization process. Chapter 22 gives a
few examples going in that direction, using Java and C# as examples.

Around 65% of the patterns described in Design Patterns could be turned into
reusable components. For example, the componentization of the Observer pattern
resulted in the Event Library, which covers both the Observer pattern and the
general idea of publish-subscribe and event-driven development. The Visitor pattern
resulted in a Visitor Library, which simplifies the implementation of the double-
dispatch mechanism by using the Eiffel agent mechanism. (It could also be achieved
through reflection in other languages although it would not be type-safe anymore.)

The first mention of
the word “compo-
nentization” was in

Arnout 2003b].

Gamma 1995].

“componentization”
is defined on page 26.

Meyer 1997].

Szyperski 1998].

See [Dubois 1999
and chapter 25 of

Meyer 200?b] about

agents.

See chapter 6 for a
complete description
of the patterns’ com-
ponentizability and
the corresponding
pattern componentiz-
ability classification.

8 ABSTRACT

Among the remaining 35% of patterns that are not componentizable, less than = See “Conventions,
}0% cogld not been improved at all because they rely on context-dependent %ﬁ%ﬁg@:’;g%’:’
information. It is the case of the Facade and Interpreter design patterns. tizable patterns”’ and
. L. . . “non-componentiz-
For the other 25% that are not componentizable, it is possible to write able patterns”.

skeleton classes, and sometimes even provide a method to fill in these classes. One
of the concrete outcomes of this thesis is a tool called Pattern Wizard, which
generates these skeleton classes automatically. Chapter 21 presents the design and
implementation of the wizard, and explains when and how to use it.

Résumeé

Si les patrons de conception sont des solutions réutilisables — au niveau design —
a des problémes de conception récurrents, ils ne sont pas réutilisables au point de
vue code. Les programmeurs doivent les réimplanter & chaque nouveau
développement. Le défi de cette thése était d’apporter un nouveau degré de
réutilisabilité: transformer les patrons de conception en composants réutilisables que
les programmeurs peuvent utiliser et réutiliser sans avoir a réécrire les mémes
fonctionnalités a chaque nouveau développement.

Les contributions de cette thése ne sont pas simplement destinées aux
programmeurs. Elles devraient également étre utiles aux concepteurs d’applications,
aux développeurs de bibliothéques logicielles et aux concepteurs de langages de
programmation. En effet, la transformation de patrons en composants a montré que
I’architecture traditionnelle de certains patrons de conception n’était pas optimale.
Repenser la conception a permis d’obtenir des solutions plus faciles a utiliser, plus
faciles a étendre et couvrant un plus grand nombre de problémes. Par ailleurs, le fait
de considérer des extensions du langage de programmation a permis de trouver de
meilleures solutions dans certains cas.

Cette thése examine les patrons de conception décrits dans le livre Design
Patterns en suivant leur niveau de “componentizabilité” (possibilité¢ de transformer
un patron de conception en composant réutilisable), et décrit le composant logiciel
correspondant chaque fois que cela est possible. La définition de composant utilisée
est celle de Bertrand Meyer : un composant est un ¢lément logiciel réutilisable,
typiquement un ensemble de classes de bibliothéque, habituellement sous forme de
code souce (non sous forme binaire), ce qui différe de 1’idée de composant selon
Szyperski. Les composants réutilisables sont écrits en Eiffel parce que le langage
offre plusieurs mécanismes a objets qui se sont avérés utiles pour la transformation
de patrons de conception en composants : généricité (contrainte ou non contrainte),
héritage multiple, agents. Le support pour la conception par contrats (Design by
Contract™) contribua aussi largement au succes de ce travail. Toutefois, [’approche
ne se limite pas a Eiffel. Il serait facile de développer une “bibliothéque de patrons
de conception” dans un autre langage de programmation a condition que ce langage
fournisse les mécanismes a objets nécessaires a la transformation de patrons en
composants. Le chapitre 22 donne quelques exemples allant dans cette direction,
utilisant Java et C# en exemples.

Gamma 1995].

“componentization”
est défini page 26.

Meyer 1997].

Szyperski 1998].

Voir [Dubois 1999] et
le chapitre 25 de

Meyer 200?b] a pro-

pos des agents.

10

Environ 65% des patrons de conception décrits dans le livre Design Patterns
ont pu étre transformés en composants réutilisables. Par exemple, la transformation
du patron de conception Observer a abouti a une bibliothéque nommée Event
Library couvrant non seulement le patron Observer mais aussi I’idée générale de
développement géré par événements. Le patron de conception Visitor a abouti a une
bibliotheque (Visitor Library) simplifiant I’implantation du mécanisme de “double-
dispatch” en utilisant le mécanisme FEiffel des agents. (Ce comportement pourrait
s’obtenir par la réflexion dans d’autres langages de programmation bien que la
sécurité des types ne serait plus garantie.)

Parmi les 35% de patrons de conception restants, moins de 10% n’ont pu étre
améliorés du tout car ils reposent sur des informations dépendant du contexte. C’est
le cas des patrons Facade et Interpreter.

Pour les autres 25% qui ne peuvent étre transformés en composants
réutilisables, il est possible d’écrire des classes “squelettes” et parfois méme de
fournir une méthode pour compléter ces classes. L’'un des résultats concrets de cette
thése est un outil nommé Pattern Wizard générant ces squelettes de classes
automatiquement. Le chapitre 21 présente la conception et I’implantation de 1’outil,
et explique quand et comment 1’utiliser.

RESUME

Voir chapitre 6 pour
une description com-
pléte de la compo-
nentisabilité des
patrons de concep-
tion et la classifica-
tion de
componentisabilité
des patrons de con-
ception correspon-
dante.

Introduction

Building quality edifices requires quality bricks. One of the goals of software

engineering is to help develop such high-quality, so-called Trusted Components. The See [Meyer 1998]
idea of trusted components is tightly coupled with the idea of reuse, but not any kind Zzgul\”—ﬁ%_
of reuse: reuse with a special emphasis on quality. Because reuse scales up ponents.

everything, the good and the bad, reusable components must be of impeccable quality.

The work presented here embraces Bertrand Meyer’s motto and should “help [Meyer 2004].
move software technology to the next level”. It brings a new classification of design [Gamma 1995].
patterns by level of componentizability and a set of high-quality reusable

components: the “componentized” versions of those reusable design patterns. The first mention of
the word “compo-
nentization” was in

The benefits of reuse [Arnout 2003b].

Software development involves considerable repetition; many applications share

common needs. The purpose of reuse is to take advantage of this commonality by

providing software elements that can be included by all applications that need the
corresponding functionality. Reuse saves costs and benefits quality. It contributes to

timeliness and improves software maintainability. It brings reliability by combining

not just “good enough software” but high quality components produced by [Yourdon 1995].
trustworthy third parties. These are user benefits. But reuse also serves the

component supplier. In particular, reuse is a way to build a repository of knowledge,

to save experience and skills.

The notion of “component” on which this thesis relies corresponds to Meyer’s
definition in Object-Oriented Software Construction. It is not restricted to binary, [Meyer1997].
directly deployable components as described by Clemens Szyperski in his book
Component Software; it includes many other forms of components, from classes of [Szyperski 1998].
object-oriented libraries to more large-grain elements provided they satisfy the
following conditions:

. A component can be used by other program elements: its “clients”.
. The supplier of a component does not need to know who its clients are.
. Clients can use a component on the sole basis of its official information.

Design patterns: Idea, benefits, and limitations

A first step towards software reuse is design reuse. The idea of design patterns,

which may be viewed as a form of design reuse, takes root in the mid-nineties and [Gamma 1995].
is now widely accepted. A design pattern is a scheme that programmers can learn

and apply to their software in response to a specific problem or subproblem.

12 INTRODUCTION

Design patterns are a step forward in building quality software for many
reasons:

. They were built upon the experience of software developers and constitute a
repository of knowledge from which newcomers can benefit, gaining
experience more quickly.

. They help build better quality software: software that has a better structure, is
more modular and extendible.

. They bring a common language for discussion and exchange, both between
developers and between developers and managers. For example, if somebody
tells you: “The system uses a Factory, which is a Singleton, to create new [Gamma 1995].
instances of that class, and relies on the Visitor pattern to print accurate
messages depending on the kind of object being visited”, you are likely to
understand the overall structure of this system — even though that would
sound like a language coming from Mars to your mother or your grandmother.

Design patterns, for all their benefits, are a step backward from the reuse-oriented
techniques promoted by object technology. A pattern is not usable off-the-shelf;
every programmer must program it again for each relevant application.

Design patterns are good, components are better

Design patterns are, by nature, reusable in terms of design. However, they are not
reusable in terms of code. The challenge is to capture these reusable design solutions
into reusable pieces of code (classes or class libraries), which have all the facilities
that applications using this pattern may need. The goal is that a programmer needing
to use a pattern can simply look up the corresponding component.

The first target was the well-known and widely used Observer pattern. A [Gamma 1995], p
typical lication of this pattern — also known as publish-subscribe — is a 2*330%
ypical applica p Z
Graphical User Interface (GUI). Let’s imagine for example a simple “e-library”
where the user can borrow books online. It is likely to have some dialogs showing
the user the list of books he or she has borrowed and the list of books still available
in the library. When clicking on a button “OK”, one can imagine both lists to be
updated: the user list is augmented by one element and the library list counts one
free book less. (The book exemplar changes status from free to borrowed.) This
change in the underlying “model” needs to be reflected in the graphical part: the lists
displayed to the user needs to be updated as well. This is usually handled by an
Observer pattern: A subject keeps a list of observers; it can add and remove
observers from this list, and provides a way to notify its observers (typically through
a procedure notify_observers) when the subject changes. Each observer exposes a way
to update itself (typically through a procedure update that refreshes a GUI according
to the new state of the subject). The Java library of utility classes (“java.util”)
already provides an interface Observer and a class Observable (for “subjects”). This Observer and Observ-
solution is not fully satisfactory though. First, it allows registering to only one kind 2?;2:?52’%‘1;':6[
of event. Besides, information passing when events occur is quite poor: the update [Java-Web].
method of interface Observer takes two arguments, an Observable and an Object
representing the arguments to pass to the notifyObservers method, which is not type-
safe. Chapter 7 gives more detail about the limitations of the traditional Observer
pattern approach.

INTRODUCTION

Although the Observer pattern benefits the software architecture by separating
model and graphics, it also introduces many similar routines and code spread over
many classes to handle the notification of observers, which goes against software
readability, maintainability, and reusability. Hence the idea of capturing the idea
behind the Observer pattern and event-handling in general into a reusable
component to avoid such code repetition. A joint effort between Bertrand Meyer,
Volkan Arslan, and me resulted in the Event Library.

Encouraged by this success, I decided to review all design patterns described
in the book by Gamma et al. to analyze to what extent they can be componentized
and write the corresponding components whenever possible. The goal was to
determine the object-oriented mechanisms that make it possible to transform a
design pattern into a reusable software component and establish a fine-grained
componentizability classification of design patterns based on these object-oriented
mechanisms (criteria).

Organization of the thesis

The thesis presents the reviewed patterns by level of componentizability. Each
pattern description follows the same scheme: First, it explains the pattern’s intent
and applicability; then it shows a typical software architecture resulting from the use
of this pattern; finally, for those componentizable patterns, it describes the resulting
“componentized” version (library classes) and presents an example using it,
emphasizing the advantages and flaws of each version — the pattern version vs. the
library version.

Although the thesis was written to be read from cover to cover to get the full
picture of the work, the reader may want to skip a few sections that are not of
particular interest to him or her. To facilitate the navigation, here is a brief
presentation of the different parts and chapters that follow:

. Part A gives an overview of the work performed and a glimpse of the main
contributions of this thesis.

. Part B provides a general introduction to the notions of software reuse and
design patterns, and explains the reasons that led to combine both concepts.
Chapters 2 and 3 basically equip the reader with the background information
necessary to understand the rest of the thesis. Chapter 4 presents some
previous works related to design patterns, in particular their implementation
using Aspect-Oriented Programming. Chapter 5 gives a preview of pattern
componentization. Chapter 6 explains the componentizability criteria used to
categorize design patterns, and shows the pattern componentizability
classification established as part of this thesis.

. Part C corresponds to the componentizable patterns (for which there exists a
corresponding reusable library). Chapters are in descending order of
componentizability: from fully componentizable to partly “componentizable”
patterns.

. Part D corresponds to the non-componentizable patterns. Here again chapters
follow a descending order of componentizability: from non-componentizable
patterns that can be captured into skeleton classes to possibly not
implementable patterns.

. Part E presents the Pattern Wizard application accompanying this thesis,
which enables users to generate skeleton classes automatically for all non-
componentizable design patterns.

. Part F assesses the work presented here, describes its limitations, and presents
future research directions.

13

Meyer 2003b] and
Arslan 2003].

Gamma 1995].

See “Conventions”

page 14 for a precise
definition of “compo-
nentizable pattern”.

Chapter 1.

Chapters 2 to 6.

Hannemann 2002].

Chapters 7 to 15.

Chapters 16 to 20.

See Conventions fora
definition of “non-
componentizable
pattern”.

Chapter 21.

Chapters 22 to 23.

14

INTRODUCTION

Part G provides complementary material including an Eiffel reference
explaining important notions of the language that the reader should know to
understand the thesis (Appendix A), a glossary of keywords (Appendix B),
and a detailed bibliography (Appendix C).

Each chapter ends by a section called “Chapter summary” summing up the important
ideas and concepts introduced in that chapter.

This thesis and its outcome — pattern classification, pattern library and

Pattern Wizard — are available online from [Arnout-Web].

Conventions

Appendices A to C.

Because the Design Patterns book by Gamma et al. is the main reference of [Gamma 1995].

this thesis, there will be no more bibliographical reference in the margin to it
like for other references. From now on, this dissertation will refer to this book
as just Design Patterns.

Two major outcomes of this thesis are a pattern componentizability
classification and a Pattern Library. The two main categories are
componentizable patterns and non-componentizable patterns. Although the
componentizability criteria and componentizability classification will only
appear in chapter 6, from now on, the dissertation will already use these

expressions “‘componentizable patterns” and “non-componentizable patterns”
for convenience.

. “Componentizable patterns” is a short way of saying “Patterns for
which it is possible to provide a reusable library with the same
functionalities as the original pattern”.

. “Non-componentizable patterns” is a short way of saying “Patterns for
which it is impossible to develop a reusable library providing the same
functionalities as the original pattern”. (Of course, a pattern is always
reusable as design; here the separation componentizable/non-
componentizable concerns code reuse and not design reuse.)

The following color convention will be applied in BON class diagrams
explaining the original patterns and their resulting library if any:

. Classes considered as possible candidates for componentization will be
colored in green.

. Classes belonging to the library resulting from the pattern
componentization will be colored in blue.

. Other classes (typically client classes) will be colored in yellow.

See “Business Object
Notation (BON) "
A.5, page 394.

Contents

Short contents
Acknowledgments
Preface

Abstract

Résumé
Introduction
Contents

PART A: OVERVIEW
1 Main contributions
1.1 New pattern classification
1.2 Pattern Library
1.3 Pattern Wizard
1.4 Chapter summary

N 1 N W

11
15

23
25
25
26
27
28

PART B: DESIGN PATTERNS ARE GOOD, COMPONENTS ARE BETTER 29

2 The benefits of reuse

2.1 Software reuse
The goal: software quality
The notion of component

2.2 Expected benefits
Benefits for the users
Benefits for the suppliers

2.3 Contracts and reuse
Reuse: a demanding activity
Use contracts
Avoid “reusemania”
Design reuse

2.4 Chapter summary

3 Design patterns
3.1 Overview

Definition
A repertoire of 23 patterns
More design patterns

31
31
31
33
35
35
36
36
36
37
37
37
38

39
39

39
40
42

16

3.2 The benefits
A repository of knowledge
Better software design
A common vocabulary
3.3 The limits
No reusable solution
A step backward from reuse
Software reuse vs. design reuse
3.4 Chapter summary

4 Previous work
4.1 Extensions and refinements of patterns

Seven State variants
Adaptative Strategy
From Visitor to Walkabout and Runabout
Observer in Smalltalk

4.2 Aspect implementation
Aspects in a nutshell
Aspect implementation of the GoF patterns
Strengths and weaknesses

4.3 Language support

4.4 Chapter summary

5 Turning patterns into components: A preview

5.1 A built-in pattern: Prototype
Pattern description
Book library example

5.2 A componentizable pattern: Visitor
Pattern description
New approach
Visitor Library

5.3 A non-componentizable pattern: Decorator
Pattern description
Fruitless attempts at componentizability
Skeleton classes

5.4 Chapter summary
6 Pattern componentizability classification
6.1 Componentizability criteria
6.2 Componentization statistics
6.3 Detailed classification
6.4 Role of specific language and library mechanisms
6.5 Chapter summary

PART C: COMPONENTIZABLE PATTERNS
7 Observer and Mediator
7.1 Observer pattern

Pattern description

Book library example using the Observer pattern

Drawbacks of the Observer pattern

Event Library

Book library example using the Event Library

CONTENTS

43
43
43
44
44
44
44
45
46

47
47

47
53
56
58
59
59
59
61
62

62
65
65

65
66
68

68
70
71
74

74
78
83
83
85
85
86
87
90
94

95
97
97
97
99
101
102
104

CONTENTS

Componentization outcome
7.2 Mediator pattern
Pattern description
Mediator Library
Book library example using the Mediator Library
Componentization outcome
7.3 Chapter summary
8 Abstract Factory and Factory Method
8.1 Abstract Factory pattern
Pattern description
Flaws of the approach
8.2 Factory Library
A first attempt: with unconstrained genericity and object cloning
Another try: with constrained genericity
The final version: with unconstrained genericity and agents
8.3 Abstract Factory vs. Factory Library
With the Abstract Factory
With the Factory Library
Abstract Factory vs. Factory Library: Strengths and weaknesses
Componentization outcome
8.4 Factory Method pattern
Pattern description
Drawbacks
An impression of “déja vu”
8.5 Chapter summary
9 Visitor
9.1 Visitor pattern
Pattern description
Drawbacks
Related approaches
9.2 Towards the Visitor Library
First attempt: Reflection
Another try: Linear traversal of actions
Final version: With a topological sort of actions and a cache

9.3 Gobo Eiffel Lint with the Visitor Library
Case study
Benchmarks
9.4 Componentization outcome
9.5 Chapter summary
10 Composite
10.1 Composite pattern
Pattern description
Implementation
Flaws of the approach
10.2 Composite Library
Transparency version
Safety version
Composite pattern vs. Composite Library
10.3 Componentization outcome

17

106
106

107
111
114
115
116

117
117

117
118
119

119
121
124
125

126
126
127
128
128
128
129
130
130
131
131
131
133
133
133
133
135
137
138
138
141
144

144

147
147

147
148
149
150

150
156
158
160

18

10.4 Chapter summary
11 Flyweight
11.1 Flyweight pattern
Pattern description
Implementation
Flaws of the approach
11.2 Flyweight Library
Library structure
Library classes
Flyweight pattern vs. Flyweight Library
11.3 Componentization outcome
11.4 Chapter summary
12 Command and Chain of Responsibility
12.1 Command pattern
Pattern description
Implementation
12.2 Command Library
Commands executed by the history
Commands executing themselves
Componentization outcome
12.3 Chain of Responsibility pattern
Pattern description
Pattern implementation
12.4 Chain of Responsibility Library
Componentization outcome
12.5 Chapter summary
13 Builder, Proxy and State
13.1 Builder pattern
Pattern description
A Builder Library?
Componentization outcome
13.2 Proxy pattern
Pattern description
A reusable library?
Proxy pattern vs. Proxy Library
Componentization outcome
13.3 State pattern
Pattern description
Towards a State Library
Language support
Componentization outcome

13.4 Chapter summary
14 Strategy

14.1 Strategy pattern

14.2 Strategy Library

With constrained genericity

With agents

Componentizability vs. faithfulness
14.3 Componentization outcome

CONTENTS

160
161
161
161
164
169
169
170
171
183
184
185
187
187
187
189
190
190
197
200
200
200
201
202
205
206

207
207

207
208
216
217

217
218
223
223
224
224
226
229
230
230

233
233
235

235
237
239
241

CONTENTS 19

14.4 Chapter summary 241

15 Memento 243
15.1 Memento pattern 243
Pattern description 243

Usefulness of non-conforming inheritance 244
Implementation issues 245

15.2 Towards a reusable Memento Library 246

First step: Simplifying the pattern implementation 246

Second step: Componentizing the pattern implementation 246
Componentizability vs. usefulness 250

15.3 Componentization outcome 251

15.4 Chapter summary 251
PART D: NON-COMPONENTIZABLE PATTERNS 253
16 Decorator and Adapter 255
16.1 Decorator pattern 255

With additional attributes 255

With additional behavior 257
Componentization outcome 258

16.2 Adapter pattern 259
Pattern description 259

Class adapter 259

Object adapter 263

16.3 A reusable Adapter Library? 264
Object adapter 265

Class adapter 268

Intelligent generation of skeleton classes 271

16.4 Chapter summary 273

17 Template Method and Bridge 275
17.1 Template Method pattern 275
Pattern description 275

A reusable Template Method Library? 277

17.2 Bridge pattern 278
Pattern description 278

Original pattern 279

Common variation 281

Using non-conforming inheritance 283

Client vs. inheritance 285

A reusable bridge library? 286

17.3 Chapter summary 286

18 Singleton 289
18.1 Singleton pattern 289
Pattern description 289

How to get a Singleton in Eiffel 290

The Design Patterns and Contracts approach 290

Singleton skeleton 291

Tentative correction: Singleton with creation control 293

The Gobo Eiffel singleton example 295

Other tentative implementations 297

A Singleton in Eiffel: impossible? 298

20

18.2 Once creation procedures

Rationale
Open issues and limitations
18.3 Frozen classes
Rationale
Singleton implementation using frozen classes
Pros and cons of introducing frozen classes
18.4 Componentization outcome

18.5 Chapter summary
19 Iterator
19.1 Iterator pattern
19.2 Iterators in Eiffel structure libraries
19.3 Book library example
19.4 Language support?

The C# approach
The Sather approach
19.5 Componentization outcome
19.6 Chapter summary
20 Facade and Interpreter
20.1 Facade pattern
Pattern description
Implementation
Componentization outcome
20.2 Interpreter pattern
Pattern description
Componentization outcome
20.3 Chapter summary

PART E: APPLICATIONS
21 Pattern Wizard
21.1 Why an automatic code generation tool?
21.2 Tutorial
Example of the Decorator pattern
Other supported patterns
21.3 Design and implementation
Objectives
Overall architecture
Graphical User Interface
Model
Generation
Limitations

21.4 Related work
21.5 Chapter summary

PART F: ASSESSMENT AND FUTURE WORK

22 Limitations of the approach
22.1 One pattern, several implementations

“Multiform libraries”
Non-comprehensive libraries

CONTENTS

299

299
299
300

300
300
301
302
303
305
305
306
308
309
309
310
311
311
313
313

313
314
315
316
316
319
319

321
323
323
324

324
328
330
330
331
332
333
334
338
338

339

341
343
343

343
344

CONTENTS

22.2 Language dependency

22.3 Componentizability vs. usefulness

22.4 Chapter summary

23 More steps towards quality components
23.1 More patterns, more components
23.2 Contracts for non-Eiffel components

Closet Contract Conjecture
Automatic contract extraction
Adding contracts a posteriori

23.3 Quality through contract-based testing

Objectives

Architecture of the tool
Gathering system information
Defining the test scenario
Generating a test executable
Outputting test results

Storing results into a database
Limitations

23.4 Chapter summary
Conclusion

PART G: APPENDICES

A Eiffel: The Essentials

A.1 Setting up the vocabulary
Structure of an Eiffel program
Classes
Design principles
Types

A.2 The basics of Eiffel by example

Structure of a class
Book example
Design by Contract™

A.3 More advanced Eiffel mechanisms

Book library example
Inheritance
Genericity
Agents

A.4 Towards an Eiffel standard
ECMA standardization
New mechanisms

A.5 Business Object Notation (BON)

The method
Notation

B Glossary

C Bibliography
Index
Curriculum vitae

21

345
351
351
353
353
354

354
354
358
360

360
360
362
362
364
365
366
366
367

369

371

373

373
373
374
374
375
375
375
375
378
381
381
383
387
389
390
390
391
394
394
394

397
403
417
423

22

CONTENTS

PART A: Overview

24

Part A gives a general overview of the work performed and a glimpse of the
thesis outcome. The subsequent parts describe the results in detail.

1

Main contributions

“Patterns are not, by definition, fully formalized descriptions. They can 't

appear as a deliverable.” Jézéquel 1999], p
22.

J-M. Jézéquel et al., Design Patterns and Contracts, 1999.

The thesis challenges this conventional wisdom and asserts that some design
patterns can be transformed into components. It contributes to the “Grand Challenge
of Trusted Components” by providing: [Meyer 2003a].

. A new classification of the patterns described in Design Patterns according
to their level of componentizability.

. A Pattern Library with the component versions of the design patterns that
turned out to be componentizable.

. A Pattern Wizard that automatically generates skeleton classes for some of
the non-componentizable patterns.

The rest of this chapter now describes each outcome in more detail.

1.1 NEW PATTERN CLASSIFICATION

To what extent can patterns be turned into reusable, off-the-shelf components, taking
advantage of advanced language features? The thesis addresses this question and
proposes a new classification of the so-called GoF' design patterns (the patterns from
Design Patterns) by level of componentizability.

The componentizability criteria and the full classification are presented in
chapter 6. Here is just an overview. In a nutshell, design patterns can be categorized
into two groups:

. Componentizable patterns group design patterns that can be transformed into
reusable components. The classification presented in this dissertation does not
just restrict itself to ‘“componentizable” versus “non-componentizable
patterns”; it has a more fine-grained level taking into account the object-
oriented mechanisms (genericity, multiple inheritance, etc.) that make
transformation from patterns to components possible. Chapters 7 to 15
describe componentizable design patterns by following this fine-grain level of
the classification. (The libraries corresponding to the patterns classified as
componentizable are written in Eiffel. Nevertheless, the approach extends to
all other programming languages that provide the necessary facilities for ge definition is on
componentization as explained in chapters 6 and 22.) the next page.

26

. Non-componentizable patterns correspond to the remaining patterns that are
not reusable (in terms of code). Among these patterns, we can further
distinguish between patterns for which it is possible to implement skeleton
classes that developers will have to fill in and those for which it is impossible
to write such program texts with placeholders. Chapters 16 to 20 show the
different kinds of non-componentizable patterns.

The ultimate goal of this classification is to provide programmers with a
componentizability grid of design patterns that they can consult when starting a new
development. Depending on the componentizability degree of the pattern they want
to apply, they will know whether some of the work is already done for them,
whether they can simply reuse an existing component or fill in some classes with
holes or whether they have to implement everything by themselves. I hope the
componentizability classification of design patterns accompanying this thesis to
become a reference document for programmers.

1.2 PATTERN LIBRARY

The second step of this work was to write the component version of all patterns
categorized as componentizable according to the classification presented in chapter 6
of which there was a glimpse above. The result is a battery of reusable Eiffel
components developed with quality in mind and making extensive use of contracts.
I call “Pattern Library” this set of trusted components built upon the description and
intent of design patterns. For the moment, this pattern library is restricted to patterns
described in Design Patterns but the analysis and “componentization” process do
not restrict to those. The idea is to extend this component repository with other
widely used patterns.

I have just used the term “componentization” but have not given any
definition yet. Here it is:

Definition: Componentization

Componentization is the process of designing and implementing a reusable
component (library classes) from a design pattern (the book description of an
intent, a motivation, some use cases, and typical software architecture examples).

The first successful componentization was the design of the Event Library from the
Observer pattern. The full-fledged analysis of this transformation is described in a
paper by Bertrand Meyer; this paper also provides a critical analysis of various event
mechanisms such as .NET delegates. Another paper further describes the Event
Library and illustrates its capabilities on an example — a system to observe the
temperature, humidity and pressure in a chemical plant. The section 7.1 will present
the Observer pattern, explain its limitations, and show how it can be turned into a
reusable library, in this case the Event Library.

More components have been developed since then. Chapter 9 will show one
of these: the transformation of the Visitor pattern into a Visitor Library using
genericity and the agent mechanism of Eiffel.

The Pattern Library coming with this thesis is available online from [Arnout-
Web]. It includes the just mentioned Event Library and Visitor Library but also other
reusable components corresponding to the patterns Abstract Factory, Chain of
Responsibility, Composite, Flyweight, Command, Mediator, etc. It also comes with
a set of examples using those components.

MAIN CONTRIBUTIONS §1

See chapter 6.

Because Eiffel pro-
vides runtime moni-
toring of contracts, it
is possible to assess
the correctness of the
developed compo-
nents, hence the term
“trusted” here.

The first mention of

the word “compo-
nentization” was in

Arnout 2003b].

See “1.3 Describing
Design Patterns” in

Gamma 1995], p 6-
7.

Meyer 2003b].

Arslan 2003].

Dubois 1999] and

chapter 25 of [Meyer
200?b].

§1.3 PATTERN WIZARD

Some of these components rely on each other. For example, the Command
Library (section 12.2) uses the Composite Library (chapter 10); the Flyweight
Library (chapter 11) uses both the Composite Library and the Factory Library
(chapter 8); the Mediator Library (section 7.2) uses the Event Library, etc.

1.3 PATTERN WIZARD

One of the practical outcomes of this work is a Pattern Wizard that automatically
generates skeleton classes for non-componentizable patterns for which it is possible
to do so (patterns of categories 2.1 and 2.2 of the classification appearing in section
6.3). The idea is both to simplify the job of programmers by preparing the code and
to ensure the design pattern gets implemented correctly.

Here is a screenshot of the Pattern Wizard:

[2] Eiffel Pattern Wizard, version 1.0

Pattern selection

—I- Mon-componentizable
|- Skeleton

class adapter
object adapter
—|- Mo method

=1 Template method
original pattern
with agents

—1- Bridge
with deferred classes {original pattern)
with effective classes {like in EiffelvisionZ)
with nan-conforming inheritance

|- Possible skeleton
Singleton

Pattern's intent

Decarator:
Attach addiional responsibilities to an object dynamically. D ecorators provide a flesible altemative to subclassing
for extending functionality. [Gamma 1535, p 175]

Pattern's applicability

Decorator: e

* to add rezponzibiliies to individual objects dynamically and transparently, that is, without affecting other objects.
* for rezponazibilities that can be withdrawn.
* when extension by subclassing is impractical. Sometimes a large number of independent extensions are possible %

Froject lazation

C:hpattern_wizard Browse. ..

The project location is the place where the pattern's source code will be generated
by the Eiffel Pattern Wwizard
Fattermn properties
Pattern: Decorator Clazz diagram
Original component properties Decorated component properties

Deferred decorated component clazs
Class name: |DECDHATED_CDMPDNENT

Creation procedure name:
- . make
[will be uzed in descendants) |

Effective decorated component class
v with additional attribute

Attribute narme: |additi0nal_attribute

Altribute type name; |SDME_TYF'E

v with additional behavior

Feature name: |d0_something_m0re

[v Generate root class and Ace file

[v Close the Eiffel Pattern \Wizard after code generation

About Generate Cancel Help

27

Meyer 1999].

«

Design pattern
componentizability
classification
(filled) ", page 90.

Pattern
Wizard

28 MAIN CONTRIBUTIONS §1

The Pattern Wizard targets five design patterns: Singleton, Adapter, Decorator,

Bridge, and Template Method. For any of these, the GUI has the same layout:

. At the top, the user can choose the pattern (one of the five mentioned above)

for which he wants to generate code.

. Once a pattern has been selected, the bottom part of the GUI changes: it
displays the pattern intent and applicability, and lets the user enter the project

location and choose the name of classes and features to be generated.

The Pattern Wizard has been designed with extensibility in mind, meaning that it can
easily be extended to support the generation of other design patterns. One would
simply need to build the bottom part of the GUI corresponding to the new patterns
and extend the Eiffel class where the pattern-specific information (name of classes,

names of features, etc.) is stored.

Chapter 21 describes the design, architecture, and usage of the Pattern Wizard

in much more detail.

1.4 CHAPTER SUMMARY

. Some design patterns can be transformed into reusable Eiffel components by
relying on advanced object-oriented mechanisms such as genericity and
agents.

. The thesis establishes a classification of the patterns described in the Design

Patterns by degree of componentizability; this document should serve as a

reference for software developers.

. The thesis also comes with a pattern library corresponding to the set of
reusable Eiffel components built from the reviewed design patterns

categorized as componentizable.

. The thesis finally provides a Pattern Wizard to generate skeleton classes for

some non-componentizable patterns automatically.
. All outcomes of the thesis are available online at [Arnout-Web].

Dubois 1999] and

chapter 25 of [Meyer
200?b].

PART B: Design patterns are good,
components are better

30

Part B introduces the notions of software reuse and design patterns, it
explains the flaws of patterns regarding reuse and the reasons why, for all
benefits of patterns, it is an important step-forward to combine both worlds
and create components out of design patterns. It also presents a
componentizability scale of the design patterns described in the book by
Gamma et al.

2

The benetfits of reuse

Software development involves considerable repetition. One can find many recurrent
patterns in yet apparently completely different applications. For example, any
Graphical User Interface (GUI) is likely to contain buttons and other widgets, such
as menus, toolbars, and combo-boxes. Why then redo the same things again and
again, with the risk of falling into the same pitfalls each time? GUI builders use
libraries of basic graphical elements — like Swing or AWT in Java, Windows forms
in C#, and EiffelVision in Eiffel — that they can assemble the way they like in each
of their development. This is the purpose of reuse.

This chapter gives a more thorough definition of software reuse and
introduces the notion of component; it also describes what the benefits of reuse are
in my opinion, for both the users and the producers of software libraries. Reusing
software, but not any kind of software, is also the message of this chapter: “quality
through contracts on components” is paramount when dealing with reusable code.

2.1 SOFTWARE REUSE

Reusing software permits to improve the overall quality (correctness,
maintainability, sometimes even performance) of software by using components that
were carefully designed, implemented, and tested, or even proved to be correct.

The goal: software quality

Arnout 2002¢].

The NIST (National Institute of Standards and Technology) report on Testing of [NIST 2002].

May 2002 estimates that the costs resulting from bad-quality software (insufficiently
tested software) range from 22.2 to 59.5 billion dollars. These figures do not even
reflect the “costs” associated with mission critical software where failure can be
synonymous of loss of life or catastrophic failure. Especially hit is the aerospace
industry: “over a billion dollars has been lost in the last several years that might be
attributed to problematic software”. Thus, software quality is of topmost
importance.

How can we define software quality? What criteria determine high-quality
software? This question is far from trivial. “Defining the attributes of software
quality and determining the metrics to assess the relative value of each attribute are
not formalized processes. Not only is there a lack of commonly agreed upon
definitions of software quality, different users place different values on each attribute
depending on the product’s use”.

The first attempt to define a software quality model was by McCall, Richards,
and Walters in 1977. They divide quality factors into three categories:

NIST 2002], section
144, pl-11.

NIST 2002], section
1.1, p I-3.

NIST 2002], table 1-
1, pl-4.

32

. Product Operation criteria (correctness, reliability, integrity, usability, and
efficiency) evaluate the software execution: whether it fulfills its specification
(correctness), how it behaves under unexpected conditions (robustness), etc.

. Product Revision criteria (maintainability, flexibility, and testability) evaluate
the cost of changing, updating, or simply maintaining the software.

. Product Transition (interoperability, reusability, and portability) evaluate the
cost of migrating software to make it interact with other pieces of software
(interoperability), or reusing this software to build another application
(reusability), or using it on another platform (portability).

The concept of reusability was already present.

Meyer distinguishes between two kinds of quality factors: external and
internal ones:

. External factors include factors perceptible to the users (for example, speed
or ease of use).

. Internal factors include factors only perceptible to the software programmers
(for example, modularity or readability).

External factors include:

. Reusability: See Definition: Software Reusability at the bottom of the page.

. Extendibility: Ease of adapting a software system to specification changes.

. Correctness: Ability of a software system to perform according to
specification, in cases defined by its specification.

. Robustness: Ability of a software system to react reasonably to cases not
covered by its specification.

. Reliability: Combination of correctness and robustness.

SPECIFICATION

Correctness

Robustness

The ellipse symbolizes the program specification (what correctness is about); the wavy
shape around it corresponds to cases outside of the software specification (what
robustness deals with).

. Portability: Ease of transferring a software system to different platforms
(hardware and software environments).

. Efficiency: Ability of a software system to demand as few hardware resources
as possible.

One more time, reusability appears as a key concept of software quality. Meyer
defines it as follows:

Definition: Software Reusability

“Reusability is the ability of software elements to serve for the construction of
many different applications.”

THE BENEFITS OF REUSE §2

The word “robust-
ness” is used here
rather than “reliabil-
ity” (as defined in the
classification by
McCall et al.) to
avoid confusion.
Indeed, “reliability”
is introduced below
as the combination of
“correctness” and
“robustness”.

Meyer 1997], p 4-
16.

Correctness
vs. Robust-
ness

This figure is
extracted from

Meyer 1997], p 5.

Meyer 1997], p 7.

§2.1 SOFTWARE REUSE

The notion of component

We have seen that reusing software to avoid redundancy would help gain in quality.
Now the question is: what should we reuse? Let’s take a look at an example.

Here is the general pattern of a searching routine:

has (t: TABLE; x: ELEMENT): BOOLEAN is
-- Does item x appear in table ¢?
local
pos: POSITION
do
from
pos =initial _position (t)
until
exhausted (t, pos) or else found (t, x, pos)
loop
pos = next (t, pos)
end
Result := found (t, x, pos)
end

To be directly executable, this pattern misses the definition of routines initial
position, exhausted, found, and next, which means that only reusing the searching
routine fas is not enough: it has to be coupled with features for table creation,
insertion and deletion of an element, etc. This is Meyer’s “routine grouping”
requirement.

Then, to be reusable, a searching “module” should be applicable to many
different types of elements (not only to elements of type ELEMENT). This is Meyer’s
“type variation” requirement.

A searching module should also provide many possible choices of data
structures and algorithms: sequential table (sorted or unsorted), array, binary search

2 (13

tree, file, etc. This is Meyer’s “implementation variation” requirement.

But this is not enough for a piece of software to be reusable: it also needs to
satisfy

. Representation independence, and
. Factoring out common behaviors.

The former means that a client should be able to request an operation such as table
search (has) without knowing its internal implementation; the latter means that a
supplier of a reusable module should take advantage of any commonality that may
exist within a subset of the possible implementations and group them into
“families”. In the table search example, one could think of the following
classification:

start
after
found
forth

TREE TABLE HASH TABLE

INKED TABL

33

General pat-
tern for a
searching
routine

[Meyer 1997], p 84.

Meyer 1997], p 84.

Meyer 1997], p 84.

A possible
classification
for table
implementa-
tions

34

A sequential table may rely on an array, a linked list, or a file. But all possible
implementations will need a way to traverse the structure by moving a fictitious
cursor giving access to the position of the currently examined element: this is what
Meyer calls “factoring out common behaviors”. The next figure shows a possible
representation of such a sequential table with cursor:

item

—_—
forth

count

index

1 I
start

After “factoring out common behaviors”, our routine has would look as follows:

has (t: SEQUENTIAL TABLE; x: ELEMENT): BOOLEAN is
-- Does item x appear in table ¢?

do
from
start (t)
until
after () or else found (t, x)
loop
forth (f)
end
Result == not after ()
end

This simple example has shown the basic properties that should satisfy any reusable
piece of software. Hence the definition of a software component:

Definition: Software Component

A software component is a reusable module with the following supplementary
properties:

It can be used by other modules (its “clients”).

* The supplier of a component does not need to know who its clients are.

* Clients can use a component on the sole basis of its official information.

The first property distinguishes a component from a program; the second property
avoids having too much coupling between modules; the third property ensures
information hiding.

The information hiding rule states that the supplier of a module must select the subset
of the module’s properties that will be available officially to its client (the “public part”);
the remaining properties build the “secret part”.

This definition does not require the component to be in binary format (a typical
component is a set of library classes), contrary to the definition by Szyperski.

A few words of vocabulary before analyzing the benefits of reuse: when
reading about reuse, you may find the distinction between “white-box™ and “black-
box” reuse:

THE BENEFITS OF REUSE §2

Representa-
tion of a
sequential
table with
cursor

General pat-
tern for a
searching
routine

Meyer 1997], p 51.

Clemens Szyperski
says that “Software
components are
binary units of inde-
pendent production,
acquisition, and
deployment that
interact to form a
functioning system”,

Szyperski 1998] p 3.

§2.2 EXPECTED BENEFITS

. White-box reuse relies on the object-oriented concept of inheritance and
requires the knowledge of the class parents’ implementation.

. Black-box reuse relies on the concept of object composition and does not need
any other information than the official class interface.

2.2 EXPECTED BENEFITS

Software reuse has many beneficial consequences for both the users (the consumers)
and the suppliers (the producers) of reusable libraries. It is not only a matter of
shortening costs by building on existing reusable components; software reuse is
much broader than that. I will now list its most important advantages.

Benefits for the users

As a user, you can benefit from reusing existing components to build a new
application in several ways:

. Timeliness: You should be able to bring your application faster to market
since you will have less software to develop. This managerial view point of
productivity and timeliness should not be neglected since it is one of the
reasons why software reuse may scale up. Indeed, if programmers can develop
software faster without compromising on quality, there is a better return on
investment.

. Maintainability: Relying on third-party components to develop software also
means relying on these third parties to maintain it; hence you should put less
effort in maintenance, which avoids the “component developer’s paradox”
stating that the more you work and give to users, the more they will start
asking you in return in terms of product evolution and maintainability.

. Reliability: The most important benefit of software reuse in my opinion is
that it helps you build quality reliable software. Indeed, you can expect
reusable components to be extensively checked and be more than just “good-
enough software”. Trying to develop the same functionalities again would be
running the risk of introducing errors that the reusable component does not
have by lack of time for testing and other validation techniques.

Roger Osmond shows that software development projects often fail to provide
clients with the requested desirable quality (see Osmond’s curves below); he also
advocates that the use of quality object-oriented techniques and reusable libraries
should help lower the failure rate of software projects and increase the reliability of
products:

A

Other qualities DESIRA BLE.

Debugging
COMMON

Functionality

»

B Envisaged
B Early releases

35

Meyer 1994], p 51.

Meyer 1995], p 106-
107 and [Meyer_
1997], p 68-70.

Meyer 1997].

The concept of “good
enough software”
was introduced and
advocated by Ed
Yourdon in [Yourdon

1995].
Osmond 2002].

Osmond’s
curves

This figure is based
on [Meyer 1997], p
13.

36 THE BENEFITS OF REUSE §2

. Efficiency: Usually, people — being programmers or managers — tend to
think that reusing third-party components, which have been developed for the
large public (without knowledge of the particular environment upon which
they want to develop their software), will have bad consequences on
efficiency, rather than the opposite. In practice however, it appears that
developers do not have time to make fine-tuned optimizations on every piece
of software code — especially when building a large-scale system — as
library suppliers can do. Reusing software means that you take the better of
both worlds: you can save time and effort by relying on someone else’s
expertise — instead of developing some elements that are not in your domain
of competence — and make the most of this time and effort to improve the
elements in which you excel.

. Interoperability: The primary property of a reusable component is that it has
to be interoperable with other components; it has to be able to communicate
with them through possibly standardized or — at least — well-accepted
formats or mechanisms. Therefore, relying on such reusable components also
confers to the software you are developing a higher degree of interoperability,
and maybe also better consistency through the use of standardized style
conventions for example. Standardization is a great boost to software reuse,
hence to software quality per se.

Benefits for the suppliers

Software reuse is also beneficial to the suppliers of reusable libraries:

. Interoperability: The argument of interoperability and consistency
mentioned above is a benefit for both the consumers and the producers of
software libraries.

. Investment: Making your own software reusable is a way to encapsulate your
best knowledge for the future of software development.

2.3 CONTRACTS AND REUSE

Reuse of software is good, but only if the software is good. In particular, reusable

software should include contracts — in the sense of Design by Contract™ — [Meyer 1997]
binding the supplier to its clients to ensure trust in the software. [Mitchell 2002, and

Meyer 200?¢].
Reuse: a demanding activity

“The architecture of component-based systems is significantly more
demanding than that of traditional monolithic integrated solutions. In
the context of component software, full comprehension of established
design reuse techniques is most important.”

Clemens Szyperski, Component Software, 1998. Szyperski 1998].

Szyperski clearly says that developing reusable software is demanding, even more
demanding than developing software suited just for one environment. Indeed, reuse
is double-edged: it scales up everything, including the consequences of possible
flaws. Without quality, the dangers of reusing components may well offset all the
advantages described so far.

Thus, the key issue is to produce “trusted” reusable components: components [Meyer 1998].
whose quality (correctness, robustness, performance, security, etc. — see The goal:
software quality) can be precisely determined and guaranteed. The effort includes
both “low-road” (using testing to establish confidence in software) and “high-road” [Meyer2004].
aspects (using formal methods).

§2.3 CONTRACTS AND REUSE

Use contracts

Along the “low-road”, reusable software to be “trustable” should include contracts:
“Reuse without a contract is sheer folly!”

The article by Jean-Marc Jézéquel et al. was in the context of the Ariane 5
crash. Indeed, on June 4, 1996, the first flight of Ariane 5 ended by the explosion of
the launcher just a few minutes after takeoff. Result: half a billion dollars lost in 40
seconds! Reason: bad reuse of existing software from Ariane 4; to be more accurate,
one should rather say bad reuse resulting from badly specified software from Ariane
4. In fact, there was no specification at all associated with the reused code stating
that the horizontal bias of the rocket should fit in 16 bits, which was true for Ariane
4, but not for Ariane 5 anymore.

With clearly stated preconditions, such an error would have been detected
before launching the rocket, and half a billion dollars may have been saved. Here
Jézéquel et al. are not claiming that one more routine precondition in the software
would have been sufficient to guarantee a successful flight but at least, the
conversion exception described above would not have been the reason of the crash.

Hopefully the Ariane 5 crash did not cause any loss of life; but other
catastrophes due to software failures did: for example, the crash of the Galileo
Poseidon flight 965 in 1996 cost 160 lives. Then, the motto about contracts and
reuse by Jean-Marc Jézéquel et al. cited above takes even more sense; let’s hope that
it will become the motto of any software programmer.

Avoid “reusemania”

We have seen that software reuse is good but not under any conditions. In particular,
one should avoid “reusemania”, namely reuse everything and anything under any
condition with no prior consideration of the quality of what is reused.

Szyperski warns us against bad reuse: “Maximizing reuse minimizes use”.
Indeed, trying to reuse as much as possible also adds context dependency to the
software (i.e. dependency to another component); therefore software designers
always have to strive for the best possible balance between usability and reusability.

Design reuse

People concerned about software reuse — probably because they fear the gap
between reuse and “reusemania” is not so large — often put design reuse forward,
like in design patterns. Szyperski even says that “Reuse of architectural and design
experience is probably the single most valuable strategy in the basket of reuse
ideas”.

These two views — software reuse vs. design reuse — are not so much
different than one may think at first sight. Indeed, Eiffel advocates the principle of
“seamlessness” and “seamless development”, which tells us that the same
language, method, and environment should apply to the whole software lifecycle:
Designing software becomes like writing software with just specification
information (comments, contracts) and no implementation. Thus, with a language
such as Eiffel, reusing design is — to some extent — like reusing software.

Encouraged by this closeness, I have tried to see whether the so-called design
patterns, which are a way to “reuse” design, could be turned into software
components. The subsequent chapters report on that research.

37

Jézéquel 1997].

NIST 2002], table 1-
4,pl-11.

Szyperski 1998], p
37.

About design pat-
terns, see [Gamma
1995] and [Jézéquel
1999].

Szyperski 1998], p
132.

Meyer 1997], p 22-
23.

38 THE BENEFITS OF REUSE §2

2.4 CHAPTER SUMMARY

. Reusability is a key factor of software quality.

. Reusability is made possible because of repetition in the software construction
process.

. A software component is a program element that can be used by “clients”

(other program elements) on the sole basis of its official information (its
“public part”); the supplier of a software component does not need to know
about these clients when developing the component.

. Software reuse has two kinds of benefits: benefits for the users (timeliness,
maintainability, reliability, efficiency, interoperability) and benefits for the
suppliers (interoperability, investment).

. The use of contracts in the construction of reusable software is paramount.

. Design reuse is close to software reuse in the Eiffel view of seamless
development.

3

Design patterns

In the previous chapter we saw the benefits of software reuse for both the users and
the suppliers of reusable components. We also noticed that design reuse is not so far
away from software reuse because of the seamless development approach of Eiffel.

This chapter explains the idea of a design pattern, its benefits, and its possible
limitations.

3.1 OVERVIEW

The idea of design patterns takes root in the mid-nineties with the publication of the
books by Pree in 1994 and Gamma et al. in 1995 and is now well-accepted in the
field of software development and widely used in both the enterprise and academic
worlds.

Definition

The term “pattern” is quite vague and can be applied to many domains, including
domains of our daily life. Pree mentions traffic rules (traffic on the right side of the
road in Switzerland, France, the US, etc.; on the left side in Great-Britain and
Australia), tools for eating depending on the country (forks and knifes in Western
countries, chopsticks in Asia), and fashion.

In software development, newcomers learn a lot by looking at other people’s
code and by imitating some “patterns”, some coding style, good practices and
algorithms that stand out on the pieces of code.

One can think of a design pattern as a set of rules to accomplish certain tasks.
In a sense, an algorithm may be viewed as a design pattern.

One can also consider a design pattern as a roadmap for understanding some
software implementation.

Design Patterns gives a more precise definition of what a pattern is and how
it should be used. This view is widely accepted now in the computer science
community. It says that:

“A design pattern names, abstracts, and identifies the key aspects of a
common design structure that make it useful for creating a reusable
object-oriented design”.

All design patterns described in [Gamma 1995] follow the same scheme:

Pree 1994] and
Gamma 1995].

Pree 1994].

Gamma 1995], p 3.

40

DESIGN PATTERNS §3

A pattern has a name, which facilitates discussions and exchanges between
programmers, and between programmers and managers (see ‘A common
vocabulary”, page 44).

A pattern has a structure: it involves a number of classes and describes the
relations between their instances.

A pattern has a motivation: it answers a particular problem.

A pattern can be applied in certain circumstances with some particular
consequences.

Summarizing the characteristics just seen, here is a possible definition of a design
pattern:

A design pattern is a set of domain-independent architectural ideas — typically a
design scheme describing some classes involved and the collaboration between
their instances — captured from real-world systems that programmers can learn
and apply to their software in response to a specific problem.

Definition: Design Pattern

A repertoire of 23 patterns

Design Patterns does not only come with a definition of design patterns; it also
brings a catalog of 23 patterns — which made the book a pioneer in the field when
it was published. The patterns are divided into three categories according to their intent:

Creational: The purpose of creational design patterns is to put more
flexibility into the instantiation process. By relying on inheritance or
delegation, creational patterns defer parts of object creation to the class
descendants or to other objects. They make systems independent of:

. What objects get created (the exact concrete type is not required).

. How objects get created.

. When objects get created.

. Who creates the objects.

Creational design patterns encapsulate the knowledge of which class to
instantiate and how to instantiate it.

Design Patterns identifies five creational patterns:

. Abstract Factory enables the creation of families of related objects
without specifying their concrete types.

. Builder enables constructing a complex object part-by-part without
exposing the internal representation of this object to the user.

. Factory Method enables creating an object without specifying its
concrete type; this object will be used by the class declaring the factory
method to perform a particular operation.

. Prototype enables the creation of objects by copying one prototypical
instance.

. Singleton ensures that a class only has one instance and provides a
global access point to it.

Some of the patterns in this list are competitors, like Abstract Factory and
Prototype. Some are complementary; for example, Profotype can use Singletons
in its implementation, and Builder can use other creation patterns to build its
internal parts.

See section 8.1, page
117.

See section 13.1
page 207.

See section 8.4, page
128.

See section 5.1, page
05.

See section 18.1
page 289.

§3.1 OVERVIEW 41

. Structural: The structural design patterns serve to compose software elements
into bigger structures. Some use inheritance to achieve a permanent and static
binding of classes whereas others focus on flexibility and target a dynamic
composition of objects.

Design Patterns identifies seven structural patterns:

. Adapter converts the interface of a class (or the interface of an object) See section 16.2
to make it match the interface the client expects, in the same way you 242
use a plug adapter for your electric appliances in foreign countries.

. Bridge decouples the class interface from its implementation, making See section 17.2
possible to change the implementation part without breaking any client 22278
code because the interface remains the same.

. Composite provides a uniform way to access individual and composite See section 10.1
objects by using a hierarchical tree structure: composites are tree nodes 24214
and may contain individual objects called “leaves”.

. Decorator attaches new functionalities to an object at run time; it See section 16.1
“decorates” an object dynamically instead of adding this service 2423
permanently into the class, which provides higher flexibility.

. Facade offers a common interface to a set of multiple classes to See section 20.1
facilitate the interaction with clients. P S

. Flyweight uses shared objects to gain space and improve efficiency Seesectionil.1,page
when an application involves a large number of objects, and most 0%
properties of these objects can be externalized rather than stored as
internal attributes.

. Proxy is a “virtual” object having the same interface as the “real” object See section 13.2.
(hence its other name of “surrogate”); it enables controlling the access 242¢21%
to the real object by forwarding the requests only when strictly
necessary, otherwise using a cache mechanism.

Because all these patterns rely on the same object-oriented mechanisms of
(single and multiple) inheritance and object composition, the structures
involved are quite similar. For example, the class diagrams involved in the
object Adapter and Bridge patterns look alike. The Flyweight even uses the
Composite pattern, although the two patterns have different intents: the former
focuses on object sharing and efficiency whereas the latter gives clients the
ability to access individual “leaves” and “composite” objects uniformly.

. Behavioral: The behavioral design patterns deal with algorithms, assignment
of responsibilities between objects, and communication between those
objects. Some rely on inheritance; other on object composition (client-supplier
relationships).

Design Patterns describes eleven behavioral patterns:

. Chain of Responsibility avoids dependencies between the sender and = See section 123,
the receiver of a request by creating a chain of possible receivers; the page 200.
request is given to the next link until the current element is able to
handle the request.

. Command makes requests — called commands — first-class objects, See section 12.1
which enables having composite commands; it also makes it possible to page 187.
parameterize clients with different requests.

. Interpreter enables interpreting the sentences of a simple language by See section 20.2
representing each expression as classes. page 316.

42 DESIGN PATTERNS §3

. Iterator makes it possible to traverse a data structure and access its
elements sequentially without revealing the internal representation of
the structure. An iterator may be internal or external to the data
structure.

. Mediator controls the interactions between a set of objects; it avoids the
“colleague” objects to have to refer to each other explicitly and ensures
a more flexible structure.

. Memento provides a way to store an object’s internal state — typically
the values of some of its attributes — and restore it later on — reset the
attributes’ value to the stored values.

. Observer eases the update of so-called observers — typically GUI
elements — whenever the underlying data — the subject — changes.

. State makes it possible to change the behavior of an object depending
on its state. It follows the idea of an automaton (state machine), which
changes state when a certain condition — transition — is satisfied.

. Strategy encapsulates algorithms as objects and provides the flexibility
to change an algorithm independently from the clients using it.

. Template Method defines the structure of an algorithm by using
successive deferred (abstract) features, which descendants will have to
implement. It is also known as hook operations or “programs with
holes”.

. Visitor provides a way to apply different operations to instances of
different classes with a common ancestor depending on the generating
type of the object. It is often used to visit elements of an abstract syntax
tree (AST).

There are similarities between some behavioral design patterns. For example,
the Strategy Method relies on inheritance to let parts of an algorithm vary; the
Template Method uses delegation. The Mediator and the Observer are even
closer: colleagues of a Mediator may interact with their mediator by using the
Observer pattern. Commands may use a Memento to ensure state consistency
when undoing previously executed commands. (The present dissertation uses a
common example — a LIBRARY system where users can borrow BOOKs and
give them back — to describe all design patterns to highlight the pattern
similarities and differences.)

The classification between creational, structural, and behavioral design patterns is
now well-established and further literature on the topic followed it; for example, the
book by Jézéquel et al., Design Patterns and Contracts.

The componentization work presented in this dissertation targets the 23
patterns of Design Patterns. But it provides a new reading grid of design patterns, a
new “filter”, a new way to look at them: by level of componentizability instead of
by intent. In the view developed by this thesis, a pattern is not a goal in itself but a
first step towards finding the right abstractions to build a reusable component out of
it. (Section “The limits”, 3.3, page 44 will explain the motivation of the
componentization effort in more detail.)

More design patterns

The 23 patterns described by Gamma et al. are not the only existing design patterns.
Further examples include:

. Smalltalk’s Model View Controller (MVC) is popular.

See section 19.1
page 305.

See section 7.2, page
106.

See section 15.1
page 243.

See section 7.1, page
97.

See section 13.3
page 224.

See section 14.1
page 233.

See section 17.1
page 275.

See [Meyer 1997], p
504-506.

See section 9.1, page
131.

The classes are not
shown here because
their implementation
will evolve with the
patterns being pre-
sented.

Jézéquel 1999].

See “Definition:
Componentization”’
page 26.

§3.2 THE BENEFITS

. New design patterns have been identified in more specialized branches of
computer science like distributed systems, networking or more recently Web
services.

. Several publishers (Wiley, Addison-Wesley) started “design patterns series™:
The volumes of Pattern-Oriented Software Architecture are well-known; they
describe flavors of patterns appearing in Design Patterns — like the
Publisher-Subscriber, which resembles the Observer pattern — and contribute
new patterns like Master-Slave for parallel computation, Forwarder-Receiver
and Client-Dispatcher-Server for communication, Broker in distributed
systems or Layers for architecture.

The componentization approach described in this dissertation could be extended to
variants of the patterns described in Design Patterns, such as Publisher-Subscriber.
I did not consider domain-specific patterns at all because several of them involve
parallel computing, which is not feasible in Eiffel at the moment (the SCOOP model
is currently being implemented as an FEiffel library at ETH Zurich); others require
knowledge that is too far away from my area of research.

3.2 THE BENEFITS

The effort of capturing design solutions in design patterns has proved very useful
and has helped building better quality software. Here are some benefits of design
patterns.

A repository of knowledge

Design patterns were built upon the experience of software developers. They are a
repository of knowledge of great interest for newcomers who can learn and apply
them to their designs without repeating their elders’ mistakes.

The important point is that design patterns are proven design solutions. One
of the authors of Design Patterns explained how carefully the catalog of 23 patterns
was done: a design scheme was elevated to the rank of pattern and added to the
repertoire only if at least several real-world applications were using it. This careful
construction of the pattern repository gives confidence in relying on those proven
solutions to build software and avoid reinventing the wheel at each development.

Better software design

Applying one or several patterns to the design of a piece of software usually yields
better modularity, hence better extendibility and more robustness.

Some patterns — for example State and Command — result in a system with
many small classes that only have a few features. But it is usually not a problem; on
the contrary, it contributes to better readability, better understandability of the
software and better separation of concerns.

Applying patterns means applying proven good solutions; thus it facilitates
building good designs even early in a career.

Patterns help learn modularity and design right from the start; therefore they
are also good pedagogical tools.

43

Bushmann 1996].

.SCOOP: Simple
Object-Oriented Pro-
gramming; see chap-

ter 30 of [Meyer
1997].

Vlissides 1998].

44 DESIGN PATTERNS §3

A common vocabulary

The definition given by [Gamma 1995] of a design pattern clearly says that a pattern
has a name. Insisting on naming every pattern provides a common vocabulary, a
common language, that people will learn together with the pattern and can use to
discuss with others.

Patterns are a valuable communication means for programmers. But they are
also a very good media to interact with higher levels of the hierarchy. Indeed,
managers may not know the exact structure of patterns, but they are more likely to
know the intent of patterns, what they are good for, and will be able to understand
how a system works at a higher lever of abstraction without having to look at the
code in depth — or even not at all.

3.3 THE LIMITS

For all their benefits, design patterns have their limitations. In particular, one may
argue that they fall short of the goals of reusability.

No reusable solution

“Each pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to this
problem in such a way that you can use this solution a million times over,
without ever doing it the same way twice.”

Gamma et al., Design Patterns, 1995.

Gamma et al. underline that a design pattern is a solution to a design issue that
occurs very often in a particular context. They add that it is specific enough that
whenever you want to apply it, you will have to adapt it to the new context; you
cannot reuse something you have done before, which means that a design pattern is
not reusable (in terms of code). It needs to be adapted to each particular problem and
is inapplicable as an off-the-shelf component.

A step backward from reuse

The above assertion by Gamma et al. should not make us forget reusability. As we
have seen in chapter 2, reusability is a major goal of object technology and a
foundation of quality. Having to re-implement the same schemes anew each time
cannot be satisfactory.

In his book Object-Oriented Software Construction, Meyer was looking
forward to finding better ways to achieve a higher degree of reuse:

“One can hope that many of the “patterns” currently being studied will
soon cease to be mere ideas, yielding instead directly usable library
classes”.

Design Patterns clearly says that design patterns are only design schemes and do not
come with any reusable code. (The book only provides partially implemented
examples.)

See “‘Definition”
page 39.

Gamma 1995], p 2.

Gamma 1995], p 2.

Meyer 1997], p 735.

§3.3 THE LIMITS

Pree was using the word “cookbook’; for example, the section “How to Use a
Design Pattern” of [Gamma 1995] really looks like a cooking recipe:

1. Read the pattern once through for an overview.

2. Go back and study the Structure, Participants, and Collaborations

sections.

3. Look at the Sample Code section to see a concrete example of the pattern
in code.

4. Choose names for pattern participants that are meaningful in the

application context.
5. Define the classes.
6. Define application-specific names for operations in the pattern.

7. Implement the operations to carry out the responsibilities and
collaborations in the pattern.

In this view, software developers, when needing a pattern, should look at a book,
which describes some relations between classes, usually in a graphical form, and
write the corresponding code. It is a step backward from reuse, or at least there is
something missing here.

As Meyer was already writing in 1997: “A successful pattern cannot just be a
book description: it must be a software component”.

This is precisely the purpose and outcome of this thesis.

Software reuse vs. design reuse

Gamma et al. mention that design patterns are useful to create “a reusable object-
oriented design”, meaning they consider design patterns as a certain form of reuse:
design reuse.

We would like to go further and have a reusable software component, not just
a book idea. However, others argue that design reuse is the only valuable form of
reuse; for example, Szyperski asserts that:

“Reuse of architectural and design experience is probably the single
most valuable strategy in the basket of reuse ideas”.

We think that the gap between software reuse and design reuse is not so big,
especially when developing software in Eiffel. Indeed, Eiffel is more than just a
programming language; it is a method that emphasizes the idea of seamless
development. The recommended way to develop software is to use Eiffel right from
the start of the software lifecycle as a tool for analysis and design, and continue
using it for the implementation and maintenance phases. The use of contracts
(preconditions, postconditions, class invariants) ensures consistency between the
design and implementation steps. Therefore, in Eiffel, design reuse and software
reuse are very close to each other.

This thesis basically tries to reconcile both worlds, showing how we can build
a reusable Eiffel component from the book description of a design pattern.

45

Pree 1994].

Gamma 1995], p 29-
30.

How to Use a
Design Pat-
tern

[Meyer 1997], p 72.

Gamma 1995], p 3.

Szyperski 1998], p
132.

46 DESIGN PATTERNS §3

To come back to the design pattern usage “recipe” presented before, here is
what the recipe would look like when considering the componentized version of
design patterns:

1. Look up the componentizability scale presented in chapter 6 of this thesis. fiow fo use
the compo-
2. If the pattern you seek belongs to the “componentizable” category: nentizability
. Download the componentized version from [Arnout-Web]; c!assiﬁca-
. Write the descendant or client classes needed in your application. thn, Pattern
Library, and
else: Pattern Wiz-
. Download the Pattern Wizard from [Arnout-Web]. ard
. Use it to generate skeleton classes for this pattern. The Pattern Wizard is
. . described in chapter
. Fill in the skeleton classes according to your needs. 21, page 323.

The ultimate goal of this work is to contribute to the migration from purely

manufactured — in the latin sense of the term, meaning hand-made — software to Wolfgang Pree was
: : : Iready using thi:

software built upon high-quality (trusted) components. ol fgpio"rsﬁzg[Préi

1994],

3.4 CHAPTER SUMMARY

. A design pattern is a design scheme that can be applied to software in
response to a specific problem.

. Gamma 1995] provides a catalog of 23 design patterns categorized into three
groups depending on their intent: creational, structural, and behavioral design

patterns.
. Design patterns are not limited to the ones described in Design Patterns.
. Design patterns have many benefits: they constitute a repository of knowledge

upon which developers can rely; they help build better software; they provide
a common vocabulary that facilitates talking about the design of a system and
communicating it to others.

. Design patterns fall short when mentioning reuse.

. Using Eiffel narrows the gap between design reuse and software reuse, which
opens the way to the componentization of design patterns.

4

Previous work

Chapter 2 recalled the importance of reuse to achieve high-quality software; “quality
through components” was the key idea. The concept of seamlessness — integrated
in the Eiffel method — leads to design reuse. Although design patterns (chapter 3)
are widespread and proved useful to software developers in many cases, they do not
yield the full benefits of reuse.

This chapter presents some previous work in the area of design patterns. First
it describes extensions and refinements of the patterns presented in [Gamma 1995].
Then it explains more recent studies trying to implement patterns with aspects.
Finally it discusses the usefulness of supporting design patterns directly in the
programming language.

4.1 EXTENSIONS AND REFINEMENTS OF PATTERNS

Every pattern description of Design Patterns includes a section “Implementation”,
which mentions a few questions programmers should ask themselves when
implementing the pattern. However, these sections are sometimes unclear or
incomplete; hence the need to clarify, explain, refine, extend the description —
especially the implementation details — of the design patterns. It is a step further
towards a concrete pattern implementation, rather than a mere idea, even if it still
does not bring a reusable component.

Seven State variants

Paul Dyson and Bruce Anderson concentrated on the State pattern described in
Design Patterns. They identified six variants of the pattern, i.e. altogether seven
possible ways to translate the pattern’s book description into a programming
language, Smalltalk in their case.

Dyson et al. distinguish between refinements and extensions of the original
pattern:

. Refinements deal with implementation choices already mentioned —
sometimes briefly — in Design Patterns.

. Extensions document decisions that programmers will have to make to
implement the pattern but that are not even suggested in Design Patterns.

All seven variants of the State pattern described by Dyson et al. are still just paper
descriptions — even if illustrated by concrete examples — but they get closer to
what a possible implementation would look like than the original explanation in
Design Patterns.

Arnout 2002¢].

Seamlessness is
described in [Meyer
1997]; design reuse
in [Meyer 1994].

Dyson 1996].

Gamma 1995], p
305-313.

48

PREVIOUS WORK §4

The seven identified versions of the State pattern include:

The original State pattern (called State Object by Dyson et al.): It supports
having different behaviors depending on an object’s state by encapsulating
state-dependent features into a class STATE and possible descendants (if
several possible states).

Three refinements:

. Pure State is when the STATE classes have no attributes; using sharing
permits to avoid the multiplication of state objects. This was already
suggested in Design Patterns.

. State-driven transitions is when the STATE objects initiate the state
transitions.
. Owner-driven transitions is when the “owning object” (called “context”

by [Gamma 1995]) takes care of changing states. It is useful to reuse
state objects with different contexts (different finite state machines).

Three extensions:

. State Member explains where to declare attributes — in the context or
in the state classes.

. Exposed State suggests to export to any client the attribute szare of the
context when state classes have many attributes — to avoid the
multiplication of state-dependent, state-specific routines in the
CONTEXT class.

. Default State explains how to ensure that the context is in the correct
initial state after creation.

For consistency, we will deviate slightly from Dyson’s terminology:

L]

Context-driven transitions will be used instead of Owner-driven transitions to
conform to the class names (CONTEXT, and STATE) suggested by Design
Patterns.

State attribute (rather than State Member) to comply with Eiffel terminology.

Exported State (rather than Exposed State) to use the same vocabulary as in
Eiffel: one may export rather than expose features to clients.

The six variants (refinements and extensions) of the State pattern solve the same
issues as the original pattern; they simply provide more detail about how to
implement the pattern. If the State pattern is not suited to a particular case, none of
the six variants will be suited either.

The following picture illustrates the relations between the State variants:

Cases covered by
each pattern

State |

| State attribute |

| Pure State |

| Exported State |

| Default State |

Pattern

Gamma 1995], sec-
tion “3. State objects
can be shared”, p
308.

Gamma 1995], sec-
tion “1. Who defines
thestate transitions ”,
p 308.

Seven State
variants

§4.1

EXTENSIONS AND REFINEMENTS OF PATTERNS

Pure State is a State attribute with no attribute.

Exported State is a State attribute with usually many attributes in class STATE
and its descendants. (The above picture does not represent Exported State and
Pure State as disjoint because an Exported State may have no attribute, even
if it is not the most common case.)

State-driven transitions and context-driven transitions are mutually exclusive:
either the context or the state controls the transition, not both.

State attribute and its variants, Default state and X-driven transitions (X being
either Context or State) are orthogonal; you may want to combine them when
implementing the State pattern with your favorite programming language.

The following points explain, for each State variant, what question it answers and
give an example in Eiffel:

The original State pattern provides a way to make an object react differently
depending on its state.

Let’s take the example of a library where users can borrow books and
return them later. (This example will be used throughout the thesis to highlight
the similarities and differences between patterns.) Books have two states: free
and borrowed. If the book is free and a user borrows it, the book’s state becomes
borrowed. If the book is borrowed and the user returns it, the book becomes free
again.

A possible implementation would be to have a class BOOK with two
attributes fiee and borrowed of type BOOLEAN and two features borrow and return
setting the value of these attributes; for example:

class
BOOK

feature -- Basic operation

borrow is
-- Borrow book.
do
if free then
borrowed = True
free .= False
elseif borrowed then
-- Display a message to the user.
end
end

end

This implementation works but is not flexible. Adding a state would mean
adding a new attribute to class BOOK and update the features borrow and return.
If it is not too much work on a simple example like this one, it may quickly
become a pain with dozens of states.

The solution advocated by the State pattern described in Design Patterns
consists in having a class STATE and as many descendants as there are states.

49

Readers not familiar
with Eiffel may look
at the appendix A,
page 373, which
gives the necessary
background to under-
stand the examples in
this thesis.

Implementa-
tion of a rou-
tine to borrow
books from a
library with-
out the State
pattern

PREVIOUS WORK §4

In the above example, we would have a class STATE and two descendants

FREE and BORROWED. Class BOOK would keep a reference to the current state

and features borrow and return would just act as proxies as shown below:

class

BOOK

feature -- Basic operation

borrow is
-- Borrow book.
do
state « borrow
end

feature { NONE} -- Implementation

state: STATE
-- State of the book (i.e. free or borrowed?)

end

It becomes much easier to add states: you simply need to implement the
corresponding descendant of class STATE; no need to change the existing
routines of class BOOK.

The pattern State will be presented thoroughly in section 13.3, page 224,
State attribute explains where to declare attributes: in the context class or in
the state classes. The rules Dyson et al. suggest are simply good design rules:

. If an attribute only makes sense in one particular state, put it in the
corresponding state class.

. If an attribute makes sense in several — but not all — states, put it in
a common ancestor of the corresponding state classes.

. If an attribute is state-independent, put it in the context class.

In our library example, we would put an attribute user in the class BORROWED
(because it does not make sense when a book is free); but we would put an
attribute reservations of type LIST [RESERVATION] in class BOOK because it is
applicable to any state.

Pure State is applicable when the STATE classes do not have attributes. In that
case, STATE objects can be shared between different contexts.

In our example, the state class FREE has no attribute: it can be shared
between different instances of class BOOK.

Exported State is interesting if the state classes have many attributes. The idea
is to export the attribute state of the context to any client to avoid multiplying
proxy routines that do nothing but delegate calls to the state object.

In the library example, the class BOOK would look like this:

class
BOOK
feature -- Access (exported to ANY)

state: STATE
-- Current book state

end

Implementa-
tion of a rou-
tine to borrow
books from a
library with
the State pat-
tern

Pure State is an
example of Flyweight

(see 11.1, page 161)
and is typically
implemented as a
Singleton (see chap-

ter 18, page 289).

Library book
whose state is
exported to
any client

§4.1

EXTENSIONS AND REFINEMENTS OF PATTERNS

Hence clients can access the state object and query it directly (for example, ask
for the current user of a book):

class
BOOK CLIENT

feature -- Access

book: BOOK
-- Book

user: PERSON is
-- Current user of book

do
Result := book « state e user

end
end
Otherwise we would have needed to pollute the class BOOK with routines like:

class

BOOK

feature -- Access
user: PERSON is
-- Current user of the book

do
Result = state o user
end

feature { NONE} -- Implementation

state: STATE
-- Current book state

end

and clients would have called the proxy routine user without going through the
book’s state:

class

BOOK_CLIENT

feature -- Access

book: BOOK
-- Book

user: PERSON is
-- Current user of book

do
Result := book e user

end

end

51

Client of
library book
accessing the
current book
user directly
through the
book’s state

“Proxy rou-
tines” giving
access to state
properties

Client of
library book
accessing the
current book
user through
a proxy rou-
tine

The main problem of this approach is that we need to duplicate the features from
class STATE in class BOOK to make them available to the BOOK’s clients. Hence
more work when extending the class STATE with new services and less

extensibility.

52

PREVIOUS WORK §4

State-driven transitions: This pattern variant corresponds to the case when
state objects are responsible for changing the context’s state. (The STATE
classes implement the automaton.)

In the library example, the BOOK class would have a procedure set_state
exported to class STATE and its descendants, which would take care of changing
states when the features borrow or return get called. For example, the
implementation of borrow in class FREE would be:

class
FREE
inherit
STATE
feature -- Basic operation
borrow is
-- Borrow book.
--| Create a new state BORROWED and set it to the book.
do
book e set_state (create {BORROWED }.make (book))
end

end

The componentized version of the State pattern that is part of the Pattern Library
accompanying this thesis follows the State-driven transitions model.

Context-driven transitions: This pattern variant is the counterpart of State-
driven transitions; it corresponds to cases when the context is responsible for
changing state. It proves especially useful when one wants to reuse the same
state objects with different contexts (that implement different finite state
machines). Even in that case, it is usually possible to use the state-driven
approach with Template Methods.

In our example, we could imagine that the library offers not only books
but also videos and the video recorders to watch them. When a video recorder
is returned by a user, it may not become free right away but go to maintenance
to check nothing was damaged. In that case, books and video recorders would
not have the same state machine but the states FREE and BORROWED are likely
to look the same. Therefore we can let the BOOKs and VIDEO RECORDERS
change their state when needed and reuse the same FREE and BORROWED state
objects for both. A video recorder will have an extra state MAINTAINED set
when the feature return of class VIDEO RECORDER gets called:

class

VIDEO RECORDER

feature -- Basic operation

return is
-- Return video recorder.
--| Create a new state MAINTAINED and set it.
do
set_state (create {MAINTAINED}.make (Current))
end

end

Routine
responsible
for changing
the book’s
state from
“free” to
“borrowed”

See section 13.3
page 224.

See section 17.1,
page 275.

Video
recorder tak-
ing care of
changing its
own state

§4.1 EXTENSIONS AND REFINEMENTS OF PATTERNS

. Default State suggests having a function default state in the context class
called in the creation routine of the class to ensure that the created context is
consistent (is in the correct initial state). This approach also increases
flexibility because descendants of the class CONTEXT may redefine the
function default state to return their own initial state.

In the library example, we can imagine a common ancestor
BORROWABLE of classes BOOK and VIDEO RECORDER. The class
BORROWABLE would have a deferred feature default state:

class
BORROWABLE

create
make

feature { NONE} -- Initialization
make is

-- Set initial state.
do

set_state (default_state)
ensure

default state set: state = default state
end

feature { NONE?} -- Implementation

default state: STATE is
-- Default state
deferred
ensure
default state not void: Result /= Void
end

end

Class BOOK will effect default create by returning an instance of type FREE,
VIDEO_RECORDER by returning an instance of type MAINTAINED.

This discussion has shown that the same pattern description may result in many
different concrete implementations. The componentization work presented in the
subsequent chapters will highlight other cases.

Adaptative Strategy

Olivier Aubert and Antoine Beugnard also worked on extending a pattern described
by Design Patterns: the Strategy pattern. More than documenting an implementation
choice that programmers have to make when coding the pattern, Aubert et al.
suggest a new design scheme, which they call Adaptative Strategy.

This refinement of the Strategy design pattern removes a drawback of the
original pattern: it does not require clients to know about the different strategies.
Indeed, in the original Strategy, clients must decide which strategy to use. In the
Adaptative Strategy, clients do not have to worry about selecting a strategy — they
do not even know about it; they are always presented the best possible strategy to
apply according to the context. There are cases when the Adaptative Strategy would be
the only possible alternative because the best strategy cannot be known before run time.

The Adaptative Strategy targets the analysis and design of so-called
“adaptative” systems, namely systems that change their behavior automatically
depending on the context. Aubert et al. give the example of a mobile storage access
system, and identify four actors in the “adaptation process”:

53

Context class
with a default
state function

Aubert 2001].

Gamma 1995], p
315-323.

See “5. Clients must
be aware of different
Strategies” in

Gamma 1995], p
318.

54 PREVIOUS WORK §4

. The Information Gateway gathers information about the environment (the
context).
. The Controller decides — based on the information given by the Information

Gateway — which strategy is best suited to the current situation.

. The State Adapter ensures the state transition from one strategy to another if
needed. (Some strategies are stateless; hence no need for a State Adapter.)

. The Adaptative Strategy executes the strategy chosen by the Controller: it is
the only part visible to clients. (The Adaptative Strategy is an example of the
Facade pattern.)

Aubert et al. distinguishes between two kinds of adaptative strategies:

. On action: The strategy gets changed when a client calls the adaptive strategy
(i.e. at execution time).

. On change: The strategy is updated whenever the environment changes,
independently from any feature call.

Let’s consider each variant successively:

. First, the “on action” scheme. The adaptation process starts when the client
calls the feature execute of class ADAPTATIVE STRATEGY. The first task will be
to ask the CONTROLLER for the best strategy — chosen according to the
environment _state obtained from the INFORMATION GATEWAY. Then, the
ADAPTATIVE STRATEGY will call the STATE ADAPTER to ensure state
consistency between the previous and the newly chosen strategy. Finally the
ADAPTATIVE STRATEGY can execute the elected CONCRETE STRATEGY.

The following diagram summarizes the relationships between the classes
involved in the “on action” variant of the Adaptative Strategy pattern:

CONTROLLER A

best_strategy

ADAPTATIVE
STRATEGY

INFORMATION
GATEWAY

execute environment_state

STATE ADAPTER
adapt

\
CONCRETE STRATEG

I
1
: execute
1

The feature execute of class ADAPTATIVE STRATEGY may be implemented as follows:

class

ADAPTATIVE STRATEGY

feature -- Basic operation

execute is
-- Execute strategy.
do
strategy = controllere best_strategy
state_adapters adapt
Strategye execute
ensure
strategy set: strategy = controllers strategy
end

end

See section 20.1
page 313.

Strategy
adaptation on
Strategy exe-
cution

Sketch of pro-
cedure to exe-
cute the best
Strategy
(adaptation
on action)

§4.1

EXTENSIONS AND REFINEMENTS OF PATTERNS

Second, the “on change” scheme. Contrary to the “on action” scheme, the
adaptation process is not governed by any client feature call; it follows
environment changes. If the context changes, the INFORMATION GATEWAY
will notify the CONTROLLER (its ‘“observer”), which will update its
information. According to this new deal, the CONTROLLER will decide of the
new best algorithm and ser strategy of the ADAPTATIVE STRATEGY. If the new
strategy involves some state changes, the ADAPTATIVE _STRATEGY will invoke
adapt on the STATE ADAPTER. At this stage, the ADAPTATIVE STRATEGY 1is
on the same wavelength as the environment and is ready to have clients call
its execute feature.

The following diagram shows the relationships between the classes
involved in the “on change” variant of the Adaptative Strategy pattern:

set_strategy
= 1

ADAPTATIVE
STRATEGY

INFORMATION
GATEWAY

notify

update

STATE _ADAPTER
adapt

\
CONCRETE_STRATEG

execute

We can imagine the following Eiffel implementation of the class ADAPTATIVE

STRATEGY:

class

ADAPTATIVE STRATEGY

feature -- Basic operation

execute is
-- Execute strategy.
require
strategy not void: strategy /= Void
do
Strategye execute
end

feature { CONTROLLERY} -- Element change

set_strategy (a_strategy: like strategy) is
-- Set strategy to a_strategy.
require
a strategy not void: a_strategy /= Void
do
strategy ‘= a_strategy
state_adapters adapt
ensure
strategy set: strategy = a_strategy
end

feature { NONE?} -- Implementation

strategy: CONCRETE STRATEGY
-- Strategy to be executed

55

Aubert et al. use the
Observer pattern: the
Information Gateway
is the Subject and
Controller is the
Observer.

Strategy
adaptation on
environment
change

Possible
implementa-
tion of an
Adaptative
Strategy (on
change)

56 PREVIOUS WORK §4

state_adapter: STATE ADAPTER
-- State adapter

invariant

state_adapter not void: state_adapter /= Void

end

The adaptative variant of the Strategy pattern proposed by Aubert et al. avoids [Aubert 2001].
exposing implementation details to clients, hence better complies with the

Information Hiding principle. It also ensures a good separation of concerns by [Meyer 1997], p 25
distinguishing between the execution of the strategy and the adaptation process (the and p 31-33.
selection of the strategy to be executed).

However, it does not facilitate extensibility: it would be difficult to add new
strategies because what Aubert et al. call the controller needs to know about all
strategies and would need to be updated. Besides, the Adaptive Strategy pattern —
in whichever variant — is still only a pattern description; it does not come with any
reusable implementation.

From Visitor to Walkabout and Runabout

To apply different operations on elements of a data structure, you can simply write
dedicated features in the corresponding classes or have big conditional control
structures of the form if ... elseif ... end to select the appropriate feature depending on
the type of the given element. However, this approach is not flexible nor extendible.

The Visitor pattern solves this problem by suggesting a “double-dispatch” [Gamma 1995], p
mechanism: On the one hand, a class VISITOR and its descendants should list the 331-344.
possible operations to be performed on the data structure elements; on the other 7he Visitor pattern s
hand, the classes corresponding to the elements to be visited should provide a feature Zesc.r ibed in more

. ; ’)) o etail in section 5.2
accept taking a VISITOR as argument. This design avoids polluting the visited classes and chapter 9.
with code that does not correspond to a real property of the class (that is not part of

the underlying abstract data type). See chapter 6 of
Meyer 1997].

However, the Visitor pattern does not completely solve the extensibility
problem mentioned above. Indeed, the accept features may be tedious to write
because numerous and often similar. Besides the visited classes may belong to a
third-party library that cannot be changed.

Jens Palsberg and C. Berry Jay provided a variant of the Visifor pattern called [Palsberg 1998].
Walkabout that partially answers the problem for the Java programming language.
Their solution takes advantage of the reflection mechanism of Java to find the
appropriate visit feature and to invoke it, removing the need to write accept routines.
It is yet not perfect because it requires the type of the visited object to be exactly the
same as the type of the visit feature. But the biggest problem with this approach is
the performance overhead resulting from the use of reflection. Palsberg et al. report
that an implementation using the Walkabout is about one hundred times slower as an
implementation using the Visitor pattern, which greatly compromises the possibility
to use it in practice. Besides, using reflection is not statically type-safe in general.
(The Visitor Library presented in this thesis is type-safe.) See chapter 9.

§4.1 EXTENSIONS AND REFINEMENTS OF PATTERNS

Christian Grothoff refined the work by Palsberg et al. to provide another
variant of the Visitor pattern called Runabout. It also targets the Java programming
language and uses reflection but only to look up the appropriate visit feature. Then,
it generates verifying bytecode at run time to invoke the selected visit procedure,
which results in a big performance gain. Grothoff reports that an implementation
using the Runabout is only twice as slow as the Visitor pattern. Besides, there is no
strict requirement regarding the type of the visited objects; it does not need to be
exactly the same as the argument type of the visit feature (it may be a conformant

type).

Another approach is to use multiple dynamic dispatch. Consider a feature call
xef (a, b). In single-dispatch languages, the appropriate version of /'is selected at run
time according to the dynamic type of the target x. Multiple-dispatch languages also
take the dynamic type of the arguments a and 4 into account to choose the applicable
feature /. Most of today’s programming languages (Java, C#, C++, Eiffel, etc.) use
single-dispatch. MultiJava is an extension of Java supporting symmetric multiple
dispatch (symmetric because all arguments are considered equally when selecting a
feature at run time).

The multiple dispatch removes the need for accept features when
implementing the Visitor pattern. Say we want to provide maintenance support for
the borrowable elements (books and video recorders) of our previous example; a
possible implementation in MultiJava would be:

public class Maintenance Visitor{

/...
public void visit (Borrowable b){
throws new Error (“An abstract class cannot be instantiated.”);

}

/...
public void visit (Borrowable@Book b){
/I Special maintenance treatment for books

}

/...
public void visit (Borrowable@ VideoRecorder vr){
/I Special maintenance treatment for video recorders

}

Another advantage of multiple-dispatch compared to a traditional pattern
implementation is that it becomes easier to add new elements to an existing
hierarchy.

However, MultiJava is not the mainstream Java language. It requires
extending the language with the @ signs (like in the above example) to get the
multiple dispatch and change the compiler to support this syntax.

The Runabout solution proposed by Grothoff does not imply any change to
the compiler or to the Java virtual machine; it is a Java library. Using the Runabout
means the following: writing a class (the “visitor”) that extends the interface
Runabout and calling the feature visitAppropriate rather than visit as in a traditional
Visitor implementation. As its name suggests, visitAppropriate calls the appropriate
visit feature depending on the visited object’s dynamic type; if none is found, it calls

57

Grothoff 2003].

Because the Walk-
about and below the
Runabout target the
Java programming
language, I use the
Java convention with
class and feature
names not in italic.

Clifton 2000].

Section 5.2 shows the
corresponding tradi-
tional pattern imple-
mentation of the
Visitor using Eiffel.

Visitor with
multiple dis-
patch (writ-
ten in
MultiJava)

58

a feature visitDefault, which throws an exception. Internally, the selection of the
appropriate visit procedure is performed by a feature lookup that takes an instance of
type Class (of the Reflection library) as argument and returns a Code corresponding
to the visit feature to invoke. (The implementation relies on a hash table with items
of type Code associated with keys of type Class. These Codes are similar to C
function pointers for Java.)

The Runabout is still not perfect: it requires the visit routines to be public
(exported to any client) and to be procedures (have no return type, or more precisely
have the return type void in Java) with only one argument. The last two constraints
are the biggest limitations of the approach.

Still, the Runabout is usable in practice. Christian Grothoff applied it to a Java
bytecode analysis tool called Kacheck/J and reported encouraging results. I made a
similar case study with my componentized version of the Visifor pattern: I changed
the Gobo Eiffel Lint tool, which makes extensive use of the Visifor pattern, to use
the Visitor Library instead and did some comparative benchmarks. (Section 9.3
reports about this experience.)

Observer in Smalltalk

Smalltalk has an original approach because it supports the Observer pattern in the
kernel library. More precisely, the class Object, shared by all objects, has messages
(features) for both observer and subject objects:

update: anAspectSymbol
update: anAspectSymbol with: aParameter
update: anAspectSymbol with: aParameter from: aSender
// Receive an update message from a Model (Subject).

changed

changed: anAspectSymbol

changed: anAspectSymbol with: aParameter
// Receiver changed.

addDependent: anObject
removeDependent: anObject

dependents
// Return collection of all dependents.

. Any object is an observer because “any and every object created in the system
can respond to the messages defined by class Object”.

. A class still needs to inherit from (subclass in Smalltalk terminology) the class
Model to be a subject.

The advantage of this approach is that the pattern is supported by the kernel library
itself, meaning that any Smalltalk application can use these classes. However, it does
not solve the deficiencies of the pattern (difficulty to observe several kinds of events,
etc.). Besides, it does not bring a reusable solution. The Event Library that will be
presented in chapter 7 provides a solution to event-driven programming in general
going beyond the sole cases covered by the Observer pattern.

PREVIOUS WORK §4

Bezault 2003].

Whitney 2002] and

Goldberg 1989], p
239-243.

Observer and
Subject mes-
sages of class
Object in
Smalltalk

Goldberg 1989], p
95.

The drawbacks of the
Observer pattern are
described on page

§4.2 ASPECT IMPLEMENTATION

4.2 ASPECT IMPLEMENTATION

The interest in design patterns has grown bigger than just refining and extending
patterns. Researchers have recently tried to implement design patterns with aspects.
Even if this thesis does not deal with aspect-oriented programming, this work is
worth mentioning here for at least two reasons:

. The study by Hannemann and Kiczales, which is probably the most well-
known in the area, assesses the reusability of the implemented aspects — even
if the primary goal is not to build reusable aspects. It opens the way to
possibly interesting comparisons with the componentizability scale I
established for the object-oriented world and more particularly for the Eiffel
programming language.

. It has obviously attracted quite some interest in the design patterns
community.

The rest of this section starts by describing the work by Hannemann and Kiczales
and concludes by examining the pros and cons of using aspect-oriented
programming to implement design patterns.

Aspects in a nutshell

The idea of “aspects” is to extend objects with specific language constructs and
mechanisms to separate crosscutting concerns. For example, design patterns assign
“roles” to classes: “subject” and “observer” (or “publisher” and “subscriber”) for the
Observer pattern; each “subject” has to notify its “observers” — which all
implement a feature update — when its internal structure changes, resulting in many
similar pieces of code scattered across all classes of the application. The philosophy
of aspects is to abstract the role of those classes and modularize the corresponding
implementation to build code that is easier to use and reuse.

Many programming languages — including object-oriented languages — now
provide an extended version supporting aspects. Aspect]™ for Java is the currently
best known, but other “aspect languages” exist, including AspectR for the
interpreted scripting language Ruby, AspectS for Smalltalk etc., and there are some
experimentations around C and C++. Research projects in the area of Trusted
Components and aspects include the UMLAUT project led by Jean-Marc Jézéquel
and his team at IRISA in France.

Aspect implementation of the GoF patterns

Hannemann et al. implemented the 23 design patterns described in [Gamma 1995
in both Java and Aspect]J™ (the aspect-oriented extension for Java). They evaluated
the resulting code according to four properties:

. Locality: The pattern code is confined in aspects; it does not extend to existing
classes participating in the pattern.

. Reusability: The abstract aspect can be reused. (Programmers still need to
write concrete aspects.)

. Composition transparency: Some classes can be involved in many patterns
transparently (because the pattern code is located in an aspect and does not
touch the participant classes).

. (Un)pluggability: Adding a pattern to a system or removing a pattern from a
system is easy because participant classes do not know about their
involvement in the pattern implementation.

59

Kiczales 1997].

Hannemann 2002].

See “‘Design pattern
componentizability
classification

Gamma 1995], p
293-303.

See [AOSD-Web

about aspect-ori-
ented developments;
see [Aspect]-Web
about AspectJ™,

Ruby-Web] about
AspectR, [AspectS-
Web] about AspectsS,

AspectC-Web
about aspects in C
and in C++. See

UMLAUT-Web
about the UMLAUT
project.

The terms “abstract”
and “concrete” are
comparable to their
object-oriented coun-
terparts used about
class inheritance.

60 PREVIOUS WORK §4

Hannemann et al. mention that using Aspect] to implement the patterns sometimes
came down to an implementation change and sometimes resulted in a completely
new design structure.

The reusability classification of the aspect implementations is the most closely
related to this thesis. Even if their definition of reusability differs from the one
presented in this dissertation (they deal with aspects whereas this work deals with
object-oriented classes; they concentrate on reuse of abstract aspects whereas this
work also reuses concrete classes), it is interesting to see the similarities between
their results and mine.

First, Hannemann et al. report their experience with the Observer pattern. In
a traditional object-oriented approach, the pattern code usually spreads across
several classes, which makes it more difficult to maintain. For example, concrete
subjects are likely to have many features that look alike and call a procedure update
observers.

Using aspects solves the problem in the case of the Observer pattern through
the notion of pointcuts: one can define a set of points in the program execution
where the feature update observers needs to be called — no need to pollute the code
of all concrete subjects anymore.

Hannemann et al. categorize the Observer pattern as reusable using Aspect].
They found eleven other patterns for which “a core part of the implementation can
be abstracted into reusable code [using Aspect]]”: Composite, Command, Mediator,
Chain of Responsibility, Singleton, Prototype, Memento, Iterator, Flyweight,
Strategy, and Visitor.

Let’s compare these results with the componentizability classification that will
be presented in chapter 6:

. The pattern componentizability classification agrees with Hannemann and
Kiczales on ten of their twelve reusable patterns: only the Singlefon and
Iterator patterns resisted the componentization work. Nevertheless, lterator is
already supported to some extent by existing Eiffel libraries and extending the
Eiffel language will allow to generate skeleton classes for the Singlefon
pattern.

. The pattern componentizability classification considers the Proxy, Builder,
and State patterns as componentizable contrary to Hannemann et al. But there
is probably no fundamental disagreement here. Indeed, these patterns belong
to the category “Componentizable but not comprehensive”; because
Hannemann et al. do not have a fine-grained classification and use Yes or No
answer, their view is consistent with mine.

. The pattern componentizability classification differs from Hannemann and
Kiczales’s results on Abstract Factory and Factory Method. They could not
componentize these patterns with Aspect] whereas it was possible to build a
reusable Factory Library using Eiffel, taking advantage of genericity and
agents.

. The pattern componentizability classification agrees on Adapter, Decorator,
Template Method, Bridge, Interpreter, and Facade not to be componentizable.

Hannemann et al. explain their results (reusability vs. non-reusability) by the nature
of design patterns. They distinguish between patterns with:

. Defining roles: Classes participating in the pattern have no functionality
outside the pattern.

. Superimposing roles: Participating classes do have functionality outside the
pattern.

For more informa-
tion about Aspect-
Oriented program-
ming and AspectJ in
particular, see [Kic-
zales 1997] and
AspectJ-Web].

Hannemann 2002],
p 161 and 167.

See “Definition:
Componentization”
page 26.

See chapter §.

Dubois 1999] and
chapter 25 of [Meyer
200?b].

§4.2 ASPECT IMPLEMENTATION

They assert that most reusability improvements concern patterns of the second
category, where the superimposed pattern behavior can be moved into an
independent reusable module.

Strengths and weaknesses

The main motivation for developing aspect-oriented implementations of the (object-
oriented) patterns — being those of Design Patterns or others — is that design
patterns usually imply scattering code across many classes, which is typically
addressed by techniques of advanced separation of concerns and aspect-oriented
programming in particular. The study by Hannemann et al. is not the only one; there
is a lot of active research in this area. On the other hand, it is still very much a
research work. For the moment, aspects are not used in industrial projects (or at most
in a few pilot experiments) whereas the work presented in this dissertation is directly
applicable to existing real-world applications.

Even if the componentization of several patterns relies on agents, which are Eiffel-
specific, it is possible to approximate them in other languages with reflection.

Before moving on to the componentization work, let’s say a few words about
the strengths and weaknesses of implementing design patterns with aspects. The
advantages usually put forward are:

. A reduction of the number of pattern’s participants: typically one aspect
instead of several classes.

. A better traceability of the code: it becomes easier to identify the patterns in
a system, thus facilitates design documentation.

. A better localization of the pattern code, hence better readability, adaptability,
and extensibility — of both the pattern implementation and of the classes on
which the pattern is applied.

. A better reusability of the pattern code; for example Hannemann et al. report
that 52% of the GoF patterns are reusable (meaning a core part of the design
pattern can be written as a reusable abstract aspect).

However, aspect-oriented versions of design patterns depend on the aspect language
chosen to implement the pattern. For example, [Hachani 2003] mentions that
translating code from Aspect) to HyperlJ is not trivial. But this is also true of object-
oriented implementations. Chapter 22 will explain that the componentization work
depends to some extent on the chosen programming language, in my case Eiffel.

The main concern I have with a pattern implementation using aspects is that
it shifts the problem without solving it. An aspect implementation typically
introduces many small aspects where an object-oriented implementation introduces
several classes. Hence a status quo. I do not question that using aspects can help
identifying better where patterns are located. But it does not help understanding
better how a system works as a whole. Indeed, the programmer needs to know about
both classes and aspects, and the relations between them, which may require some
efforts to understand and to maintain.

The componentization work presented in this thesis relies on pure object-
oriented mechanisms and the outcomes (pattern componentizability classification,
Pattern Library, and Pattern Wizard) are directly usable in real-world software
development, being in Eiffel or in other programming languages.

61

For example,

Hachani 2003
describes similar
work.

For example, in

Hannemann 2002
and [Hachani 2003].

See the previous sec-
tion about ““Aspect
implementation of the

GoF patterns”’, page
59.

Hachani 2003

describes this weak-
ness of AOP imple-

mentations of design
patterns very clearly.

62 PREVIOUS WORK §4

4.3 LANGUAGE SUPPORT

In [Chambers 2000], Craig Chambers, Bill Harris, and John Vlissides confront their
opinions about the support of design patterns in tools and programming languages.
It starts from an established fact: “[Design patterns] have proved so useful that some
have called for their promotion to programming language features”.

The problem is to decide which design patterns merit a direct support by the
language, and which do not deserve it, to avoid what Chambers et al. call the
“kitchen sink problem”. This is exactly the spirit of Eiffel: a new functionality should
add a significant power of expressiveness to the language at low cost on the overall
language complexity otherwise it should be rejected as “featurism”. Meyer likes to
talk about keeping a “high signal to noise ratio”.

Chambers has a somewhat extreme view, thinking that tools are only a step
towards a full language integration: “Clearly, languages lacking the appropriate
mechanisms benefit from tool support, but this should be viewed as an undesirable
intermediate stage in language development, to be replaced in the future by true
language support without tools requirements”.

I do not think that adding a new language construct for each particular pattern
is the right way to go. I would rather consider to add a few general language
mechanisms that enable implementing the patterns and cover other situations too.
Singleton is a typical example. The pattern is implementable with frozen classes
(classes from which one cannot inherit). But frozen classes are useful beyond just
writing singletons. For example, the implementation of an Eiffel compiler may
require its basic classes such as INTEGER to be declared as frozen.

However, some design patterns can simply not be transformed into
programming language constructs. The pattern componentizability classification that
will be presented in chapter 6 has a category “1.4 Possible component” for patterns
that would become componentizable thanks to a language extension but this
category is empty for the patterns described in Design Patterns, at least when
considering object-oriented languages.

Chambers 2000], p
277.

Meyer 2002].

Chambers 2000], p
285.

‘Design pattern
componentizability
classification
(filled) ", page 90.

My opinion comes closer to the one of Vlissides who says: “While several of [Chambers 2000], p

the more fundamental design patterns may be transliterated easily into programming
language constructs, many others cannot - or at least should not”.

Componentization seems like an approach on which everybody could agree (a
library does not make the programming language more complicated but it improves
the life of the programmer) and tools like the Pattern Wizard complement it
beneficially.

4.4 CHAPTER SUMMARY

. Design patterns have attracted considerable attention since the mid-nineties;
researchers started to develop refinements and extensions of the patterns

described by [Gamma 1995]:

. document choices that programmers must make when implementing the
patterns in a programming language; it is the case of the study by
Dyson et al. that reports seven State pattern variants.

. provide answers to more domain-specific problems; it is the case of the
Adaptative Strategy described by Aubert et al.

. solve deficiencies of the original pattern; it is the case of the Walkabout
and the Runabout that try to improve the Visitor pattern.

284.

See chapter 21, page
323.

Dyson 1996].

Aubert 2001].

Palsberg 1998].
Grothoff 2003].

§4.4 CHAPTER SUMMARY

. Many studies have also been done regarding the implementation of design
patterns using aspect-oriented programming.

. Hannemann et al. reported that 52% of the patterns in Design Patterns are
reusable when using Aspect] (the aspect-oriented extension for Java); their
classification is close to the one presented in this thesis, even if not as much
fine-grained.

. Using aspects has strengths — better code localization, better traceability —
but also weaknesses: it may become difficult to master a whole system —
really understand what’s going on — where many small aspects are woven
into several classes.

. Supporting design patterns directly in the programming language is not
desirable in my opinion, unless this language construct is general enough to
be useful in many different cases and adds significant power of expressiveness
to the programming language (like frozen classes for the Singleton pattern).

63

For example, [Han-
nemann 2002] and
Hachani 2003].

Aspect]-Web].

See chapter 6, page
85.

64

PREVIOUS WORK §4

S

Turning patterns into
components: A preview

The previous chapters gave an overview of the context and scope of this thesis. It is
now time to move to the core of this work: the componentization of design patterns.

This chapter presents three examples: first, an already componentized pattern
(the Prototype), which is built in the Eiffel Kernel Library; second, a successful
transformation of a pattern (the Visifor) into a reusable component; third, a fruitless
attempt at componentizing a pattern (the Decorator), which will be characterized as
non-componentizable.

5.1 ABUILT-IN PATTERN: PROTOTYPE

In Eiffel, one pattern described in Design Patterns is closely connected to the
language and is directly supported by the Kernel Library: it is the Prototype pattern.
Let’s explain its intent and use the library example already presented in the previous
chapter to show how to use the Eiffel support for prototypes in practice.

Pattern description

The Prototype pattern “specif{ies] the kinds of objects to create using a prototypical
instance, and [explains how to] create new objects by copying this prototype.”

The Prototype pattern is one of the five creational design patterns described
by [Gamma 1995], whose purpose is to bring flexibility into the instantiation
process. Using the Prototype pattern means having just one “seed” to create new
objects: the prototypical instance; other objects are created by cloning this prototype.

We could imagine having a class PROTOTYPE with a feature clone. Typical
CLIENT applications would hold an instance of class PROTOTYPE and clone it to
create new objects. But we don’t need to implement this machinery; it is already
available in the Eiffel Kernel Library. Indeed, a feature clone and a variant deep
clone (for a recursive clone on each field of an object) are provided by the universal
class ANY, from which any Eiffel class inherits (explicitly or implicitly).

Therefore all Eiffel objects have the possibility to clone themselves; they are
all “prototypes”. No need for a special design. If the version of clone and deep clone
inherited from 4ANY does not satisfy the needs of a particular class, Eiffel provides
the ability to redefine their implementation to do something more specialized (by
redefining the feature copy inherited from ANY).

See ““Definition:
Componentization”
page 26.

See next chapter:

‘Pattern componen-
tizability classifica-
tion”, 6, page §5.

See section 4.1.

Gamma 1995], p
117.

ELKS 1995].

66 TURNING PATTERNS INTO COMPONENTS: A PREVIEW §5

In Java, a class must implement the interface Cloneable defining a method
clone to have the right to call the method clone defined in class Object. C# has the
same policy with an interface ICloneable defining a method Clone and the class Object
with a method MemberwiseClone providing a default shallow cloning
implementation.

The next version of Eiffel is likely to change the export status of the cloning
features (clone, deep clone, copy, deep copy, etc.) in ANY to make them non-publicly
available (export them to NONE) and enable — among other things — writing
singletons in Eiffel. Classes whose instances should be clonable simply need to
broaden the export status of those cloning features.

Book library example

Let’s illustrate how to use Eiffel “prototypes” on the library example presented in
previous chapters.

The term “library” in “library example” means the concrete location where you can

borrow books and other items. It has nothing to do with reusable software libraries.

Suppose we want to create new books and video recorders using prototypes.
We introduce a class LIBRARY SUPPORT that contains a prototypical instance of
BOOK (book_prototype) and one of VIDEO RECORDER (video_recorder_prototype).
Here is a possible implementation:

class

LIBRARY SUPPORT
create

make
feature { NONE?} -- Initialization

make (a_book: like book prototype;

a_video_recorder: like video recorder prototype) is

-- Set book_prototype to a_book.

-- Set video_recorder_prototype to a_video recorder.
require

a_book not void: a_book /= Void

a video recorder not void: a_video recorder I= Void
do

book prototype == a_book

video_recorder_prototype = a_video_recorder
ensure

book prototype set: book prototype = a_book

video_recorder prototype set:

video_recorder_prototype = a_video_recorder

end

feature -- Duplication

new_video_recorder: VIDEO _RECORDER is
-- New video recorder from video_recorder_prototype
do
Result := clone (video_recorder_prototype)
Result o default create
ensure
new_video recorder not void: Result /= Void
end

Meyer 200?b].

See chapter 18 for
details about the

implementation of
singletons in Eiffel.

Class using
prototypes to
create books
and video
recorders

§5.1 A BUILT-IN PATTERN: PROTOTYPE

new_book (a_title, some_authors: STRING): BOOK is
-- New book created from book_prototype
-- replacing title with a_title and authors with some_authors
require
a_title not void: a_title /= Void
a title not empty: not a_title«is empty
do
Result := clone (book_prototype)
Result e make (a_title, some_authors)
ensure
new_book not void: Result /= Void
title set: Result « title = a_title
authors_set: Result e authors = some_authors
end

feature { NONE?} -- Implementation

book_prototype: BOOK
-- Book used to create other books

video_recorder prototype: VIDEO RECORDER
-- Video recorder used to create other video recorders

invariant

book prototype not void: book prototype /= Void
video recorder prototype not void: video recorder prototype /= Void

end

The procedure make initializes the two attributes book prototype and video recorder
prototype with the instances given as argument and ensures the class invariant.

The function new_book creates new BOOK objects in two steps: first, it clones
the book prototype; then, it reinitializes the new instances by calling the creation
procedure make of class BOOK with the values corresponding to that particular book:
a_title and some_authors. Here we assume a class BOOK with a creation procedure
make that has two arguments, the first one corresponding to the book’s title, the
second one to the book’s authors. For simplicity, we suppose the two arguments are
of type STRING. We also assume that the authors of a BOOK may be unknown (in case
of anonymous works); hence no precondition some_authors /= Void in feature make.

The function new video recorder follows the same scheme as new book: first
cloning the video recorder prototype, then reinitializing the object by calling the
creation procedure of class VIDEO RECORDER. We assume that class VIDEO
RECORDER has the default creation procedure default create (inherited from ANY,
maybe redefined) with no argument.

As you can see, there is no need to define the clone feature. Class LIBRARY
SUPPORT, like any Eiffel class, inherits it from ANY.

One not-so-nice point of using prototypes is this business of having to
reinitialize newly created objects. One can avoid it by using the Factory Library
described in chapter 8. In our example, the class LIBRARY SUPPORT, which could
be renamed as BORROWABLE FACTORY, would define a book factory of type
FACTORY [BOOK] and a video_recorder_factory of type FACTORY [VIDEO_
RECORDER] and use them in features new_book and new_video_recorder. This
example will be used again after introducing the Factory Library.

67

68
5.2 ACOMPONENTIZABLE PATTERN: VISITOR

The Visitor pattern solves a common problem in software design: how to perform
different — usually unrelated — operations on many objects when these operations
depend on the objects’ dynamic type. For example in compiler construction, you
want to analyze your abstract syntax tree in many ways and traverse each node to
check types, generate code, etc.

This section presents a small example explaining the kind of situations where
the Visitor pattern is useful. Then it describes the drawbacks of the approach and
describes my solution: the Visitor Library.

Pattern description

Let’s come back to the book library example used in the previous chapter. The
library has a set of BORROWABLE elements, including BOOKs and VIDEO _
RECORDERSs. The users can borrow and return such items; but library employees may
also want to apply different operations on them, like maintain — to ensure that
borrowable items are always of impeccable quality — or display — to display the
list of available items on their computer screen. Besides, maintaining a book and
maintaining a video recorder are not the same thing; also, displaying books and
displaying video recorders are different. Thus, classes BOOK and VIDEO_
RECORDER need their own version of maintain and display; for example:

class
BOOK

inherit
BORROWABLE

feature -- Basic operations

maintain is
-- Maintain book.
do
check_binding
if damaged then repair end
end
display is
-- Display book properties.
do
print (author)
print (title)
end
end
and
class
VIDEO RECORDER
inherit

BORROWABLE

TURNING PATTERNS INTO COMPONENTS: A PREVIEW §5

See also chapter 9 for
a more detailed pre-
sentation of the Visi-
tor Library (including
approaches that
yielded to the final
design).

See ““‘Seven State
variants”, page 47.

Sketch of a
class BOOK

Sketch of a
class

VIDEO _
RECORDER

§5.2 A COMPONENTIZABLE PATTERN: VISITOR

feature -- Basic operations
maintain is
-- Maintain video recorder.
do
check_reading heads
if damaged then send _to reparation end
end
display is
-- Display video recorder properties.
do
print (reading_heads count)
print (is_pal_secam)
end
end

Class BOOK may have many such descendants (for example DICTIONARY,
TEXTBOOK, COMICS, etc.), each redefining maintain and display. Here the question
is to know whether it is better to extend the class BORROWABLE with features
maintain and display (and redefine them in the descendants if needed) or to put these
new functionalities in an external class.

This choice corresponds to the functional vs. object decomposition described
by Meyer. Object decomposition is appropriate in most cases: it is better to add the
functionalities in the class to have a more stable and extendible system in the end.
Still, functional decomposition is useful in some cases. The first case is when these
new properties do not correspond to the abstract data type on which the class is
based. Another case is when the class belongs to a third-party library (the source
code may not be available or we may not want to change it). The Visitor pattern
provides a solution for cases of the second category, i.e. when it is desirable to
externalize the new functionalities.

In the previous example, we probably do not want to have services such as
maintain and display cooperate with true properties of the class like borrow and return.
The purpose of the Visitor pattern is precisely to avoid putting into classes code that
is not really a property of the class and to ensure that the software structure remains
extendible (easy to add new operations) and maintainable. The idea is to put those
extra features into VISITOR classes. In our example, we would have two classes:
MAINTENANCE VISITOR and DISPLAY VISITOR, each containing as many visit *
features as there are descendants of BORROWABLE (visit_book, visit_dictionary, visit_
video_recorder, etc.). The VISITOR features will follow the hierarchy of
BORROWABLE elements.

Here is a possible implementation of a class MAINTENANCE VISITOR:

class

MAINTENANCE _VISITOR
inherit

VISITOR

feature -- Basic operations

69

Meyer 19971, p 103-
114.

The top of the hierar-
chy will be a deferred
class VISITOR declar-
ingthevisit_*features
to be effected in
descendants.

Maintenance
visitor class

70 TURNING PATTERNS INTO COMPONENTS: A PREVIEW §5
visit_book (a_book: BOOK) is
-- Maintain a_book. The features of class
do MAINTENANCE _VISI-
I .. TOR show no con-
a_bookecheck binding iracts. However, they
if a_book «damaged then a_book « repair end have contracts
end expressed in the par-
ent class VISITOR.
For example, visit
visit_video recorder (a_recorder: VIDEO_RECORDER) is book Vequiresb ﬂullct the
. argument a_book is
-- Maintain a_recorder. ot Void.
do
a_recorderes check reading heads
if a_recordersdamaged then
a_recorderssend to_reparation
end
end
end

The “visited” (BORROWABLE) classes need to declare a feature accept that takes a
VISITOR as argument and calls the appropriate visitor feature. For example, a class
BOOK implementing the Visitor pattern would call the feature visit_book like this:

class
BOOK
i:e;ature -- Visitor pattern
accept (a_visitor: VISITOR) is

-- Accept visitor a_visitor and
-- call the specialized visit_* feature applicable to books.

require

a_visitor not void: a_visitor /= Void
do

a_visitors visit_book (Current)
end

end

The advantage of the Visifor pattern is that it makes it easy to add new operations
without changing the data structure (here the BORROWABLE elements). It “help[s] us
maintain the Open-Closed Principle”.

On the other hand, the Visitor pattern makes it hard to add new element
classes because it requires changing all VISITOR classes (to add new visit_* features).

It also quickly becomes tedious to write an accepr feature for all element
classes if there are many (because they are likely to be similar). Palsberg, Jay, and
Grothoff already proposed alternatives to the Visifor pattern that endeavor to solve
this problem. The componentization effort addresses this issue. Let’s see how.

New approach

Following the works about the Walkabout and Runabout, the first idea was to exploit
the limited reflection capabilities of ISE Eiffel and use the class INTERNAL with a
list of pairs with actions (represented as agents) associated to the corresponding type
names.

Class BOOK
implement-
ing the Visitor
pattern

Martin 2002c].
Meyer 1997], p 57-
61.

Gamma 1995], p
336.

See “From Visitor to
Walkabout and Run-

about”, page 56.

Palsberg 1998] and
Grothoff 2003].

§5.2 A COMPONENTIZABLE PATTERN: VISITOR

An agent is a routine object ready to be called; it may be viewed as an evolved form of
typed function pointer. Agents are not defined in the current edition of Eiffel: The
Language (ETL). They were introduced only in 1999. The draft version of ETL3
describing the next version of Eiffel includes a chapter on agents. Dubois et al. also
published a paper about the agent mechanism.

But storing type names was not type-safe: if the user of the library misspells
a type name (for example “STING” instead of “STRING”), there would not be any
compilation error and yet the program would not work. Therefore the final version
of the library only keeps the list of actions and requires the user to register actions
in the appropriate order (descendants first, parents after). At traversal time, it relies
on the feature valid operands from class ROUTINE to see whether the action can be
applied to the visited element (instead of using the type name). This approach even
ensures that the executed routine has the appropriate signature.

Chapter 9 explains in full detail the genesis of the Visitor Library.

Visitor Library

Step by step, a reusable component that provides the same facilities as the Visitor
pattern without the pain of declaring accept features in all visited element classes
took shape. The Visitor Library is a componentized version of the Visifor pattern. It
relies on genericity (it is composed of one generic class VISITOR [G]) and makes
extensive use of agents.

The interface of class VISITOR [G] is given below; it includes the signature,
header comments, and contracts of all publicly exported features and the class
invariant.

class interface
VISITOR [(]
create
make
feature { NONE?} -- Initialization

make
-- Initialize actions.

feature -- Visitor
visit (an_element: ()
-- Visit an_element. (Select the appropriate action
-- depending on an_element.)
require
an_element not void: an_element /= Void

feature -- Access

actions: LIST [PROCEDURE [ANY, TUPLE [G]]]
-- Actions to be performed depending on the element

feature -- Element change

71

ETL corresponds to
Meyer 1992] and
ETL3 to [Meyer
200?b]. Agents are
described in chapter
25 of ETL3 and in

Dubois 1999].

It may reveal that the
developer is a fan of
Sting but it would not
make the program
work!

The class ROUTINE
was introduced into

EiffelBase, [Eiffel-
Base-Web], with the

agent mechanism.

Dubois 1999] and
chapter 25 of [Meyer
200?b].

The full class imple-
mentation appears in
chapter 9.

Interface of
the Visitor
Library

72 TURNING PATTERNS INTO COMPONENTS: A PREVIEW §5

extend (an_action: PROCEDURE [ANY, TUPLE [(G]])
-- Extend actions with an_action.
require
an_action_not void: an_action /= Void
ensure
one more: actions « count = old actions « count + 1
inserted: actions « last = an_action

append (some_actions: ARRAY [PROCEDURE [ANY, TUPLE [G]1])
require
some_actions not void: some_actions /= Void
no void action: net some_actions « has (Void)

invariant

actions_not void: actions /= Void
no void action: not actions ¢ has (Void)

end

-- Append actions in some_actions to the end of the actions list.

With this component implementing the pattern, an application that needs to apply the

pattern will simply do the following:

. Declare an attribute visitor of type VISITOR [SOME_TYPE].

. Create visitor and initialize it (typically in the creation procedure of the class).

. Call visit on the visitor with the visited element (obtained through a list

traversal for example).

Let’s apply this scheme to the book library example introduced at the beginning of

this chapter; we simply need to:

. Create a class LIBRARY that has a list of BORROWABLE elements and a feature

to maintain the borrowables depending on their dynamic type.

. Declare an attribute maintenance_visitor of type VISITOR [BORROWABLE] that
we create and initialize in the creation routine make (we fill it with all

applicable actions).

. Implement the feature maintain by simply traversing the linked list of
borrowables and call visit with the visited element on the maintenance visitor.

(No need to pollute all BORROWABLE classes with accept features.)

class

LIBRARY
create

make

feature { NONE?} -- Initialization

Typical exam-
ple use of the
Visitor Library
to maintain a
list of borrow-
able items

§5.2 A COMPONENTIZABLE PATTERN: VISITOR

make is
-- Initialize borrowables.
do
create borrowables « make
create maintenance visitors make
maintenance_Visitors append (<<
agent maintain_dictionary,
agent maintain_textbook,
agent maintain_comics,
agent maintain_book,
agent maintain_video_recorder
>>)
end

feature -- Access

borrowables: LINKED LIST [BORROWABLE]
-- [tems that users can borrow

feature -- Basic operation

maintain is
-- Maintain all borrowable items.

do
from borrowables « start until borrowables « after loop
maintenance_visitore visit (borrowables « item)
borrowables « forth
end
end

feature { NONE?} -- Implementation

maintenance_visitor: VISITOR [BORROWABLE]
maintain_dictionary (a_dictionary: DICTIONARY) is ...
maintain_textbook (a_textbook: TEXTBOOK) is ...
maintain_comics (a_comics: COMICS) is ...

maintain_book (a_book: BOOK) is ...

maintain_video_recorder (a_recorder: VIDEO RECORDER)is ...

invariant

borrowables not void: borrowables /= Void
maintenance visitor not void: maintenance visitor /= Void

end

In a traditional implementation of the Visifor pattern, the routines maintain_* would
be in a descendant of class VISITOR. Using the Visitor Library implies a different
design and tends to yield bigger application classes. Chapter 9 discusses this

drawback.

The above example is still quite simple. I made a more extensive case study
to assess the applicability and usefulness of the Visitor Library in a bigger real-world

73

The notion of agents
is explained in
appendix A, p 389.

system: the Gobo Eiffel Lint tool. The results of this experiment are presented in [Bezault 2003].

section 9.3.

74 TURNING PATTERNS INTO COMPONENTS: A PREVIEW §5

5.3 ANON-COMPONENTIZABLE PATTERN: DECORATOR

The Visitor example was a successful componentization story for two reasons:

. It was possible to build a reusable component out of the design pattern’s book
description.
. The resulted component solved a core drawback of the original pattern (the

need for accept features).

But componentization may also be elusive. It is the case of the Decorator pattern.
After presenting the pattern’s intent, this section describes (fruitless)
componentization efforts.

Pattern description

The goal of the Decorator pattern is to add some functionalities, known as
“decorations”, dynamically to a particular object, not to all instances of a class.

To use the book library example again, we may like to decorate one particular
book with a special binding, not all books of the series. Another example: we may
want to equip one car with automatic cruise control to satisfy the special need of one
customer; we don’t want to tell the car factory to change the whole production line.
Hence the idea of a Decorator that encloses the original object in another object to
add this extra functionality.

Inheritance would not provide such flexibility for at least two reasons. First,
adding an extra operation or an extra attribute to a class means that all instances of
the class will have this decoration. The client cannot control when to decorate a
particular component. Second, using inheritance could lead to a combinatorial
explosion of classes if one wants to compose several “decorations”. With
Decorators, it is easy to compose the decorations recursively, opening the way to an
unlimited number of additional functionalities.

How can we implement the Decorator pattern? Design Patterns gives some
hints about how to write a “decorator” in C++. Here is a possible implementation of
the pattern in Eiffel. The corresponding class diagram is given below:

component

DECORATED
COMPONENT

additional
attribute

+
DECORATED
COMPONENT A

+
DECORATED
COMPONENT B

Gamma 1995], p
175-184.

The BON notation
used in this diagram
is explained in
appendix A, p 394.

Class dia-
gram of a typ-
ical Eiffel
system using
the Decora-
tor pattern

§5.3 A NON-COMPONENTIZABLE PATTERN: DECORATOR

The deferred class COMPONENT describes the services offered to the clients. Any
component — decorated (like DECORATED COMPONENT) or not (like MY _
COMPONENT) — will have to comply with this interface. Thus, the “decoration” is
transparent to clients: because a DECORATED COMPONENT is itself a COMPONENT,
clients can use it wherever they can use a COMPONENT. (A Decorator may be
viewed as a particular kind of Composite with only one component, DECORATED _
COMPONENT, although the pattern’s intent is somewhat different: the composition
part is just a means, not the goal per se.)

Readers who are familiar with design patterns may have taken notice of the notion of
compatible interfaces and thought of the Adapter pattern (see section 16.2, page 259).
Note the difference between a Decorator and an Adapter: the Decorator only adds extra
behavior to an object (it does not change its interface) whereas an Adapter will
completely change the object’s interface (to make it compatible with another one).

There are two kinds of “decoration”: additional attributes and additional
behaviors to existing features. Hence two classes DECORATED COMPONENT A and
DECORATED COMPONENT B in the class diagram on previous page. Class
DECORATED _COMPONENT A has an additional _attribute of SOME TYPE, class
DECORATED COMPONENT B redefines the procedure do something inherited from
COMPONENT to add extra behavior. (If one needs only one extra functionality, it is
not useful to have the common ancestor class DECORATED COMPONENT.)

Let’s take the example of a graphical window, which can display itself. (The
feature do_something would be renamed as display.) Suppose we want a decorated
window with a border. Feature display would be redefined in the descendant class,
say DECORATED WINDOW, to display the border of the window too. This is the case
of a decorated component with additional behavior.

Now suppose we want to display a window with a border of a certain color.
We would extend the class with an attribute color and use it in the display feature to
use that color when displaying the window’s border. This is the case of a decorated
component with additional attribute. Furthermore, the color could be changed
(calling an exported feature set color) if we have direct access to the DECORATED _
WINDOW (as opposed to polymorphically through a WINDOW).

How does it work in practice? The DECORATED COMPONENT forwards the
requests to the original COMPONENT (like a Proxy; see section 13.2, page 217) but
may perform additional operations before or after forwarding the call (for example,
drawing a border on a GUI text view).

The interface of a COMPONENT is quite simple; the class text is given below:

deferred class
COMPONENT
feature -- Basic operation
do_something is
-- Perform an operation of interest for this particular kind
-- of component.
deferred

end

end

A COMPONENT basically offers a service to clients: this service could be provided
by several features. For simplicity, the above example includes only one procedure
do_something.

75

See chapter “Com-

positepattern”, 10.1
page 147.

This additional
behavior may be the
call to another fea-
ture of the class, if it
is a newly introduced
feature, it does not
need to be visible to
clients.

Example
component
class

76 TURNING PATTERNS INTO COMPONENTS: A PREVIEW §5

The class MY COMPONENT is an effective class providing a certain
implementation for the feature do_something. The class text does not appear here; it
is available for download from [Arnout-Web].

Here is the text of class DECORATED COMPONENT:

deferred class

DECORATED _COMPONENT
inherit

COMPONENT
feature { NONE} -- Initialization

make (a_component: like component) is
-- Set component to a_component.
require
a_component not void: a_component /= Void
do
component := a_component
ensure
component_set: component = a_component
end

feature -- Basic operation
do_something is
-- Do something.
do
component e«do_something
end

feature {NONE?} -- Implementation

component. COMPONENT
-- Component that will be used for the "decoration"

invariant
component_not_void: component /= Void

end

The feature make (creation procedure of the effective descendants of DECORATED
COMPONENT) takes a COMPONENT as argument; it is the object to which any call
to do_something will be forwarded. (This component may already be decorated in
case we want to combine different decorations.)

The “decoration” may be an additional_attribute:

class
DECORATED _COMPONENT A
inherit

DECORATED COMPONENT

Example of a
decorated
component

Component
“decorated”
with an addi-
tional
attribute

§5.3 A NON-COMPONENTIZABLE PATTERN: DECORATOR

create

make,
make_with_attribute

feature { NONE?} -- Initialization

make_with_attribute (a_component: like component;

an_attribute: like additional attribute) is

-- Set component to a_component.

-- Set additional_attribute to an_attribute.
require

a_component not void: a_component /= Void

an_attribute not void: an_attribute = Void
do

make (a_component)

additional _attribute := an_attribute
ensure

component_set: component = a_component

attribute_set: additional _attribute = an_attribute
end

feature -- Access

additional attribute: SOME TYPE
-- Additional attribute

end

or a redefinition of do_something to do_something more:

class
DECORATED COMPONENT B
inherit

DECORATED COMPONENT
redefine
do_something
end

create
make
feature -- Basic operation

do_something is
-- Do something.
do
Precursor { DECORATED COMPONENT?}

do_something _more
end

feature { NONE?} -- Implementation

do_something _more is
-- Do something more.
do
-- Do something more than just do_something.
end

end

77

Component
“decorated”
with some
additional
behavior

The notion of Precur-
sor is explained in
appendix A with the
notion of inheritance,
starting on page 383.

78 TURNING PATTERNS INTO COMPONENTS: A PREVIEW §5

The following class text shows typical client use of “decorated” objects. It creates a
non-decorated component and uses it. Then, it creates decorated components and
uses them in the same way (call to an implementation routine use_component). This
is possible because a DECORATED COMPONENT is also a COMPONENT (thanks to
inheritance) and has the same interface as a “pure” COMPONENT; in particular, it
exposes the procedure do _something (used in feature use component), even if the
actual implementation may differ.

class

CLIENT
create

make

feature { NONE} -- Initialization

make is

-- [llustrate how to create and use decorated objects.

local
c: MY COMPONENT
a: DECORATED COMPONENT A
b: DECORATED COMPONENT B Client using

do decorated and
create ¢ non-deco-
use_component (c) rated compo-
create a o make_with_attribute (c, create{SOME TYPFE?}) nents
use_component (a)
create b« make (c)
use_component (b)

end

feature { NONE} -- Implementation

use_component (a_component. COMPONENT) is
-- Use a_component.

require

a_component not void: a_component /= Void
do

a_component «do_something
end

end

At this point, it should be pretty clear of what the Decorator pattern is for. Let’s try
to go beyond the stage of a pattern and transform it into a reusable component.

Fruitless attempts at componentizability

This section reviews all approaches considered to componentize the Decorator pattern.

An attractive but invalid scheme

The first considered technique was genericity to avoid code duplication between
different decorated components. It would be nice to have just one generic class
DECORATED COMPONENT [G] and several generic derivations: DECORATED _
COMPONENT [BOOK] representing a decorated book, DECORATED COMPONENT
[VIDEO _RECORDER] representing a decorated video recorder, DECORATED _
COMPONENT [TEXTBOOK] representing a decorated textbook, and so on.

§5.3 A NON-COMPONENTIZABLE PATTERN: DECORATOR 79

We have seen that a DECORATED COMPONENT needs to be a COMPONENT
to enable clients to use one variant or the other transparently, yielding the following
code:

class
DECORATED COMPONENT [G —> COMPONENT)]

inherit

feature { NONE} -- Initialization

make (a_component: like component) is
-- Set component to a_component.

require
a_component not void: a_component /= Void Decorated
do component
component := a_component using
ensure genericity
component_set: component = a_component
end
(WARNING:
feature -- Basic operation This code is

invalid; it
do_something is d{)es not com-
-- Do something. plle.)
do
component «do_something
end

feature {NONE?} -- Implementation

component:
-- Component that will be used for the "decoration"

invariant

component not void: component /= Void

end

Such code looks nice and would solve our problem, but it is simply illegal in Eiffel.
It would require the language to be interpreted rather than compiled or have a
preprocessor. A technique such as C++ templates would also be possible. Indeed, the
Eiffel compiler needs to know all parents of a class (to detect name clashes, etc.) to
be able to compile it, meaning that here it would need to know all possible actual
generic parameters.

Let’s try to find a way to have a DECORATED COMPONENT “be” a
COMPONENT while keeping genericity. Conversion sounds like a good candidate.

A valid but useless approach

If there is no way to be a COMPONENT in the sense of being a descendant of class
COMPONENT, it may be possible to become a COMPONENT or more precisely to
convert to COMPONENT.

80

There is no automatic type conversion mechanism in current Eiffel. However,
it will exist in the next version of the language. Hence, it will become possible to
add a COMPLEX to an INTEGER as commonly done in mathematics.

The mechanism proposed in ETL3 relies on one extra keyword — convert —
and allows conversion from and fo a type. The syntax is the following:

class

MY CLASS
create

from_type 1
convert

from_type 1 ({TYPE 1})
to_type 2: {TYPE 2}

feature -- Conversion

from_type I (arg: TYPE 1)is
-- Build from arg.
do
-- Something
end

to_type 2: TYPE 2is
-- Instance of 7YPE 2 built from Current object
do
-- Something
end

end

Then, it is allowed to write:

my_attribute: MY TYPE
attribute_1: TYPE 1
attribute_2: TYPE 2

my_attribute + attribute 1
-- Equivalent to:
-- my_attribute + create {MY_TYPE} « from_type 1 (attribute 1)

attribute_2 + my_attribute
-- Equivalent to:
-- attribute 2 + my_attributesto_type 2

Note: It is not permitted to have a type 4 convert from B and B convert to 4.

Would it be possible to have a generic class DECORATED COMPONENT [G] with a
conversion procedure o g defined as follows?

deferred class
DECORATED COMPONENT [(/]

convert

to_g: {G}

TURNING PATTERNS INTO COMPONENTS: A PREVIEW §5

See chapter 14 of
Meyer 200?b] about

conformance rules,
in particular convert-

ibility.

Syntax of the
automatic
type conver-
sion mecha-
nism to be
added to

Eiffel

Type conver-
sion examples

Generic deco-
rated compo-
nent using
conversion

§5.3 A NON-COMPONENTIZABLE PATTERN: DECORATOR

feature { NONE} -- Initialization

make (a_component: like component; a_function: like convert_function) is

-- Set component to a_component.
-- Set convert_function to a_function.
require
a_component not void: a_component /= Void
a_function not void: a_function /= Void
do
component := a_component
convert _function := a_function
ensure
component_set: component = a_component
convert function_ set: convert function = a_function
end

feature -- Access

component.
-- Component to be decorated

convert_function: FUNCTION [ANY, TUPLE, (7]
-- Function to convert the decorated component
-- into a “normal” component

feature -- Decoration

decoration: ANY
-- Component decoration

decorate is deferred end
-- Decorate component.

feature -- Conversion

to_g: G is
-- Component obtained from decorated component
do
convert_function «call ([])
Result .= convert_function «last_result
ensure
component not void: Result /= Void
end

invariant

component not void: component /= Void
convert_function _not_void: convert_function /= Void

end

This code should compile with a compiler supporting the next version of Eiffel. But

it does not yet give a reusable component.

Let’s consider an object of type DECORATED COMPONENT [BOOK]. If a
client, say LIBRARY APPLICATION, wants to use it in a procedure expecting a BOOK
argument, say add_book, the instance will be converted to an instance of type BOOK.
But then, it is not the same object that we add to the library anymore, meaning the

decoration is lost.

81

(WARNING:
This is not a
proper solu-
tion.)

82

We could imagine having the conversion feature fo_g return an instance of
DECORATED BOOK inheriting from BOOK (to work on the same object). But then
we don’t need the class DECORATED COMPONENT [BOOK] anymore; we could use
DECORATED BOOK directly, meaning we are back to the Decorator pattern.
Therefore, type conversion does not help us build a reusable component. Let’s try
another approach.

What about aspects?

“Decorating” an object with additional attributes or extra behavior sounds close to
the idea of “aspect” introduced by Aspect-Oriented Programming (AOP). Eiffel does
not support aspects; but let’s assume for a moment it does, and examine whether
such a notion would bring what we were missing with the other object-oriented
language mechanisms. In Aspect]™, you can write:

aspect DecoratedComponent {

/*
* Special construct (called pointcut) to specify when and where
* the aspect should be applied.

%

* A pointcut typically lists the features to which the aspect applies.

*/
before:
pointcutName...{
/>X<
*You may view pointcutName as a feature name
* as a first approximation.
*/
doSomething;
}
after:
pointcutName...{
doSomething;
}
around:

pointcutName...{
if (someCondition)
proceed ();
else
System o out o println (“Error”);

It means you can add some code before a particular routine body, after, or around it
— the difference with affer being that you can decide whether you want to continue
proceeding after executing the aspect code or not. It is also possible to add new
attributes to a class. It looks similar to “decorating” a component: we can change
features’ behavior with the before, after or around constructs (advice as they are
called in AOP), even extend the class with new attributes. But, do aspects really
bring us a Decorator?

TURNING PATTERNS INTO COMPONENTS: A PREVIEW §5

About AOP, see in
particular [Aspect]-

Web], [Hannemann
2002], and [Kiczales
1997].

Aspect to dec-
orate a com-
ponent
(approximate
AspectJ™
syntax)

AOP: Aspect-Ori-
ented Programming.

§5.4 CHAPTER SUMMARY

Remember the scope and intent of the Decorator pattern: it must bring a
flexible way to add functionalities dynamically. When using aspects — supposing we
had aspects in Eiffel — we lose the flexibility. We cannot add the “decoration” to
only some instances of the class any more: either the aspect option is turned on and
all objects are decorated or the option is turned off and no object is decorated. Then,
all objects will have the same decoration. Besides, we miss the ability to compose
decorations as we already noticed for inheritance (see “Pattern description”, page
74).

Thus, a notion of “aspect” in Eiffel would not help componentizability here.
[Hirschfeld 2003] explains in more detail why aspects do not suffice to implement
the Decorator design pattern.

Skeleton classes

Developing a reusable Eiffel component capturing the intent of the Decorator
pattern proved impossible even when considering extending the Eiffel language.

For want of full componentizability, it is possible to provide developers with
skeleton classes in the spirit of those presented at the beginning of this section. A
subsequent chapter will give more details about partially implemented decorator
classes.

5.4 CHAPTER SUMMARY

. Support for the Prototype pattern is provided by the Eiffel Kernel Library
through a feature clone and its variant deep clone in the universal class ANY
from which any Eiffel class inherits.

. The class ANY — and the features it contains — is part of the Eiffel Library
Kernel Standard (ELKS). Therefore, all Eiffel compilers have it and provide
a feature clone; hence any Fiffel object can clone itself and is a “prototype”.

. The Visitor pattern provides a flexible way to apply operations to many
elements of a data structure without polluting those classes with code that is
not a true property of the underlying abstract data type.

. The Visitor pattern also has drawbacks: first, adding new elements to an
existing hierarchy traversed by visitor classes is hard (it requires changing all
visitor classes); writing accept features in all element classes quickly becomes
painful.

. The Visitor Library is a successful componentization example: it captures the
intent of the Visitor pattern into a reusable component and in addition removes
the need for accept features.

. The Decorator pattern provides a flexible way to add functionalities to a
particular object dynamically.

. It is possible — and very easy — to compose “decorations”. (For example,
adding a border to a GUI text view, and then a scroll bar.) Using inheritance
would not bring such flexibility. (All instances of the descendant class would
have the same “decorations”.)

. The Decorator pattern is not componentizable. It cannot be captured into a
reusable library. Even considering language extensions such as automatic type
conversion — to be allowed in the next version of Eiffel — or aspects would
not help.

. For lack of componentizability, it is possible to provide skeleton classes to
help developers writing correct code.

83

See “‘Pattern descrip-

See ‘Componentiza-

tion outcome”, page
258.

See ““Pattern descrip-
tion”, page 74.

See section 16.1.

Gamma 1995], p
117-126.

ELKS 1995].

Gamma 1995], p
331-344.

See also chapters 9.

Gamma 1995], p
175-184.

See [Meyer 200?b

about the next ver-
sion of Eiffel, and
chapter 14 in partic-
ular about type con-
version.

84

TURNING PATTERNS INTO COMPONENTS: A PREVIEW §5

6

Pattern componentizability

classification

The previous chapters presented the three objectives of this thesis:

. Establish a new classification of the design patterns described in Design
Patterns by level of componentizability.

. Write the Eiffel components corresponding to the componentizable design
patterns to build a “pattern library”.

. Develop a Pattern Wizard to generate skeleton classes automatically for the
non-componentizable patterns.

The present chapter shows the first result: a new pattern classification based on the
degree of componentizability.

6.1 COMPONENTIZABILITY CRITERIA

The first objective of this thesis was to determine whether patterns described in
Design Patterns are componentizable given the mechanisms of an object-oriented
language. We will consider the following set of language mechanisms:

. Client-supplier relationship

. Simple inheritance (of classes; possibly multiple inheritance of interfaces)
. Multiple inheritance (of classes)

. Unconstrained genericity

. Constrained genericity

. Design by Contract™

. Automatic type conversion
. Agents (or reflection for lack of)
. Aspects (if we have a broader view and consider aspect-oriented extensions of

object-oriented languages such as Aspect]J™)

The componentization process consists in examining each of these mechanisms (and
combinations of these mechanisms) and see whether it permits to turn the design
patterns into a reusable component.

The design patterns are declared “non-componentizable” if none of these
mechanisms permits to transform the pattern into a reusable component. They are
declared “componentizable” otherwise.

Here are the criteria used to assess the quality of the resulting reusable
component:

See “Definition:
Componentization”,
page 26.

86 PATTERN COMPONENTIZABILITY CLASSIFICATION §6

. Completeness: Does the reusable component cover all cases described in
Design Patterns?

. Usefulness: Is the reusable component useful compared to an implementation
from scratch of the design pattern?

. Faithfulness: Is the reusable component faithful to the original pattern
description?

. Type-safety: Is the reusable component type-safe?

. Performance: Is the use of the reusable component as efficient as a traditional
pattern implementation?

. Extended applicability: Does the reusable component cover more cases than
the original design pattern?

The forthcoming chapters present the componentizable and not componentizable
patterns successively, following the pattern componentizability classification
described in 6.3. In the case of componentizable patterns, the chapter ends with a
discussion about the quality of the reusable component compared to the above
criteria. In the case of non-componentizable patterns, the chapter takes the object-
oriented mechanisms given on the previous page one after the other and describes
why it does not help in componentizing the pattern. This systematic treatment
ensures that no case has been forgotten and that the pattern is non-componentizable.

Among the patterns considered for this work, a majority proved
componentizable. The next sections give actual figures about the componentization
ratio and presents the pattern componentizability classification resulting from this
study.

6.2 COMPONENTIZATION STATISTICS

The componentization effort proved successful for a majority of patterns:
. 15 out of 23 examined design patterns, meaning 65%, were componentizable.

. Among the remaining 8 patterns, it was possible to generate skeleton classes
automatically for 5 of them (using the Pattern Wizard developed as part of this
thesis) and one was already supported to some extent by existing libraries.

. Only 2 patterns (Facade, Interpreter) resisted all attempts at making them
more componentizable.

The following two tables summarize the results:

. The first table includes componentizable patterns and it distinguishes between
non-componentizable patterns (for which skeleton classes can be generated or
there is already some support in existing libraries) and remaining patterns (for
which skeleton classes cannot help and no library support exists).

Category Number of patterns | Percentage
Componentizable patterns 15 65%
Non-componentizable patterns 6 26%

(possible skeleton classes or
some library support)

Remaining patterns 2 9%
(no skeleton classes and no
library support)

See chapter 21.

Componentiz-
able, non-
componentiz-
able and
remaining
patterns

§6.3 DETAILED CLASSIFICATION

. The second table follows the classification presented in the next section:
componentizable and non-componentizable patterns.

Category Number of patterns | Percentage
Componentizable patterns 15 65%
Non-componentizable patterns 8 35%

6.3 DETAILED CLASSIFICATION

Two main categories of design patterns emerge from the componentization process:
componentizable and non-componentizable patterns. Here is the detailed

classification:

1.
Conmponentizable

Built-in Library- Newly
supported componentized

Design pattern

N

1.3.1 132
Fully Conmponentizable
Conponentizable but not comprehensive

2.

87

Componenti-
zation results
following the
pattern com-

ponentizability
classification

Design pat-
tern compo-
nentizability
classification

Non-conponentizable

AN

Skeleton Possible Somelibrary Design

/ \skeleton support idea

212
No method

The number associated with each category corresponds to a pattern
componentizability scale: from the most componentizable pattern (1.1) to the least
componentizable (2.4). Here is a more precise description of each pattern category:

. 1. Componentizable: Patterns for which componentization is possible, i.e.
patterns for which it is possible to develop a reusable component giving the
same facilities as the original pattern.

. 1.1 Built-in: Patterns for which the corresponding component is
provided by the Eiffel Kernel Library.

For example, the Prototype pattern describes a way to create
objects from a “prototypical” instance. In Eiffel, the cloning facility is
already provided by the class ANY, from which any Eiffel class inherits.
ANY defines two features clone and deep clone to duplicate objects.
Because ANY is part of the Eiffel Library Kernel Standard (ELKS), all
Eiffel compilers implement it. No need for a special design to satisfy
the intent of the Prototype pattern; it comes with the Kernel Library.

See “‘A built-in pat-
tern: Prototype”
3.1, page 65.

For example, the
“kernel” cluster of
EiffelBase, [Eiffel-
Base-Web], is the
Kernel library of ISE
Eiffel.

88

PATTERN COMPONENTIZABILITY CLASSIFICATION §6

. 1.2 Library-supported: Componentizable patterns for which the
component corresponding to the original design pattern is already
provided by existing Eiffel libraries.

This case was envisioned during the componentization process
but no pattern of Design Patterns belongs to this category.

. 1.3 Newly componentized: Componentizable patterns that were not
componentized yet (no existing language or library support). The
reusable components are an outcome of this thesis.

. 1.3.1 Fully componentizable: Patterns for which the component
resulting from the componentization process fully captures the
intent of the original design pattern.

For example, the Observer pattern can be transformed into
an Event Library that covers all cases of the original pattern (and
even more). Chapters 7 to 12 present several fully
componentizable patterns.

. 1.3.2 Componentizable but not comprehensive: Patterns for
which it is possible to build a reusable component for some of
the cases covered by the design pattern. The componentized
version is not comprehensive: some cases described in Design
Patterns cannot be implemented with the library built as part of
this thesis.

For example, some implementations of Builder could be
captured into reusable libraries but not all of them. Likewise,
some cases of the Proxy and State patterns escaped from the
componentization efforts. Chapter 13 relates on this work.

. 1.3.3 Componentizable but unfaithful: Patterns for which the
componentization results in a change in the spirit of the original
design pattern.

For example, the Strategy pattern is componentizable
using agents; but it is arguable whether it is still a true Strategy.
Chapter 14 describes this example in more detail.

. 1.3.4 Componentizable but useless: Patterns for which it is
possible to write a reusable component — that even respects the
original spirit of the pattern — but that is useless in practice.

The only example is the Memento pattern. As described in
chapter 15, developing a Memento Library is feasible; however
there is little chance it would be used in practice by
programmers. Indeed, the pattern is easy and straightforward to
implement; using the library would be too heavyweight and

overkill.
. 1.4 Possible component: Patterns for which it would be possible to
develop a reusable component given an extension of the Eiffel
language.

This case was envisioned during the componentization process
but no pattern of Design Patterns belongs to this category.

2. Non-componentizable: Patterns for which componentization is not
possible, i.e. they cannot be turned into reusable Eiffel components.

§6.3 DETAILED CLASSIFICATION

2.1 Skeleton: Non-componentizable patterns for which it is possible to
write “skeleton” classes (classes with a few features and empty bodies
that programmers would need to fill in). Even if it does not bring the
full power of library components, it already prepares the job for the
programmers; hence makes their life easier and avoids bad
implementations of the pattern.

. 2.1.1 Method: Non-componentizable patterns for which it is
possible to generate skeleton classes and even provide a method
(an algorithm) to fill in the skeletons.

The Decorator pattern, which was presented as an
example of non-componentizable pattern in the previous chapter,
belongs to this category together with the Adapter pattern.
Sections 16.1 and 16.2 give further details about the algorithms
to fill in the skeleton classes. (One could even imagine extending
the Pattern Wizard to automate the completion of the generated
skeleton classes.)

. 2.1.2 No method: Non-componentizable patterns for which it is
feasible to develop skeleton classes, but not possible to provide a
method to complete the skeleton classes (programmers have to
decide depending on the context).

The patterns Template Method and Bridge fit into this
group. Sections 17.1 and 17.2 describe them in more detail.

2.2 Possible skeleton: Non-componentizable patterns that cannot be
even implemented correctly with the current version of Eiffel.

This is the case of the Singleton pattern: writing fully correct
singletons would be possible if Eiffel is extended with the notion of
frozen classes (classes from which one cannot inherit) and the cloning
facilities of the top-hierarchy class ANY are made private (not exported
to clients). These two conditions would make the pattern implementable
in Eiffel but it would still not be componentizable.

Chapter 18 explains how to extend Eiffel with frozen classes and
gives the semantics of this new facility.

2.3 Some library support: Non-componentizable patterns for which
there exists some support in existing Eiffel libraries.

For example, the main Eiffel Data Structure libraries already
provide several flavors of [terator facilities. The traversable containers
of EiffelBase have routines like start, forth, after, etc. that enable
providing an internal iteration mechanism; SmartEiffel has a class
ITERATOR for external iteration; Visual Eiffel has a class CURSOR and
a class ITERATOR ; Gobo has a class DS CURSOR and a class DS
ITERATOR is under development. Chapter 19 gives more detail about
library-supported patterns.

2.4 Design idea: Non-componentizable patterns for which it even
appears unfeasible to write skeleton classes to help application
developers who want to use them. The patterns are too much context-
dependent.

It is the case of the patterns Facade and Interpreter, which are
described in chapter 20. They are “remaining” design patterns that
eluded any attempt at making them more componentizable.

89

See “A non-compo-
nentizable pattern:
Decorator”, 5.3
page 74.

EiffelBase-Web
SmartEiffel-librar-
ies], [Object-Tools-
Web], and [Bezault
2001a].

90 PATTERN COMPONENTIZABILITY CLASSIFICATION §6

The figure below summarizes the componentizability classification of the patterns

described in Design Patterns: Design pat-
tern compo-
Design pattern nentizability
classification
(filled)
1. 2.
Componentizable Non-componentizable
1.1 1.2 1.3 2.1 2.2 2.3 24
Built-in Library- Newly Skeleton Possible Some library Design

supported componentized skeleton support idea

Prot i .
eonpe : Singleton Iterator ~ Facade
i Interpreter

2.1.2
131 1.3.2 No method
Fully Componentizable)
componentizable but not comprehensive Decorator Template Method
Flyweight Builder Strategy Memento Adapter Bridge
Observer Proxy
Mediator State
Abstract Factory
Factory Method
Visitor
Command
Composite
Chain of Responsibility

6.4 ROLE OF SPECIFIC LANGUAGE AND LIBRARY
MECHANISMS

Language and library mechanisms condition the success of componentization. The
following two tables summarize the constructs involved in the componentization of
the patterns described in Design Patterns. The first table corresponds to

componentizable patterns; the second table to non-componentizable patterns.

The mechanisms listed are the componentizability criteria given in 6.1. The
tables distinguish between library mechanisms (cloning, iteration) on the one hand
and language mechanisms (genericity, agents, etc.) on the other hand. (They are

separated by a double line.)

The patterns listed are those described in Design Patterns and their variants. . 0
ee section .
For example, the Pattern Library provides two versions of the Composite Library: a page 150 about the
. i . two variants of the
transparency variant and a safety variant. The table on the next page lists both. Composite Library.

§6.4 ROLE OF SPECIFIC LANGUAGE AND LIBRARY MECHANISMS 91

The following table lists the mechanisms used to write the reusable Eiffel
components corresponding to the componentizable patterns of Design Patterns:

'g =
=52 |z
>, HEIENERE - &
FEREEEEEEE ¥ 2
vl e x| =|S|E 2@%8%%: HEIE
253252255 20| 5 28|8 5 e L5 2
Sz 28 8l=2 38 E 2 E =L E =5 E
T4 <
QE_Q®¢3B->QHQU“&Q_‘Q_‘(IJ > 2
== S| &S Ol B3| = v | 2 7 = =
~EC=12 57 55| ElelT &t 5o &
2ls YRS el2 £ 1Rz
<|= &% 5”5 |8 O| £
glelsl = |F &
2|5/= |O
| <
Client/supplier | X | X | X | X | X | X | X|X| X[X | X | X|X|X| X[X|X|X|X
mechanism
Simple XX XX XXX XX
inheritance
Multiple X X Mechanisms
inheritance used to trans-
form compo-
Unconstrained XXX X[X XXX X[X|X|X[|X nentizable
genericity patterns into
- reusable
Constr?l.ned XXX X[X|X X Eiffel compo-
genericity nents
Design by XX XX XX X[XXX XXX XXX XXX
Contract
Type
conversion
Agents XXX X[X XXX XX X
Frozen classes
Aspects
Cloning X
facilities
Iteration
facilities

It is clear from this table that language mechanisms are not independent when it
comes to pattern componentization. Rather, we see a number of specific mechanism
combinations that help componentize specific categories of patterns:

. Fully componentizable thanks to genericity and agents: The
componentized version of all fully-componentizable patterns (Flyweight, ...,
Chain of Responsibility) relies on unconstrained genericity, and three demand
constrained genericity (Observer, Mediator, and Flyweight). 72.7% (8 out of
11) of the fully componentizable patterns also require the Eiffel agent
mechanism.

92 PATTERN COMPONENTIZABILITY CLASSIFICATION §6

. Fully componentizable thanks to unconstrained genericity: The Composite
and Chain of Responsibility patterns are fully componentizable. Their
componentized version relies on the Eiffel support for unconstrained
genericity.

The other (non-fully) componentizable patterns also rely either on genericity
(constrained or unconstrained) or agents or both. For example, the componentized
version of the Builder pattern relies on constrained genericity and agents. The
Strategy Library (corresponding to the original Strategy pattern) is componentizable
using constrained genericity. The second variant of the Strategy Library relies on the
Eiffel agent mechanism.

The following table gives the number and percentages of newly
componentized patterns for which genericity (constrained or not) and agents played
a key role in the pattern componentization:

Compone Fully Compone | Compone | Compon
ntizable || compone | ntizable | ntizable | entizable
patterns || ntizable but not but but
comprehe | unfaithful | useless
nsive
Nb| % |[Nb| % [Nb| % |[Nb| % [Nb| %
Unconstrained |3 [16.7 ||3 (273 |0 (0% |0 |0% |0 |0%
genericity % %
(only)
Constrained |2 |[11.1 ([0 [0% |1 [25% |1 (50% [0 0%
genericity %
(only)
o o o 0
Agents (only) |1 f/.06 0 0% 0 0% 1 50% |0 0% Combina-
tions of lan-
Unconstrained |5 278 ||5 [456 |0 (0% [0 (0% |0 0% | guage
genericity and % % mechanisms
agents useful for pat-
; tern compo-
Constrained |0 0% |0 0% |0 0% |0 [0% |0 |0% | pentization
genericity and
agents
Unconstrained | 5 27.8 ||3 273 |2 50% |0 0% 0 0%
/ constrained % %
genericity and
agents
Unconstrained | 13 |72.2 ||[11 [100 |2 [50% |0 |0% |0 |0%
genericity % %
(non-exclusive)
Constrained |7 [389 |3 [273 (3 7% |1 [50% [0 0%
genericity % %
(non-exclusive)
Agents (Non- |11 | 61.1 [|8 727 |2 50% |1 50% |0 0%
exclusive) % %

§6.4 ROLE OF SPECIFIC LANGUAGE AND LIBRARY MECHANISMS

Basic object-oriented mechanisms such as client-supplier relationship and simple
inheritance are needed in almost all componentizations. Multiple inheritance also
appears useful. The support for Design by Contract™, although not a necessary
condition for the pattern componentization, is useful to write better components in
all cases; it enables writing robust and correct code.

The following table shows the mechanisms that enable writing skeleton
classes for the non-componentizable patterns:

7] 17,]
T |E 2 |
-SERMERE
[} [~
5 8|2 g |8 |2 |E
B = [=3 L = E -Z 5] =
s |58 |5 |2 |5 |8 |5 |8 |5
= = = —_ =] > = it £
o < =) —t = - <
S |S |s |EI£ |2 |C |8 |2 |5
172] o
2 18 2 5 2 B |E |F | |F
6 = = = =z 5]
© |g |& |© |5 |
.sb & =0 =
T | = T &
S | &
<
Client/supplier | X | X | X | X |X | X | X | X [X | X
mechanism
Simple X X | X X | X | X
inheritance
Multiple X X
inheritance
Unconstrained X
genericity
Constrained
genericity
Design by X [X | X X | X X | X X | X X
Contract
Type
conversion
Agents X
Frozen classes X
Aspects
Cloning
facilities
Iteration X
facilities

Like for the componentizable patterns, inheritance (simple and multiple) and client/
supplier mechanism are needed to write skeleton classes. The support for Design by
Contract™ helps generating correct code.

Unlike componentizable patterns, the presence of genericity and agents is not
crucial: only the variant of Strategy uses it.

93

Mechanisms
used to write
skeletons cor-
responding to
non-compo-
nentizable
patterns

94

PATTERN COMPONENTIZABILITY CLASSIFICATION §6

The subsequent chapters of this dissertation follow the order described in the
componentizability classification given on page 90: from the most componentizable
patterns to the least componentizable.

6.5 CHAPTER SUMMARY

Componentization relies on object-oriented mechanisms (inheritance,
genericity, etc.). If no mechanism enables transforming a pattern into a
component, the pattern is called “non-componentizable”. Otherwise, it is
called “componentizable” and a set of criteria (type-safety, completeness, etc.)
assets the quality of the resulting component.

An outcome of this thesis is a new classification of the patterns described by
Design Patterns depending on their level of componentizability. It
distinguishes between two main groups: componentizable, and non-
componentizable patterns. The full scale is more fine-grained; it has 12
categories in total.

More than 65% of the examined patterns proved componentizable.

Fifteen patterns can be turned into reusable Eiffel components taking
advantage of various Eiffel mechanisms including genericity (unconstrained /
constrained) and agents.

Among the 15 componentizable patterns, some are not “fully”
componentizable: their componentized version covers only some cases,
modifies the spirit of the original pattern, or is too heavy to be useful in
practice.

Eight patterns proved non-componentizable. For five of them, it is possible to
write skeleton (partially implemented) classes to facilitate the life of
programmers. One pattern (/terator) is already supported — to some extent —
by existing Eiffel libraries. Two patterns (Facade / Interpreter) depend too
much on the context and cannot be captured into skeleton classes.

Extending the Eiffel language (with frozen classes) would help implementing
the non-componentizable Singleton pattern better, but it would still not make
it componentizable.

See “‘Componentiz-
ability criteria”, 6.1
page 83.

Meyer 1992].

Dubois 1999], and
chapter 25 of [Meyer
200?b].

PART C: Componentizable patterns

96

Part B explained the motivation for trying to componentize design patterns, it
also presented the goals of this thesis and showed an overview of the results,
including a new fine-grained classification of design patterns by degree of
componentizability; Part C will focus on componentizable patterns and
present the resulting Pattern Library.

7

Observer and Mediator

Fully componentizable

The pattern componentizability classification presented in the previous chapter
showed that a majority of patterns described in Design Patterns are
componentizable.

The present chapter shows how to build the library version of two design
patterns. First, it focuses on the Observer pattern, from which the Event Library is
derived; second, it describes the Mediator pattern, whose resulting library relies on
the Event Library.

7.1 OBSERVER PATTERN

The Observer pattern provides useful guidelines for event-driven design. However,
it is a limited solution and it is not reusable (in terms of code). Let’s look at the
pattern in detail to understand its deficiencies and the interest of the Event Library.

Pattern description

The Observer pattern “define[s] a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified and updated
automatically”.

A typical application using the Observer pattern would involve the following
classes:

*

OBSERVER

*

SUBJECT

add_observer*

update™ 7y 7y remove_observer*

notify observers*

MY OBSERVER MY SUBJECT

= add_observer+
subject -

update+ remove_observer+

notify_observers+

«

Pattern componen-
tizability classifica-
tion”, 6. page 85.

Meyer 2003b], and
Arslan-Web].

Meyer 2003b], and
Arslan-Web].

Gamma 1995], p
293.

Class dia-
gram of a typ-
ical
application
using the
Observer pat-
tern

98 OBSERVER AND MEDIATOR §7

A SUBJECT keeps a list of observers and gives the ability to add or remove observers
from this list. Whenever its state changes (typically the values of some of its
attributes change), the SUBJECT will notify its observers. Indeed, all OBSERVERSs
provide a feature update; notify_observers from SUBJECT will simply iterate through
all observers and call update on them.

A class must inherit from OBSERVER to be an “observer’; it must inherit from
SUBJECT to become a “subject” (be “observable”). Therefore an application can
have many descendants of SUBJECT and OBSERVER.

In the description found in Design Patterns, OBSERVER and SUBJECT are
deferred and the features update, add observer, remove observer, and notify observers
as well. In Eiffel, deferred classes may be partially (or totally) implemented. Thus,
the class OBSERVER can be fully implemented; no need to write the same code again
and again in all descendants of class SUBJECT.

Here is a possible implementation of the deferred class SUBJECT:

deferred class

SUBJECT
inherit
ANY
redefine
default create
end

feature { NONE} -- Initialization

default create is
-- Initialize observers.
do
create observers « make
end

feature -- Observer pattern

observers: LINKED LIST [OBSERVER)]
-- List of observers

add_observer (an_observer: OBSERVER) is
-- Add an_observer to the list of observers.
require
not yet an observer: not observers « has (an_observer)
do
observers « extend (an_observer)
ensure
one more: observers « count = old observers e count + 1
observer added: observers ¢ last = an_observer
end

remove_observer (an_observer: OBSERVER) is
-- Remove an_observer from the list of observers.
require
is_an_observer: observers ¢ has (an_observer)
do
observers ¢ search (an_observer)
observers « remove
ensure
observer removed: not observers ¢ has (an_observer)
one_less: observers « count = old observers « count — 1
end

Gamma 1995], 293-
303.

Class SUBJECT rede-
fines feature default
create from ANY
instead of providing a
feature make to avoid
descendants having
to write explicitly the
creation clause.

Deferred sub-
Ject

§7.1 OBSERVER PATTERN

notify_observers is
-- Notify all observers. (Call update on each observer.)

do
from observers ¢ start until observers ¢ after loop
observers « item ¢ update
observers « forth
end
end

invariant
observers_not_void: observers /= Void

end

The class OBSERVER cannot be fully implemented. Descendants have to provide
their own variant of update. The code of OBSERVER could be the following:

deferred class
OBSERVER

feature -- Observer pattern

update is
-- Update observer according to the state
-- of the subject it is subscribed to.
deferred
end

end

These two implementations of classes SUBJECT and OBSERVER are general enough
to be reused. But their design is not completely satisfactory. The next paragraphs
explain why.

Book library example using the Observer pattern

We can illustrate the Observer pattern on our book library example.

Consider a class APPLICATION — it can be a GUI or just a command line
interface — that wants to “observe” the list of hooks of the class LIBRARY introduced
in an earlier chapter. Suppose we want to use the Observer pattern.

The class LIBRARY needs to inherit from SUBJECT and call notify _observers
whenever its data changes, meaning when a book is added to the library. Here is a
possible implementation:

class

LIBRARY
inherit

SUBJECT
redefine default create end

feature {NONE?} -- Initialization

default create is
-- Create and initialize the library with an empty list of books.
do
Precursor {SUBJECT}
create books « make
end

99

Deferred
observer

See chapter 5.

Concrete sub-
Ject

The class LIBRARY
does not have a create
clause: by default, the
creation procedure is
the feature default
create (inherited from
ANY and redefined
here).

100 OBSERVER AND MEDIATOR §7

feature -- Access

books: LINKED LIST [BOOK]
-- Books currently in the library

feature -- Element change
add_book (a_book: BOOK) is

require

a_book not void: a_book /= Void

not yet in library: not books e has (a_book)
do

books « extend (a_book)

notify_observers

ensure
one_more: books e count = old books e count + 1

book added: books « last = a_book
end

invariant
books not_void: books /= Void

end

-- Add a_book to the list of books and notify all library observers.

The class APPLICATION needs to inherit from OBSERVER, effect its feature update,
and add itself to the list of observers from class LIBRARY (inherited from SUBJECT).

A possible implementation follows:

class

APPLICATION
inherit

OBSERVER
rename
update as display book
redefine
default_create
end

feature {NONE?} -- Initialization

default create is
-- Initialize library and

do

create /ibrary

libraryeadd observer (Current)
end

feature -- Observer pattern

library: LIBRARY
-- Subject to observe

-- subscribe current application as library observer.

All subscribed
observers arenotified
when a new book is
added to the library.

Concrete
observer

The feature update is
renamed as display
book to explain better
what the update does;
this is not compulsory
(feature display_book
appearing below
could also be called
update like in the par-
ent OBSERVER).

The class APPLICA-
TION does not have a
create clause: by
default, the creation
procedure is the fea-
ture default create
(inherited from ANY
and redefined here).

§7.1 OBSERVER PATTERN

invariant

end

display _book is
-- Display title of last book added to library.
do
print (librarys books « last « title)
end

library not void: library /= Void
consistent: /ibrarys observers « has (Current)

The implementation of feature display _book — called whenever a new book is added
to the library — supposes that the new book is added to the end of the books list.
Therefore it calls the last list item and displays its zitle. The issue is that the class
APPLICATION knows that a new book has been added to the library (it has been
notified by the LIBRARY) but does not know which one.

The problem gets worse if we want to observe different events, for example

observe changes to the list of books but also changes to the list of video recorders. A
possibility would be to write a new class OBSERVER with a feature update taking the
event as argument. The next section explains why this solution is not satisfactory.

The Java library of utility classes provides an interface Observer and a class Observable
(for “subjects”). However, this pattern implementation is rarely used in practice because
of the lack of multiple inheritance (of classes) in Java. Indeed, subjects must inherit from
Observable but they may already inherit from another class, making the library
implementation unusable in practice.

Typically, Java programmers use an event-based implementation: subjects
defines the registration methods:

void addXxxListener (XxxListener 1)

void removeXxxListener (XxxListener 1)

Whenever a property being observed by listeners changes, the subjects iterates
over its listeners and calls the method defined by the XxxListener interface.

Smalltalk has a different approach: messages for observers and subjects are
provided by the class Object, which is shared by all objects.

Drawbacks of the Observer pattern

The Observer pattern, for all its benefits, also has weaknesses:

In the Observer pattern, the subject knows about its observers. More precisely,
it has a list of observers and it knows that each observer conforms to
OBSERVER, hence has a feature update. It does not know the exact type of the
list elements given at run time. Thus, coupling between the subject and its
observers is not so tight. Still, from a design point of view, I would have
expected observers to know about their subject but not the other way around.

The architecture proposed by Design Patterns does not allow passing
information from the subject to the observer when an event occurs (for
example transmit some event data). [Gamma 1995] mentions this issue and
suggests two models:

. push: The SUBJECT sends to all its OBSERVERs a detailed description
of what has changed;

. pull: The SUBJECT just notifies its OBSERVERs that something has
changed and it is up to the OBSERVERs to query the SUBJECT to
understand what has changed. (The example presented before follows
the pull model.)

101

Observer and Observ-
able are in java.util
since JDK 1.0; see

Java-Web].

Geary 2003a].

Goldberg 1989] and
Whitney 2002].

Meyer 2003b].

Gamma 1995], p
298.

102

But no model is really satisfactory.

. An OBSERVER can register to at most one action from one SUBJECT. There is
no possibility to observe several kinds of events. This limitation, which we
already encountered in our library example, is mentioned in Design Patterns.
They suggest adding an argument to the feature update of class OBSERVER
(the SUBJECT would pass itself as argument). The problem is that there is still
just one feature update per OBSERVER that needs to know all relevant
SUBJECTs to distinguish between them. Hence a scheme where everybody
needs to know everybody, which is hardly flexible.

Convinced that there should be a better approach, we investigated ways to capture
the Observer pattern machinery into a reusable library. This research work resulted
in the Event Library.

Event Library

The Event Library is a simple library relying on just one generic class EVENT TYPE
and three main features: publish, subscribe, and unsubscribe. However, it is a powerful
solution that provides the necessary mechanisms for typical event-driven application
development. It can also be extended easily to satisfy more advanced needs. The
Event Library takes advantage of the constrained genericity and agents mechanisms
of Eiffel.

It makes a clear distinction between the notions of events and event types:

. An event is a signal: it can result from an action from the user or it can be a
state change in some parts of the system.

. An event is an instance of an event type.

The Event Library relies on the notions of “publisher” and “subscriber”. Here are the
definitions:

. The publisher is responsible for triggering (“publishing”) events. It
corresponds to the subject of the Observer pattern.

. The subscriber registers subscribed objects to a given event type. It
corresponds to the observer of the Observer pattern.

The text of class EVENT TYPE is given below. (An example of how to use the
library will follow.)

class
EVENT TYPE [—> TUPLE create default create end]
inherit
LINKED LIST [PROCEDURE [ANY, 1]
redefine

default_create
end

feature { NONE} -- Initialization

default create is
-- Initialize event type and set object comparison.
do
make
compare_objects
end

OBSERVER AND MEDIATOR §7

Gamma 1995], p
297.

Meyer 2003b], and
Arslan-Web].

Dubois 1999], and

chapter 25 of [Meyer
200?7b].

Meyer 2003b], and
Arslan-Web].

This notation is
explained in appen-
dix A with the notion
of constrained
genericity, starting
on page 387.

Event library

§7.1 OBSERVER PATTERN

feature -- Element change

subscribe (an_action: PROCEDURE [ANY, EVENT DATA]) is

-- Add an_action to the subscription list.

require
an_action_not void: an_action /= Void
an_action_not yet subscribed: not ias (an_action)

do
extend (an_action)

ensure
one_more: count = old count + 1 and has (an_action)
index_at same position: index = old index

end

unsubscribe (an_action: PROCEDURE [ANY, EVENT DATA]) is
-- Remove an_action from the subscription list.
require
an_action_not void: an_action /= Void
an_action_already subscribed: has (an_action)
local
pos: INTEGER
do
pos = index
start
search (an_action)
remove
go_i th (pos)
ensure
one_less: count = old count — 1 and not has (an_action)
index at same position: index = old index
end

feature -- Publication

publish (arguments: EVENT DATA) is
-- Publish all not suspended actions from the subscription list.
require
arguments not void: arguments /= Void
do
if not is_suspended then
do_all (agent {PROCEDURE [ANY,
EVENT DATAY} o call (arguments))
end
end

feature -- Status report

is_suspended: BOOLEAN
-- Is the publication of all actions from the subscription list
-- suspended?
--(Answer: no by default.)

feature -- Status settings

suspend_subscription is
-- Ignore the call of all actions from the subscription
-- list, until feature restore_subscription is called.
do
is_suspended := True
ensure
subscription_suspended: is_suspended
end

103

The agent notation is
described in appen-
dix A, page 389.

The iterator do_all is
presented in section
19.2, page 306.

104 OBSERVER AND MEDIATOR §7

restore_subscription is

-- Consider again the call of all actions from the subscription list,
-- until feature suspend_subscription is called.

do
is_suspended = False

ensure
subscription not suspended: not is_suspended

end

invariant
object_comparison: object comparison

end

In a first iteration of the library, the class EVENT TYPE was using delegation rather
than inheritance from LINKED LIST. But it reveals easier to implement the
subscription list by relying on inheritance (no need to write proxies for features of
class LINKED_LIST). It also facilitates the library extension (for example redefining
features of class EVENT TYPE). Nevertheless there is a risk that clients misuse the
features inherited from LINKED LIST. A possibility could be to export those features
to NONE: descendant classes can still use the implementation features they need but
clients cannot access them anymore.

Apart from the core features publish, subscribe, and unsubscribe, the class
EVENT TYPE also provides suspend subscription, restore_subscription, and the query
is_suspended. The last three routines gives the possibility to suspend the subscription
to an event type, meaning it is possible to restore the subscription afterwards —
contrary to unsubscribe, which completely removes the subscription (to restore
subscription, one has to subscribe the object again).

Book library example using the Event Library

Let’s apply the Event Library to the library example presented before.

. The publisher (the class LIBRARY) first needs to declare and create an event
type object. It corresponds to the attribute book event in the text below.

. Then, it has to trigger the corresponding event by calling feature publish on the
resulting object book_event. It is done in routine add book because we want an
event to be published whenever a new book is added to the library. The
argument a_book passed as argument to feature publish corresponds to the new
book that has just been added. (This information will be used by the feature
display book of the subscriber class APPLICATION.)

The resulting class LIBRARY is presented below:

class
LIBRARY

feature -- Access

Event pub-
books: LINKED LIST [BOOK] lisher

-- Books currently in the library
feature -- Event type

book _event: EVENT TYPE [TUPLE [BOOK]]
-- Event associated with attribute books

§7.1 OBSERVER PATTERN

feature -- Element change

add_book (a_book: BOOK) is
-- Add a_book to the list of books and publish book event.
require
a_book not void: a_book /= Void
not yet in library: not books e has (a_book)
do
books « extend (a_book)
book_event « publish ([a_book])

ensure
one_more: books e count = old books e count + 1

book added: books e« last = a_book
end

invariant

books not_void: books /= Void
book event not void: book event /= Void

end

On the other side, subscribers (“observers”) can subscribe to events by calling
feature subscribe of class EVENT TYPE. In our example, the library 4PPLICATION
subscribes to the event book _event. The agent expression means that the procedure
display book will be called whenever book event occurs. Here is the class text:

class

APPLICATION
inherit

ANY
redefine default create end

feature { NONE} -- Initialization

default create is
-- Subscribe application to book event.

local

library: LIBRARY
do

create /ibrary

librarys book event « subscribe (agent display book)
end

feature -- Event handling

display_book (a_book: BOOK) is
-- Display title of @ book just added to the library.
do
print (a_book e« title)
end

end

Here, the feature display book can have an argument of type BOOK; no need to guess
the implementation of class LIBRARY like in the example using the Observer pattern.
The argument is filled in when the event is published (see feature add book of class
LIBRARY).

105

Publication of the
event

Dubois 1999], and
chapter 25 of [Meyer
2007?b].

Event sub-
scriber

agent display_book is
an agent with all
arguments open, it is
equivalent to agent
display book (?)

See “‘Book library
example using the
Observer pattern”,
page 99

106 OBSERVER AND MEDIATOR §7

It would also be easy to subscribe to another event; we simply need to:

. Declare a new event type in class LIBRARY, say video_recorder_event of type
EVENT TYPE [TUPLE [VIDEO RECORDER]].

. Publish an event when adding a VIDEO RECORDER to the library.

. Provide an “update” feature (for example display video recorder with one
argument of type VIDEO RECORDER and subscribe APPLICATION to video
recorder_event with the corresponding agent.

No limitation of just one type of event per subscriber like in the Observer pattern.

Componentization outcome

The componentization of the Observer pattern, which resulted in the development of
the Event Library, is a success because it meets the componentizability quality
criteria established in section 6.1:

. Completeness: The Event Library covers all cases described in the original
Observer pattern and even more (see Extended applicability below).

. Usefulness: The Event Library is definitely useful. As suggested by the
previous examples, the Event Library is easy-to-use, and extendible. It is a
powerful library for event-driven programming in general (not just the
particular case of the Observer pattern). The Event Library has already been
used in practice. First, the JMLC paper by Arslan et al. shows the example of
a graphical sensor application. Second, the ESDL multimedia library by Till
G. Bay (Silver price at the Eiffel Class Struggle 2003) uses the Event Library.
Finally, the Mediator Library, which will be described in the next section,
relies on the Event Library.

. Faithfulness: The architecture of the Event Library and architecture of
systems designed and implemented with the Event Library are completely
different from the original Observer and the systems that are based on it.
However, the Event Library fully satisfies the intent of the original Observer
pattern and keeps the same spirit. Therefore I consider the Event Library as
being a faithful componentized version of the Observer pattern.

. Type-safety: The Event Library mainly relies on constrained genericity and
agents. Both mechanisms are type-safe in Eiffel. As a consequence, the Event
Library is also type-safe.

. Performance: The main difference between the internal implementation of the
Event Library and the Observer design pattern is the use of agent calls instead
of direct calls to wupdate features. Using agents implies a performance
overhead, but very small on the overall application. Therefore, the
performance of a system based on the Event Library will be in the same order
as when implemented with the Observer pattern directly.

. Extended applicability: The Event Library is applicable to more cases than the
original Observer pattern. It provides support for event-driven programming
in general.

The Event Library was the first successful componentization. Many others followed;

for example the Mediator.

7.2 MEDIATOR PATTERN

The Mediator pattern has some commonalities with the Observer pattern, in
particular a notify-update mechanism. Hence the idea to use the Event Library to
implement it. Let’s now describe the advantages of this solution and explain how to
turn this pattern implementation into a reusable Eiffel component.

Arslan 2003].
Bay 2003].
NICE-Web].

“Mediator Library”.
page 111.

The performance
overhead of agents is
explained in detail in
appendix A, p 390.

§7.2 MEDIATOR PATTERN 107

Pattern description

The Mediator pattern “define[s] an object that encapsulates how a set of objects [Gamma 1995] p
interact. Mediator promotes loose coupling by keeping objects from referring to 273.
each other explicitly, and it lets you vary their interaction independently”.

The Mediator pattern describes a way to control the interactions between a set
of objects called “colleagues”. Rather than having everyone know everyone else, a
central point of contract (the “mediator”’) knows about its “colleagues”. In a word,
the Mediator pattern recommends the “monarchy” over the “anarchy”:

Anarchy vs.

Monarchy
“Anarchy” style “Monarchy” style
<+ Send and receive requests
In a system designed according to the Mediator pattern, colleagues only know about
their mediator: they send requests to the mediator, which takes care of forwarding
them to the appropriate colleague; the requested colleague also sends its answer back
to the mediator, which forwards it to the originator of the request. There is no direct
interaction between colleagues. Everything goes through the mediator.
Here is the class diagram of a typical application using the Mediator pattern:
* < mediator *
MEDIATOR COLLEAGUE /) . Class dia-
notify_mediator
7'y update_colleagues - gram of a typ-
ical
application
i using the
+ coccdgue Mediator pat-
MEDIATO. tern

colleague 2

The MEDIATOR knows all its COLLEAGUES, here colleague 1 of type COLLEAGUE 1
and colleague 2 of type COLLEAGUE 2. Whenever colleague 1 and colleague 2
change state, they call notify _mediator — which they inherit from COLLEAGUE —
which calls update colleagues on the MEDIATOR with the current colleague as
argument. The procedure update colleagues — declared as deferred in class
MEDIATOR and effected by its descendants, here MY MEDIATOR — updates the
colleagues according the state change in the colleague received as argument. In this
example, MY MEDIATOR updates colleague 2 if colleague 1 changes and colleague 1
if colleague 2 changes.

108 OBSERVER AND MEDIATOR §7

A possible implementation of class MY MEDIATOR is given below:

class

MY MEDIATOR
inherit

MEDIATOR
create

make

feature { NONE} -- Initialization

make is
-- Create colleague 1 and colleague 2.
do
create colleague [«make (Current)
create colleague 2« make (Current)
end

feature -- Access

colleague 1: COLLEAGUE 1
-- First colleague of mediator

colleague 2: COLLEAGUE 2
-- Second colleague of mediator

feature -- Basic operations

update_colleagues (a_colleague: COLLEAGUE) is
-- Update colleagues because a_colleague changed.

do
if a_colleague = colleague 1 then
colleague 2+do _something 2
elseif a_colleague = colleague 2 then
colleague 1edo _something 1
end
end

invariant

colleague 1 not void: colleague 1 /= Void
colleague 2 not void: colleague 2 /= Void

end

The COLLEAGUE knows its MEDIATOR and provides a feature notify _mediator. Here
is a possible implementation:

deferred class
COLLEAGUE
feature { NONE?} -- Initialization

make (a_mediator: like mediator) is
-- Set mediator to a_mediator.
require
a mediator not void: a_mediator /= Void
do
mediator .= a_mediator
ensure
mediator_set: mediator = a_mediator
end

Concrete
Mediator

Deferred col-
league

§7.2 MEDIATOR PATTERN

feature -- Access

mediator: MEDIATOR
-- Mediator

feature -- Mediator pattern

notify_mediator is

-- Notify mediator that current colleague has changed.
do

mediatoreupdate colleagues (Current)
end

invariant

mediator not void: mediator /= Void

end

109

A concrete colleague, say colleague 1, calls notify_mediator in all features that imply
a state change.

Here is an example:

class

COLLEAGUE 1
inherit

COLLEAGUE

feature -- Element change

change 1 is
-- Change state of current colleague.
do
notify_mediator
end

end

This notify-update mechanism looks like the Observer pattern. (Design Patterns
already mentions the similarity.) Hence the idea to use the Event Library to
implement the Mediator pattern. Here is the resulting class diagram:

COLLEAGUE

event 1

EVENT TYPE
EVENT DATA -> TUPLE

Notification
of the media-
tor by a col-
league

Gamma 1995], p

Mediator
implementa-
tion using the
Event Library

110 OBSERVER AND MEDIATOR §7

The advantage of this solution is to simplify the implementation of class
COLLEAGUE and class MEDIATOR; no feature notify_mediator in the former, no
feature update colleagues in the latter anymore. The mechanism is taken care of by
the Event Library:

. Each concrete COLLEAGUE declares an event type of type EVENT TYPE
[TUPLE]; here event 1 in COLLEAGUE 1 and event 2 in COLLEAGUE 2.

. Each concrete colleague publishes the event whenever its internal state
changes. Instead of calling notify mediator like in a traditional pattern
implementation, it calls publish of the Event Library:

class

COLLEAGUE 1
inherit

COLLEAGUE

feature -- Element change

change 1 is
-- Change state of current colleague.
do

event_1 «publish ([])
end

end

. On the other side, the mediator subscribes to all types of events declared by
its colleagues; this is done in the creation procedure of class MEDIATOR:

class

MEDIATOR
create

make
feature -- Initialization

make is
-- Create colleague I and colleague 2.
do
create colleague 1 +make (Current)
create colleague 2+ make (Current)

colleague_1eevent I esubscribe (
agent colleague 2edo_something 2)
colleague 2 eevent 2 ¢subscribe (
agent colleague 1 edo_something 1)
end

end

Writing the Mediator pattern with the Event Library is already a step forward
compared to a traditional pattern implementation. No need to take care of the
notification-update mechanism and pollute the classes MEDIATOR and COLLEAGUE
with extra code; the Event Library does everything for us.

However, such implementation is still not perfect. In particular, it does not
bring a reusable component. Let’s try to see whether it would be possible to write a
reusable Mediator Library.

Publication of
an event by a
colleague

Mediator
using the
Event Library

§7.2 MEDIATOR PATTERN

Mediator Library

The Mediator pattern suggests using inheritance to have different kinds of
mediators. Most of the code of concrete mediator classes is likely to be similar.
Hence the idea to use genericity to avoid code duplication. But simple genericity is
not enough: the implementation of MEDIATOR relies on the implementation of its
COLLEAGUEs. We need constrained genericity.

Then, a Mediator library needs to be general enough to cover all possible
cases of mediators. In particular, it needs to cover the case of multiple colleagues,
not only two colleagues like in the previous example. We need a list of colleagues.

The resulting Mediator Library has two classes: a generic class MEDIATOR
constrained by COLLEAGUE, the second class of the library. The constraint means
that actual generic parameters must conform to (typically inherit from) type
COLLEAGUE. Class MEDIATOR has a list of colleagues and provides the ability to
extend or remove colleagues from this list. The difficulty of using a list rather than a
fixed set of colleagues is to make sure that the mediator subscribes to the event of
the newly added colleagues and unsubscribes from the event of removed colleagues.
The implementation provided with this thesis uses contracts extensively to ensure
consistency. (The two queries is_colleague subscribed and is_colleague_unsubscribed
are used for contract support only.)

Here is the text of class MEDIATOR:

class

MEDIATOR [—> COLLEAGUE)]
create

make

feature { NONE?} -- Initialization

make is
-- Initialize colleagues.
do
create colleagues « make
end

feature -- Access

colleagues: LINKED LIST [(/]
-- Colleagues of mediator

feature -- Element change

extend (a_colleague: () is
-- Extend colleagues with a_colleague.
-- Update event subscription of colleagues.
require
a_colleague not void: a_colleague /= Void
not_a colleague: not colleagues ¢ has (a_colleague)
local
other _colleague, new colleague: COLLEAGUE
a_cursor: CURSOR
do
new_colleague :=a_colleague
a_cursor = colleagues « cursor

111

Mediator
(part of Medi-
ator Library)

112 OBSERVER AND MEDIATOR §7

-- Subscribe existing colleagues
--to a_colleague «do_something.
-- Subscribe a_colleague to other colleagues' event.
from colleagues « start until colleagues « after loop
other colleague = colleagues « item
other colleague « event « subscribe (
agent new colleagueedo something)
new_colleague « event e subscribe (
agent other colleague«do something)
colleagues « forth
end

-- Add a_colleague to the list of colleagues.
colleagues « extend (a_colleague)

colleagues « go_to (a_cursor)
ensure
one more: colleagues « count = old colleagues « count + 1
is_last: colleagues o last = a_colleague
subscribed: colleagues o for all (
agent is_colleague subscribed)
end

feature -- Removal

remove (a_colleague: (7) is

-- Remove a_colleague from colleagues.

-- Update event subscription of remaining colleagues.
require

a colleague not void: a_colleague /= Void

has_colleague: colleagues ¢ has (a_colleague)
local

a_cursor: CURSOR

old colleague, other colleague: COLLEAGUE
do

a_cursor = colleagues « cursor

-- Unsubscribe remaining colleagues
-- from a_colleague o do_something.
-- Unsubscribe events from a_colleague.
-- Remove a_colleague from colleagues.
old colleague :=a_colleague
from colleagues ¢ start until colleagues « after loop
other_colleague := colleagues « item
if other colleague =a_colleague then
colleagues « remove
else
other colleague « event o unsubscribe (
agent old colleague «do something)
old colleague « event « unsubscribe (
agent other colleague «do_something)
colleagues « forth
end
end
colleagues «go_to (a_cursor)
ensure
one less: colleagues « count = old colleagues « count — 1
not has colleague: not colleagues ¢ has (a_colleague)
unsubscribed: a_colleague « unsubscribed
end

We need to unsub-
scribe events from a_
colleague because
nothing prevents
from calling a_col-
league « change event if
a_colleague is not a
colleague of the
mediator anymore.

§7.2 MEDIATOR PATTERN

feature {NONE} -- Implementation

is_colleague subscribed (a_colleague:): BOOLEAN is
-- Is a_colleague subscribed to other colleagues' event?
require
a colleague not void: a_colleague /= Void
do
Result .= a_colleague « subscribed
ensure
definition: Result = a_colleague « subscribed
end

is_colleague unsubscribed (a_colleague:): BOOLEAN is
--Is a_colleague unsubscribed from other colleagues' event?
require
a colleague not void: a_colleague /= Void
do
Result .= a_colleague « unsubscribed
ensure
definition: Result = a_colleague ¢ unsubscribed
end

invariant

colleagues not_void: colleagues /= Void
no_void_colleague: not colleagues « has (Void)

end

The class COLLEAGUE knows its mediator and declares an event type. It also
provides two queries subscribed and unsubscribed for contract support and a certain
feature change that modifies the colleague’s state and publishes the event.
Descendants of class COLLEAGUE will only need to effect the implementation

procedure do_change to have their own state variation.

The text of class COLLEAGUE appears below:

deferred class
COLLEAGUE
feature {NONE?} -- Initialization

make (a_mediator: like mediator) is
-- Set mediator to a_mediator.
require
a mediator not void: a_mediator /= Void
do
mediator .= a_mediator
create event
ensure
mediator_set: mediator = a_mediator
end

feature -- Access

mediator: MEDIATOR [COLLEAGUE]
-- Mediator

event: EVENT TYPE [TUPLE]
-- Event

113

Mediator col-
league (part
of the Media-
tor library)

114 OBSERVER AND MEDIATOR §7

feature -- Status report

subscribed: BOOLEAN is
-- Is current subscribed to other colleagues' event?
do

end

unsubscribed: BOOLEAN is
-- Is current unsubscribed from other colleagues' event?
do

end

feature -- Basic operations

change is
-- Do something that changes current colleague's state.
do
do_change
event « publish ([])
end

do_something is
-- Do something.
deferred
end

feature { NONE?} -- Implementation

do_change is
-- Do something that changes current colleague's state.
deferred
end

invariant

mediator not void: mediator /= Void
event not void: event /= Void

end

The Mediator Library captures the intent of the Mediator pattern in a reusable
component. It relies on the Event Library to implement the notification-update

See “Event Library”’

mechanism of the pattern and makes extensive use of agents, contracts, and P%<¢102

constrained genericity.

Book library example using the Mediator Library

Let’s illustrate how to use the Mediator Library on the library example.

A library has a set of users who cannot borrow books all at the same time. We
can imagine that a library USER must tell a “mediator” when he borrows a book; in
response to this event, the “mediator” (a MEDIATOR of USERs) will say to other
users (the “colleagues”) that they cannot borrow this book anymore.

Here is a simple implementation of a class USER using the Mediator Library:

class
USER
inherit

COLLEAGUE

Library user
class imple-

mented with

the Mediator
library

§7.2 MEDIATOR PATTERN

create
make
feature -- Status report

may_borrow: BOOLEAN
-- May user borrow books from the library?

feature -- Element change

do_something is
-- Set may_borrow to False.
do
may_borrow = False
ensure then
may not borrow: not may borrow
end

feature { NONE?} -- Implementation

do_change is
-- Borrow a book from the library.
do
if may borrow then
-- Borrow a book from the library.
end
end

end

The event handling is managed by the Mediator Library. No need to implement it
anew for each application.

Componentization outcome

The componentization of the Mediator pattern, which resulted in the development of
the Mediator Library, is a success because it meets the componentizability quality
criteria established in section 6.1:

. Completeness: The Mediator Library covers all cases described in the original
Mediator pattern.
. Usefulness: The Mediator Library is useful for at least two reasons. First, it

provides a reusable solution to the Mediator pattern, which is as powerful as
an implementation from scratch of the pattern. Second, it benefits from the
simplicity of use of the Event Library.

. Faithfulness: The Mediator Library is similar to an implementation of the
Mediator pattern using the Event Library (with the benefits of reusability); it
just introduces genericity to have a reusable solution. On the other hand, the
Mediator Library is somewhat different from a traditional implementation of
the Mediator pattern (as the Event Library differs from the Observer pattern).
However, the Mediator Library fully satisfies the intent of the original
Mediator pattern and keeps the same spirit. Therefore I consider the Mediator
Library as being a faithful componentized version of the Mediator pattern.

115

116 OBSERVER AND MEDIATOR §7

. TBype-safety: The Mediator Library mainly relies on constrained genericity and
agents. Both mechanisms are type-safe in Eiffel. As a consequence, the
Mediator Library is also type-safe.

. Performance: Comparing the implementation of the Mediator Library with a
direct pattern implementation shows that the only difference is the use of
agents. Using agents implies a performance overhead, but very small on the
overall application. Therefore, the performance of a system based on the
Mediator Library will be in the same order as when implemented with the
Mediator pattern directly.

. Extended applicability: The Mediator Library does not cover more cases than
the original Mediator pattern.

7.3 CHAPTER SUMMARY

. The Observer pattern describes a way to facilitate the update of so-called
“observers” (for example a GUI application) whenever the underlying data
(the “subject”) changes. It helps having a software architecture that is cleaner
and easier to maintain.

. The Observer pattern also has weaknesses; in particular, it is not possible to
subscribe to more than one kind of event.

. The Event Library removes this limitation and provides a reusable solution for
event-driven development.

. The Event Library relies on constrained genericity and agents.

. The Mediator pattern describes a way to control the interaction between a set

of objects; it avoids objects from referring to each other explicitly for greater
system flexibility.

. The communication between “colleagues” and their “mediator” can be
implemented with the Observer pattern. Using the Event Library avoids
polluting the code with features to handle notification and update of
colleagues.

. The Mediator Library is a reusable component capturing the intent of the
Mediator pattern; it relies on constrained genericity and agents, and uses the
Event Library.

The performance
overhead of agents is
explained in detail in
appendix A, p 390.

Gamma 1995], 293-
303.

Meyer 2003b], and
Arslan-Web].

Gamma 1995], 273-
282.

3

Abstract Factory and Factory

Method

Fully componentizable

In the previous chapter, we saw two key mechanisms, constrained genericity and
agents, that conditioned the componentization success of the Observer and Mediator
design patterns.

The present chapter explains how unconstrained genericity combined with the
Eiffel agent mechanism enable building a reusable component that addresses the
same needs as the Abstract Factory pattern.

First, it describes the pattern’s intent and structure, it shows how to build the
pattern in Eiffel, and highlights the flaws of this pattern solution. Then, it describes
the implementation of the Factory Library built from the pattern and documents the
design decisions that led to the actual component. Finally, it compares the Abstract
Factory pattern and the Factory Library from a user point of view.

8.1 ABSTRACT FACTORY PATTERN

The Abstract Factory design pattern is a widely used solution to create object
families without specifying the concrete type of each object. However, it has flaws
in terms of system evolution and extensibility, and it must be implemented afresh for
each new development. Let’s have a look at the pattern in more detail.

Pattern description

Dubois 1999] and

chapter 25 of [Meyer
200?b].

Gamma 1995], p 87-
95.

The Abstract Factory pattern “provide[s] an interface for creating families of related [Gamma 1995], p 87.

or dependent objects without specifying their concrete classes”.

In other words, the goal is to be able to create families of objects — let’s say
objects of type PRODUCT A and objects of type PRODUCT B — without saying the
exact type of these objects: they can be direct instances of type PRODUCT A (or
PRODUCT B) but they can also be instances of proper descendants of PRODUCT A
(or PRODUCT B), for example PRODUCT Al and PRODUCT A2 (or PRODUCT Bl
and PRODUCT B2).

How can we implement the Abstract Factory pattern? The key idea is to
introduce a deferred (abstract) class FACTORY — the “Abstract Factory” — that
delays the product creation to its descendants: FACTORY I to create products of type
PRODUCT Al and PRODUCT Bl1, FACTORY 2 to create products of type PRODUCT _
A2 and PRODUCT B2.

118 ABSTRACT FACTORY AND FACTORY METHOD §8
Here is the class diagram of a typical application using the Abstract Factory
pattern:

*

PRODUCT A

+ +
*
=\ PRODUCT Al new product 4 ppODUCT A2) 4=

Class dia-

FACTORY new_product_a+ ;gé’:lm of a typ-

application
using the
Abstract Fac-
tory pattern

*
new_product_a+

new_product_b*

s
new product b+ PRODUCT B new_product_b+
* s
PRODUCT BI PRODUCT. B2

The class FACTORY exposes two functions: new product a and new product b to
create products of type PRODUCT A and PRODUCT B. These functions are deferred,
meaning they are not implemented: their implementation is deferred to the heir
classes FACTORY 1 and FACTORY 2.

Design Patterns uses slightly different naming conventions: it speaks about a class
AbstractFactory instead of E4ACTORY; about classes ConcreteFactoryl and ConcreteFactory2
instead of E4ACTORY 1 and FACTORY 2; about AbstractProductA and AbstractProductB instead
of classes PRODUCT 4 and PRODUCT B in our example. The terminology by Gamma et
al. reflects the conventions of C-like languages (C++, Java, etc.), which use camel case,
whereas the terminology used in this thesis reflects the Eiffel naming conventions with
upper-case class names and underscores. Likewise, the name of the factory functions,
new_product_a and new_product_b, follow the Eiffel style guidelines; in Design Patterns they Meyer 1992], p 483-

appear as CreateProductA() and CreateProductB(). 411337“”;1)[81\;[—;’3’;—52

Flaws of the approach

. Applying the Abstract Factory pattern to a software system means that you
have to provide a concrete factory for every product family “even if the [Gamma 1995], p 90.
product family differs only slightly”. In the above example, we have two
product families (PRODUCT A and PRODUCT B) and two branches for each
category of product (PRODUCT Al and PRODUCT A2 on the one hand;
PRODUCT Bl and PRODUCT B2 on the other hand); hence we need to
provide two concrete factories FACTORY I (for products of type PRODUCT _
Al and PRODUCT BI) and FACTORY 2 (for products of type PRODUCT A2
and PRODUCT B2). But the text of these two classes is going to be similar.
Using the Abstract Factory pattern yields code repetition, which is at the
opposite of reusability.

§8.2 FACTORY LIBRARY

. Another drawback of the approach is the lack of flexibility. Indeed, the
“abstract factory” fixes the set of factory functions (new product a and new_
product_b), which implies extending the class FACTORY and modify all its
descendants to support new kinds of products. This is not very flexible.

. The class FACTORY sketched in the previous figure is not reusable.
Developers need to implement it anew for each application.

The first goal of the componentization work was to build a reusable component out
of the Abstract Factory pattern. This effort proved successful and resulted in the
Factory Library. This reusable component also resolves the flaws of the original
pattern implementation. A subsequent section explains this beneficial side-effect in
more detail.

8.2 FACTORY LIBRARY

Let’s take a look at the outcome of the componentization effort: the Factory Library.
Before presenting the final product, this dissertation presents the successive versions
that led to the current design, explaining why they were not retained.

A first attempt: with unconstrained genericity and object cloning

The first try at building a “component” version of the Abstract Factory pattern
followed the hint suggested in Design Patterns to consider the Prototype pattern. In
section 5.1, we saw that using “prototypes” in Eiffel simply meant object cloning.
Following this idea, the first version of the Factory Library combined the cloning
facility of Eiffel with (unconstrained) genericity to find out a reusable
implementation of the Abstract Factory pattern.

Here was the resulting generic class FACTORY [G]:

class
FACTORY [(]
create

make

feature -- Initialization

make (a_prototype: like prototype) is
-- Set prototype to a_prototype.
require
a_prototype not void: a_prototype /= Void
do
prototype = a_prototype
ensure
prototype_set: prototype = a_prototype
end

feature -- Factory function

new: G is
-- New instance of type G
do
Result = clone (prototype)
ensure
new_not void: Result /= Void
end

119

See “Abstract Fac-
tory vs. Factory

Library: Strengths
and weaknesses ",

page 127.

Gamma 1995], p 90.

First version
of the Factory
Library with
uncon-
strained
genericity and
object cloning

120 ABSTRACT FACTORY AND FACTORY METHOD §8

feature {NONE?} -- Implementation

prototype:
-- Prototype from which new objects are created

invariant
prototype not void.” prototype /= Void

end

The creation routine make takes an instance of type G (the formal generic parameter
of class FACTORY [G]) as argument (the prototype to be cloned) and sets the
implementation attribute prototype with it. The class FACTORY also defines a feature
new (the factory function), which returns a new instance of type G by cloning

prototype.

This first implementation uses shallow cloning. We could also imagine
providing a feature deep_new, which would have the same signature as new, but
would use deep_clone (from class ANY) instead of clone:

class
FACTORY [(]
feature -- Access

deep _new: G is
-- New instance of type G using deep cloning
do
Result .= deep _clone (prototype)
ensure
deep new not void: Result /= Void
end

end

or define two “select” features, select deep cloning and select shallow cloning, which
would set a boolean attribute is deep cloning to True or False and achieve the same
facility.

class
FACTORY [(]
feature -- Status Report

is_deep cloning: BOOLEAN
-- Is deep cloning enabled?

feature -- Status Setting

select_shallow_cloning is
-- Set is_deep_cloning to False.
do
is_deep cloning := False
ensure
is_shallow_cloning: not is_deep cloning
end

Factory func-
tion using
deep cloning

Factory class
with the abil-
ity to choose
between deep
and shallow
cloning

§8.2 FACTORY LIBRARY

select_deep cloning is
-- Set is_deep cloning to True.
do
is_deep cloning = True
ensure
is_deep cloning: is_deep cloning
end

feature -- Factory function

new: G is
-- New instance of type G
do
if is_deep cloning then
Result .= deep clone (prototype)
else
Result .= clone (prototype)
end
ensure
new_not void: Result /= Void
end

end

Even with the possibility of choosing between deep and shallow cloning, this first
version of the “Factory library” is not fully satisfactory because of the use of object
cloning. Indeed, we saw in section 5.1 that using the Prototype pattern does not
allow taking care of initializing the newly created objects. One way to address this
issue would be to constraint the formal generic parameter G with a default
initialization procedure. Let’s examine this option now.

Another try: with constrained genericity

The first try at building a “Factory component” was not completely convincing
because it lacked flexibility. Let’s require the client to list default create among its
creation procedures to avoid the need for object re-initialization.

The procedure default_create is defined in class ANY, hence available in any Eiffel class.
It is the default creation procedure, meaning that a class, which does not list any creation
procedure, will automatically have default create as creation procedure. However a class
which has other creation procedures has to explicitly list defauit_create otherwise it would
not be a valid creation procedure for the class.

The “Factory library” became the class FACTORY [G] shown below:

class
FACTORY [—> ANY create default create end]

feature -- Factory method

new: (5 is
-- Instantiate a new object of type G
do
create Result
ensure
new_not void: Result /= Void
end

end

121

Factory
Library
requiring a
default cre-
ation proce-
dure

122 ABSTRACT FACTORY AND FACTORY METHOD §8

The notation FACTORY [G -> ANY create default create end] in the above class text is a form
of constrained genericity. It means that any actual generic parameter of FACTORY must
conform to 4NY and expose default _create in its list of creation procedures (introduced by

This notation is
explained in appen-
dix A with the notion
of constrained

the keyword create in an Eiffel class text). For better readibility, it is common not to
explicitly mention the constraint when talking about the class; for example here the text
speaks about the F4ACTORY [G], not about the FACTORY [G -> ANY create default_create end).

genericity, starting
on page 387.

Constraining G with default create means that a derivation, say FACTORY [BOOK], is
valid if and only if default create is a creation procedure of class BOOK. As a
consequence, BOOK has to be an effective class. For example, we could not have a
FACTORY [BORROWABLE] if the class BORROWABLE is declared as deferred.

Declaring an attribute or a local variable of type FACTORY [SOME_TYPE], where SOME
TYPE is a deferred class, can be useful in practice if the exact dynamic type of the actual
parameter is not needed to perform an operation. For example, we may want to eat
vegetarian food and have a FACTORY [VEGETABLE]; we do not care whether the actual
vegetables we get (depending on the type of the object to which the factory is attached)
are pees or carrots.

This is not the only drawback. Let’s go back to the book library example for
a better understanding of the constraints that such a design puts on the users. First,
we need to define two factories: FACTORY [BOOK] and FACTORY [VIDEO _
RECORDER)]. The declaration of a book factory will look like this:

class
LIBRARY
feature -- Access

book_factory: FACTORY [BOOK] is
/ g -- Book fachry B Book factory
once

create Result
ensure

book factory not void: Result /= Void

end

end

Using once functions ensures the factory objects will be created only once (in the system),
hence saving memory.

But this code is only correct if class BORROWABLE lists default create as
creation procedure. We could easily imagine that a borrowable item has an id of type
STRING, which needs to be set at creation time to ensure a class invariant id /= Void.
In that case, class BORROWABLE would not have default create as creation procedure
but a more specialized make with an argument of type STRING:

class

BORROWABLE
Borrowable

item class
with a string
identifier

create

make

feature { NONE?} -- Initialization

§8.2 FACTORY LIBRARY

make (an_id: like id) is
-- Setid to an_id.

do

id :=an_id
ensure

id set: id=an_id
end

feature -- Access

id: STRING
-- Identifier of current borrowable item

invariant
id not void: id /= Void

end

In such a case, we cannot reuse the previous class FACTORY [G] because we cannot
provide default create as creation procedure. Indeed, if it were just a matter of adding
default_create in the create clause it would not be a big issue, but this is not the case.
We also have to make sure that instantiating a new borrowable item with defauls
create does not break any contract, namely that default create ensures the class
invariant if any. And in fact, class BORROWABLE has an invariant that needs to be
satisfied at creation.

id not void: id /= Void

This means that we need to redefine procedure default_create (inherited from ANY)
not to violate the class invariant as shown by the following class text:

class
BORROWABLE
inherit

ANY
redefine
default_create
end

create

default create,
make

feature {NONE?} -- Initialization
default_create is
-- Create id.
do

create id « make empty
end

-- id and invariant as before

end

123

Invariant of
class BOR-
ROWABLE

Class BOR-
ROWABLE
providing the
creation pro-
cedure
default create

124 ABSTRACT FACTORY AND FACTORY METHOD §8

But this redefinition of feature default create is not elegant at all and the default
initialization, although not breaking the invariant, is not really satisfactory. (An
empty identifier is unlikely to be very useful for the librarian. But we could not use
arguments in the new implementation of default create because it would not match
the signature of the original version defined in ANY.)

Thus, the second attempt at building a reusable component from the Abstract
Factory design pattern was still not the right one.

The final version: with unconstrained genericity and agents

After trying object cloning and constrained genericity, I thought of agents and it
proved the right approach. The Factory Library (final version) imposes no constraint
on the actual parameter and even provides a proper way to initialize the newly
created objects (including creation procedures with arguments).

Here is the code of this simple and easy-to-use library class FACTORY [G],
which is the componentized version of the Abstract Factory pattern:

class

FACTORY [(]
create

make
feature -- Initialization

make (a_function: like factory function) is
-- Set factory_function to a_function.
require
a_function not void: a_function /= Void
do
factory function = a_function
ensure
factory function_set: factory function = a_function
end

feature -- Status report

valid args (args: TUPLE): BOOLEAN is
-- Are args valid to create a new instance of type G?
do
Result := factory function «valid_operands (args)
end

feature -- Factory functions

new: G is
-- New instance of type G
require
valid args: valid args ([1)
do

factory _function e call ([])

Result := factory function e last _result
ensure

new_not_void: Result /= Void
end

Factory
Library (final
version)

§8.3 ABSTRACT FACTORY VS. FACTORY LIBRARY

new with_args (args: TUPLE): G is
-- New instance of type G initialized with args
require
valid args: valid args (args)
do
Sactory function «call (args)
Result .= factory functionelast result
ensure
new_not void: Result /= Void
end

feature -- Access

factory_function: FUNCTION [ANY, TUPLE [], (]
-- Factory function creating new instances of type G

invariant
factory function not void: factory function /= Void

end

A subsequent section will show that the Factory Library has a few weaknesses. Yet
it has the true advantage of being a reusable solution to the problem of object
creation with factories. Software developers can simply rely on it to get the basic
“machinery” instead of having to rewrite the same code again and again in all their
applications; hence a gain in time and quality. (See chapter 2 for a more thorough
explanation of the benefits of software reuse.)

8.3 ABSTRACT FACTORY VS. FACTORY LIBRARY

Let’s see how to use the Factory Library in practice. To highlight the strengths of the
library over the Abstract Factory pattern but also its weaknesses, this section shows
two implementations of the same example: first with the Abstract Factory, second
with the Factory Library.

Let’s take the same example as in previous chapters with a class LIBRARY,
which contains a list of BORROWABLE items that can be either BOOKs or VIDEO
RECORDERSs. A class APPLICATION creates the /ibrary and adds BORROWABLE items
to it.

APPLICATION

BORROWABLE

VIDEO RECORD:

BOOK

For this, we want to use factories.

125

The use of TUPLEs
allows handling the
case of creation rou-
tines with multiple
arguments

factory_function cor-
responds to the cre-
ation routine of the
actual generic
parameter of class
FACTORY [G]. The
type FUNCTION is
part of the agent
mechanism.

See “Abstract Fac-

tory vs. Factory.
Library: Strengths
and weaknesses”,

page 127.

Class dia-
gram of the
book library
example

126 ABSTRACT FACTORY AND FACTORY METHOD §8

With the Abstract Factory

With the Abstract Factory design pattern, we write a class BORROWABLE FACTORY
with a feature new_borrowable, and two descendant classes — one per BORROWABLE
type — BOOK _FACTORY and VIDEO _RECORDER_FACTORY, which implement the
feature new borrowable.

CTO new_borrowable* classes
i needed to
implement the
book library
+ example with
the Abstract
tern
new_borrowablen® new book new_borrowable~®new video recorder
new_book+ new video_recorder+
Then, we can use these factories as follows: for example, we declare a book factory
that returns an instance of BOOK FACTORY (it is implemented as a once function for
efficiency):
book factory: BOOK FACTORY is
-- Book factory
once
create Result Bookfactory
ensure
book factory not void: Result /= Void
end
Then, we can call new_book on it with the appropriate arguments (the book’s title and
authors):
Using the
libraryeadd _borrowable (book factoryenew book (a_title, some_authors)) book factory
With the Factory Library
With the Factory Library, things get simpler. There is no need for extra factory
classes and a parallel hierarchy anymore. Our book factory is simply declared as
FACTORY [BOOK] using the generic FACTORY class of the Factory Library:
book factory: FACTORY [BOOK] is
-- Book factory Factory of

once h
books using

the Factory

ensure Library
book factory not void: Result /= Void

create Result e make (agent new book imp)

end

§8.3 ABSTRACT FACTORY VS. FACTORY LIBRARY

where new_book _imp is a function returning instances of type BOOK:

new_book_imp (a_title, some_authors: STRING): BOOK is
-- New book with a_title and some_authors
require
a_title not void: a_title /= Void
a_title not empty: not a_title«is empty
do
create Result« make (a_title, some_authors)
ensure
book factory not void: Result /= Void
title_set: Result « title = a_title
authors_set: Result « authors = some_authors
end

Then, we can simply call new with_args (because the creation procedure of class
BOOK has arguments) on the book factory to get a new _book and add it to the list of

borrowable items

librarysadd_borrowable (book factoryenew with args ([a_title, some_authors])

This simple example shows that the Factory Library is easy to use for clients. It is
also quite straightforward because the client use is not much different from applying
the Abstract Factory pattern (except that most of the code does not need to be
written anymore; clients just reuse the facilities provided by the Factory Library).

Abstract Factory vs. Factory Library: Strengths and weaknesses

The Factory Library was introduced because of the deficiencies of the Abstract
Factory pattern: lack of flexibility, code redundancy, non-reusability of code. It is

now time to assess whether the resulting component has solved our problems.

Using the Factory Library in the previous example was beneficial for several

reasons:

. We needed fewer classes to build the same application: instead of having to
duplicate the BORROWABLE hierarchy with corresponding factory classes
(BORROWABLE FACTORY, BOOK FACTORY, VIDEO RECORDER FACTORY),
we could just reuse the same generic class FACTORY [G] for all kinds of
borrowable items, sweeping away the code redundancy of the version with

abstract factories.

. We didn’t have to write the class FACTORY [G]: we just reused the class
provided by the Factory Library. Reusability is, in my opinion, the major
advantage of a solution using the Factory Library. Indeed, the one factory
class FACTORY [G], as a library class, can be reused in many applications
whereas a class like BOOK FACTORY is specific to just one application and

cannot be reused without changes.

On the other hand, the Factory Library also has limitations:

. Relying on a generic class means losing the flexibility of inheritance. Indeed,
some code that was in the factory classes BOOK FACTORY and VIDEO
RECORDER FACTORY will be moved to the client class APPLICATION,
yielding a bigger class and some code redundancy (since there is no parent
class BORROWABLE FACTORY to capture the commonalities between the
different factories). For example, features like new book and new video
recorder will have similarities that cannot be factorized because of the lack of

inheritance.

127

Implementa-
tion feature
needed to use
the Factory
Library

Using the
Factory
Library

See “Flaws of the

approach”, page
118.

128 ABSTRACT FACTORY AND FACTORY METHOD §8

. Factories using the Factory Library can create only one kind of product (with
the function new or new with_args). One must use several factories to create
several kinds of products.

In my opinion, the benefits of reusability offset these limitations. See chapter 2. page
31

Componentization outcome

The componentization of the Abstract Factory pattern, which resulted in the
development of the Factory Library, is a success because it meets the
componentizability quality criteria established in section 6.1:

. Completeness: The Factory Library covers all cases described in the original
Abstract Factory pattern. One may object that handling the creation of only
one kind of product implies non-completeness of the solution. In my opinion,
the difference lays rather in the way the library is used: one need to have two
factories if we want to create two kinds of product when using the Factory
Library instead of just one in a pure pattern implementation but one can
achieve the same result. Hence the above affirmation that the Factory Library
is a complete implementation of the Abstract Factory pattern.

. Usefulness: The Factory Library is useful because it provides a reusable
solution to the Abstract Factory pattern. No need to rewrite the FACTORY
class for each new development.

. Faithfulness: The architecture of systems built with the Factory Library is
different from the architecture of applications following the traditional
implementation of the Abstract Factory pattern (because of the use of
genericity rather than inheritance). However, the Factory Library satisfies the
intent of the original Abstract Factory pattern and keeps the same spirit.
Therefore I consider the Factory Library as being a faithful componentized
version of the Abstract Factory pattern.

. Type-safety: The Factory Library mainly relies on constrained genericity and
agents. Both mechanisms are type-safe in FEiffel. As a consequence, the
Factory Library is also type-safe.

. Performance: The main difference between the internal implementation of the
Factory Library and the Abstract Factory design pattern is the use of agent
calls instead of direct calls to factory functions. Using agents implies a The performance
performance overhead, but very small on the overall application. Therefore, Ove?h.ea‘ilof ‘zlgenfs s
] . . explained in detail in
the performance of a system based on the Factory Library will be in the same appendix 4, p 390.

order as when implemented with the Abstract Factory pattern directly.

. Extended applicability: The Factory Library does not cover more cases than
the original Abstract Factory pattern.

8.4 FACTORY METHOD PATTERN

The Factory Method and the Abstract Factory patterns are similar, even though not
identical. This section should help understand the fundamental differences between
these however related notions.

Pattern description

The Factory Method pattern “define[s] an interface for creating an object, but let [Gamma 1995], p
subclasses decide which class to instantiate. Factory Method lets a class defer 107
instantiation to subclasses.”

§8.4 FACTORY METHOD PATTERN

The purpose of the Factory Method is similar to the one of the Abstract
Factory although its scope is slightly different: it concentrates on the creation of one
object, not on families of objects; it works at the level of a method, not at the level
of the class — or classes. The Factory Method is part of a class: it helps the class
perform its business (a certain “operation”) by creating an object — in a flexible
way, without specifying the exact type of the object to be created — needed to
accomplish this operation.

To make things clear, the purpose of the class containing the Factory Method

is not to create new objects (contrary to an Abstract Factory) but to perform a task,
which requires creating an object.

Using the Factory Method pattern to design an Eiffel application leads to a
class hierarchy similar to the one shown below:

* new product* >
APPLICATION PRODUCT

A

*
y
mnew product+ > +
MY PRODUCT

The purpose of the deferred class APPLICATION 1is to do something defined in a
feature ingeniously named do _something that needs to create a new instance of type
PRODUCT to accomplish its task; the “factory method” new product satisfies this
needs.

The version of new_product provided by APPLICATION 1is deferred for greater
flexibility.

The class APPLICATION could be effective and provide a default implementation of the
factory method new_product, which would then return a new instance of type MY_PRODUCT.
But this solution forces the APPLICATION class to know about the descendants of class
PRODUCT, which in our opinion lacks flexibility.

It is effected covariantly in the descendant class MY APPLICATION: the new product

feature from MY APPLICATION returns an instance of type MY PRODUCT — whose
base class MY PRODUCT inherits from the deferred class PRODUCT.

Design Patterns uses slightly different naming conventions: it speaks about a class Creator
instead of APPLICATION; about ConcreteCreator instead of MY APPLICATION; about
ConcreteProduct instead of MY _PRODUCT in our example.

The choice of class names starting with “Concrete...” to make clear it is a concrete (non-
deferred) class reflects the conventions of C-like languages (C++, Java, etc.); it is not
the Eiffel style.

Our motivation to change the application class name from CREATOR to APPLICATION was
rather different: we aimed at expressing the intent of the class better and avoid confusions
in the reader’s mind — because the goal of the class is to perform a certain operation
not to create instances (it’s not a factory class).

Drawbacks

. One drawback of the Factory Method pattern — already pointed out by

129

Class dia-
gram of a typ-
ical
application
using the
Factory
Method pat-
tern

Meyer 1992], p 483-
496 and [Meyer

1997, p 875-902.

Design Patterns — is that you might have to create an heir of class [Gamma 1995] p

APPLICATION just to be able to instantiate the appropriate product; hence an

increase of the number of classes for no good reason.

130

. Besides, it does not bring a reusable solution; it is just a design “scheme” that
developers will have to rewrite anew each time they want to use it; hence a
cost on time, but above all on the software quality.

An impression of “déja vu”

How could we handle the Factory Method more elegantly? [Gamma 1995] suggests
using templates in C++ to avoid the redefinition problem mentioned above. In Eiffel,
it means exploring genericity.

But examining the problem closer, we see that we do not need yet another
library. At the beginning of this discussion about the Factory Method design pattern,
I pointed out its resemblance with a previously examined creation pattern: the
Abstract Factory. Indeed, if we look at the class diagram introduced then, we realize
that it is close to the diagram of classes governing the Factory Method design
pattern.

In fact, the Factory Method is a special case of an Abstract Factory involving
only one family of product. Therefore we already have a nice solution at our
disposal: we can easily use the Factory Library described earlier and handle the
Factory Method mechanism in a convenient and reusable way.

8.5 CHAPTER SUMMARY

. The Abstract Factory design pattern is a working solution to create object
families without specifying the concrete type of these objects. However, it
falls short when talking about flexibility and reuse.

. The Factory Library embodies the idea of the Abstract Factory pattern into a
reusable component, providing a nice answer to the issue raised by Pinto et al.
in 2001: “The DPs fail providing a solution because it is necessary to apply
and implement the same design pattern over and over, for each component”.

. The Factory Library relies on (unconstrained) genericity and agents.

. The Factory Library is still not completely satisfactory because it misses the
flexibility of inheritance that we find in the Abstract Factory pattern.

. The Factory Method pattern helps a class perform its task by taking care of
an object creation. The goal of the factory method’s declaring class is not to
create objects but it needs to create objects to do its job; the factory method
provides this service.

. The Factory Method pattern can be handled with the Factory Library.

ABSTRACT FACTORY AND FACTORY METHOD §8

See chapter 2 about
the benefits of soft-
ware reuse on quality.

See “‘Class diagram
of a typical applica-
tion using the
Abstract Factory pat-
tern”, page 118.

Gamma 1995], p 87-
95.

Pinto 2001].

Dubois 1999] and

chapter 25 of [Meyer
200?b].

Gamma 1995], p
107-116.

9

Visitor

Fully componentizable

Chapter 5 gave a preview of the successful componentization of the Visitor pattern.
At that time, only the interface of the resulting Visitor Library was presented. This
chapter describes the reusable component in more detail, going through all design
steps that led to the actual Visitor Library.

After describing the pattern’s intent, structure, advantages and drawbacks, the
chapter recalls briefly related approaches that try to improve the Visitor pattern and
moves on to the genesis of the Visitor Library.

9.1 VISITOR PATTERN

The Visitor pattern is a well-known and frequently used design pattern, especially in
the domain of compiler construction. Let’s take a closer look at the goals it tries to
satisfy and also its drawbacks.

Pattern description

The Visitor pattern “represent[s] an operation to be performed on the elements of an
object structure. Visitor lets you define a new operation without changing the classes
of the elements on which it operates”.

Here is the class diagram of a typical application relying on the Visitor
pattern:

*
>
ELEMENT
accept’* visit_element a*
visit_element b*
accept+ accept+ visit_element_a+ visit_element _a+

visit_element b+ visit_element b+

See ‘A componentiz-
able pattern: Visi-
tor”, 5.2, page 68.

See “‘From Visitor to
Walkabout and Run-

about”, page 56.

Gamma 1995], p
331

Class dia-
gram of a typ-
ical
application
using the Vis-
itor pattern

132

The idea of the Visitor pattern is to be able to “plug” some functionalities to an
existing class hierarchy without modifying those classes. In fact, the Visitor pattern
is not completely transparent because all ELEMENT classes need to be augmented by
one feature accept. It will be deferred in the parent class ELEMENT and effected in
its descendants. For example, class ELEMENT A is likely to implement it as follows:

class

ELEMENT A
inherit

ELEMENT
i:e;ature -- Basic operation

accept (a_visitor: VISITOR) is
-- Accept a_visitor. (Select appropriate visit_* feature of a_visitor
-- depending on the type of the current element.)
do
a_visitore visit_element a (Current)
end

end

The class VISITOR lists as many visit_* features — usually procedures — as there are
concrete descendants of class ELEMENT. Typically deferred in the class VISITOR
itself, the visiz_* features are effected in the concrete visitors. Each visitor will
implement these features to provide its own functionality. In the example of a library
where users can borrow BOOKs and VIDEO _RECORDERs, we may define a
MAINTENANCE VISITOR and a DISPLAY VISITOR. The former will implement
maintenance functionalities in the procedures visit book and visit video recorder
pictured below; the latter will effect these features to display information about the
borrowable items.

The strong point of the Visitor pattern is that it is very easy to add new
functionalities to a class hierarchy: you can simply write a new descendant of class
VISITOR to be able to traverse the ELEMENT structure in a different way and perform
some other task. No need to change the ELEMENT classes (or the BORROWABLE
classes in the book library example) to take this new VISITOR into account.

& accept* >
BORROWAB,
visit_book*
I Visit video recorder™
+ + + +
BOOK VIDEO RECORDER MAINTENANCE DISPLAY
VISITOR VISITOR
accept+ accept+ L .
visit_book+ visit_book+

visit video recorder+ Visit video recorder+

The Visitor pattern implements a “double-dispatch” mechanism:

. Calling the accept procedure will resolve the type of the current element;

VISITOR §9

For more details
about the role of the
accept feature, see

section 5.2, page 68
and the note on dou-

ble-dispatch at the
bottom of this page.

Implementa-
tion of an
accept feature
in a concrete
element class

Using the Vis-
itor pattern in
the book
library exam-
ple

§9.2 TOWARDS THE VISITOR LIBRARY

. As a result of dynamic binding, the applicable version of accept gets executed,
which will call the appropriate visiz_* feature on the given VISITOR.

Drawbacks

Although adequate and essential in several cases, the Visitor pattern is not suitable
in all situations. Robert C. Martin says: “The VISITOR patterns are seductive. It is
easy to get carried away with them. Use them when they help, but maintain a healthy
skepticism about their necessity. Often, something that can be solved with a
VISITOR, can also be solved by something simpler”.

One of the reasons why the Visitor pattern should be taken with care is that
the resulting designs usually lack flexibility and extendibility. If it is easy to add new
functionalities by adding new visitor classes, it is on the contrary very difficult to
add new elements to a class hierarchy. Indeed, it implies modifying all visitor classes
to take this new kind of element into account. Palsberg et al. explain it very nicely:
“A basic assumption of the Visitor pattern is that one knows the classes of all objects
to be visited. When the class structure changes, the visitors must be rewritten”.

Another point is that writing the accept features in all element classes is likely
to become tedious if the class hierarchy is large because the implementations will be
similar.

Related approaches

As mentioned earlier, the Visitor pattern is a case of “double-dispatch”. Therefore it
is natively supported by languages that allow multiple (at least double) dispatch, for
example the Common Lisp Object System (CLOS). For object-oriented languages
like Eiffel, Smalltalk or C++, it is not the case. Applying the Visitor pattern means
arranging a software architecture to resemble the diagrams given before.

There have been some attempts at simplifying the Visitor pattern, in particular
by removing the need for accept features. It is the case of the Walkabout and
Runabout variants presented in chapter 4 about previous work. They exploit the
reflection mechanism of the Java programming language to select the appropriate
visit_* feature and avoid accept procedures. Ron K. Cytron describes another similar
solution in Java using reflection. (It is called “Reflective Visitor”.)

Starting from this idea, I decided to apply the limited reflection capabilities of
Eiffel to simplify the original Visitor pattern and — not forgetting the ultimate goal
— transform it into a reusable component.

9.2 TOWARDS THE VISITOR LIBRARY

Before describing the final Visitor Library, this section explains how the idea came
up and describes the refinement steps that led to the final design.

First attempt: Reflection

The idea of the Visitor pattern is to introduce a new VISITOR class whenever one
needs to add a new functionality to an existing hierarchy. What about having a
reusable VISITOR class? Genericity seems a good candidate. We could have a class
VISITOR [G] and apply it to any kind of element; for example a VISITOR
[BORROWABLE] or a VISITOR [BOOK] or a VISITOR [VIDEO_RECORDER].

But genericity is not enough: we want to apply different kinds of actions to
our elements. For example, we want to add maintenance or display facilities to our
BORROWABLE elements. A good way to represent these actions is to use agents.

133

Martin 2002c], p
557. (Martin identi-
fies several flavors of
Visitor patterns;
hence the use of the
plural here.)

Palsberg 1998].

Palsberg 1998] and
Grothoff 2003].

Cytron-Web].

Agents encapsulate
features ready to be
called. See [Dubois
1999] and chapter 25

of [Meyer 200?b].

134

Besides, the VISITOR class should be easy to use and remove the need for
accept features in the classes to be visited. It means that the generic class VISITOR [G]
must provide a way to associate the appropriate action (represented as an agent) with
the generating type of an object. Thus, I decided to store possible actions in a list of
pairs [action, type name] and to use the class INTERNAL from ISE EiffelBase to
discriminate between types and call the appropriate action. The class INTERNAL
provides limited reflection capabilities. The features of interest here are fype_
conforms_to, which says whether two types conform to each other based on their type
identifiers, and dynamic _type from_string, which returns the identifier corresponding
to the dynamic type of the given string.

The class INTERNAL is specific to ISE Eiffel. It is not part of the Eiffel Library Kernel

Standard. Therefore code using this class may not be portable on other Eiffel compilers.

The table below shows my resulting class VISITOR [G], which uses the class
INTERNAL to select the appropriate action to be performed depending on the
dynamic type of the given element. The actions are represented as agents — more
precisely PROCEDUREs — stored in a LINKED LIST.

class

VISITOR [(]
create
make

feature { NONE?} -- Initialization

make is
-- Initialize actions.
do
create actions « make
end

feature -- Visitor

visit (an_element: (©) is
-- Visit an_element. (Select the appropriate action
-- depending on an_element.)
require
an_element not void: an_element /= Void
local
internal: INTERNAL
a_type_id: INTEGER
a_generating_type: STRING
an_action: PROCEDURE [ANY, TUPLE [(]]
do
create internal
a_type id = internal e dynamic_type (an_element)
from actions « start until actions « after or an_action /= Void loop
a_generating_type 1= actions ¢ item « item (2)
if a_generating type /= Void and then
internal « type_conforms_to (a_type_id,
internal « dynamic_type_from_string (a_generating_type))
then
an_action 1= actions « item ¢ item (1)
end
actions e forth
end
if an_action /= Void then
an_action e call ([an_element])
end
end

VISITOR §9

EiffelBase-Web].

ELKS 1995].

First attempt
at building a
reusable Visi-
tor compo-
nent using
limited reflec-
tion and
agents

A traditional pattern
implementation does
not have such a loop
to select the appro-
priate action. This is
an overhead of the
library version.

Relying on strings is
not type-safe; this is
one of the reasons
why this solution was
not retained. (The
final version is pre-
sented on page 137.).

§9.2 TOWARDS THE VISITOR LIBRARY

feature -- Access

actions: LINKED LIST [TUPLE [PROCEDURE [ANY, TUPLE [G1], STRING]]
-- Actions to be performed depending on the element
-- First element: Action to be performed (visit_* procedure)
-- Second element: Actual generic parameter's generating type

feature -- Element change

extend (an_action: PROCEDURE [ANY, TUPLE [G1]; a_generating type: STRING) is
-- Extend actions with a pair [an_action, a_generating type].
require
an_action_not void: an_action /= Void
not has action: not actions « has ([an_action, a_generating typel)
a generating type not void: a_generating type /= Void
a generating type not empty: not a_generating typeeis _empty
do
actions e extend ([an_action, a_generating type])
ensure
one more: actions « count = old actions « count + 1
inserted: actions e« lasteis_equal ([an_action, a_generating type])
end

invariant

actions_not void: actions /= Void
no void action: not actions ¢ has (Void)

end

If the dynamic type of the argument an_element given to the feature visit conforms to
several types stored in the hash table, it is the first encountered version that will be
selected and the corresponding action executed. Thus, the client needs to be careful
at inserting the actions in the right order: the most specialized first, the least
specialized afterwards.

For example, suppose we have ELEMENT A inheriting from ELEMENT as it
was the case in an earlier diagram and an action registered for ELEMENT and another
one for ELEMENT A. The action corresponding to ELEMENT A should be registered
before the one for ELEMENT to make sure that it is indeed the action corresponding
to ELEMENT A that will be executed when giving an object of type ELEMENT A to
the visit feature.

Another possibility would be to let the users enter the actions in any order and
have the Visitor Library take care of sorting the actions by generating type from the
most specific to the least specific type. However, such a scheme would not be type-
safe with this first version of the library because of the use of strings. The next
section shows how to make the library type-safe; the subsequent one presents the
final design of the Visitor Library, which frees clients from the burden of sorting
actions.

Another try: Linear traversal of actions

As a second design iteration, I just kept the list of actions without the corresponding
type names. Indeed, the class PROCEDURE offers a feature valid operands that
permits to discriminate between actions that are applicable or not to a given element.

135

Filling the list of
actions is another
overhead of the
library version.

The first encountered
version should also
be the most specific
one because we
require the clients to
enter the most spe-
cialized actions first.

136

Instead of relying on the class INTERNAL to select the action:

if internal « type_conforms_to (a_type_id,
internal e dynamic_type_from_string (a_generating type)) then

end

the library is now using the feature valid operands of class PROCEDURE:

if actions e item o valid operands (args) then

end

Hence no need to use the class INTERNAL anymore. The client simply needs to enter
all possible actions in the right order (it is still a linear traversal) and the
implementation of visit uses valid _operands to select the appropriate action.

This new approach has the advantages of simplicity and type safety. Indeed,
the use of feature valid operands ensures that the executed action has the right
signature. Besides, it avoids spelling mistakes when entering the type names that can
be hard to detect but would make the system not to work. (An action associated with
a type “STING” is unlikely to be used often whereas the same action coupled with
type “STRING” will probably be executed.)

Here is the text of this second version of class VISITOR [G]:

class
VISITOR [(]
create

make

feature { NONE?} -- Initialization

make is
-- Initialize actions.
do
create { LINKED LIST [PROCEDURE [ANY, TUPLE [G]]]}
actions e make
end
feature -- Visitor
visit (an_element: (©) is

-- Visit an_element. (Select the action applicable to an_element.)
require
an_element not void: an_element /= Void
local
args: TUPLE [(7]
do
args = [an_element]
from
actions e start
until
actions « after or else actions « item o valid operands (args)
loop
actions e forth
end
if not actions « after then
actions « item ¢ call (args)
end
end

VISITOR §9

Selection of
the appropri-
ate action
using reflec-
tion

Selection of
the appropri-
ate action
using valid_
operands

Second
attempt at
building a
reusable Visi-
tor compo-
nent with a
linear tra-
versal of
actions.

§9.2 TOWARDS THE VISITOR LIBRARY

feature -- Access

actions: LIST [PROCEDURE [ANY, TUPLE [G1]]
-- Actions to be performed depending on the element

feature -- Element change

extend (an_action: PROCEDURE [ANY, TUPLE [(]]) is

-- Extend actions with an_action.

require
an_action_not void: an_action /= Void

do
actions « extend (an_action)

ensure
one more: actions « count = old actions « count + 1
inserted: actions « last = an_action

end

invariant

actions_not void: actions /= Void
no void action: not actions ¢ has (Void)

end

The above implementation of class VISITOR [G] expects the clients to insert the
actions applicable to the most specific types before the ones to be executed on less
specialized types. This is an overhead for the clients compared to a traditional
implementation of the Visitor pattern. The next section shows how to remove this
burden.

Final version: With a topological sort of actions and a cache

The final version of the Visitor Library still uses a list of possible actions, but it
makes sure that the actions are properly sorted. As a consequence, the client can be
sure that the selected action is the most appropriate one. Furthermore, the
implementation uses a cache for better performance. When visit gets called, the list
of actions is traversed linearly only if no associated action was initially found in a
cache.

Actions are sorted topologically when the client inserts the actions into the
visitor by calling extend (to insert just one action) or append (to insert several actions
at a time). The relation used for the topological sort is the conformance of the
dynamic type of the actions’ open operands (i.e. the dynamic type of the objects on
which the agents will be applied).

The conformance tests rely on a couple of queries from class INTERNAL. But
the system is still type-safe because these queries are only used to ask the
conformance between two types known by the system. Therefore it is sure that they
will return a correct result.

The interface of the final version of the Visitor Library is quasi-similar to the
interface of the previous version (without topological sort of actions). There are only
two changes: first, there is one more feature, append, which enables adding several
actions to the visitor at a time; second, the contracts of extend are slightly different
than in the previous version of the library.

137

138

Here is the interface of features extend and append of the final Visitor Library:

class interface
VISITOR [(]
feature -- Element change

extend (an_action: PROCEDURE [ANY, TUPLE [(]])
-- Extend actions with an_action.
require
an_action_not void: an_action /= Void
ensure
has _an_action: actions e has (an_action)

append (some_actions: ARRAY [PROCEDURE [ANY, TUPLE [(]]]) is
-- Append actions in some_actions to the end of the actions list.
require
some_actions _not void: some_actions /= Void
no_void_action: not some_actions « has (Void)

end

The complete source code of the Visitor Library is available for download from
Arnout-Web] with a “Readme.txt” file describing in full detail the implementation
of the topological sort in the Visitor Library.

I applied the Visitor Library to the Gobo Eiffel Lint tool, which makes
extensive use of the Visitor pattern. It simplified parts of the code: some classes were
not needed anymore; all “accept” features could also be removed; hence a significant
gain in terms of lines of code. The next section reports about this case study.

VISITOR §9

Interface of
features to
enter actions
to the visitor
(final version
of the Visitor
Library)

Bezault 2003].

9.3 GOBO EIFFEL LINT WITH THE VISITOR LIBRARY

The Visitor Library is simple; it consists of only one generic class, VISITOR [G], and
avoids the need for “accept” features as in the original pattern. The clients register
all possible actions to be executed; the query valid operands of class PROCEDURE
permits to discriminate between actions that are applicable or not to a given element.

Even though the approach is appealing and works on simple examples, it is
important to make sure that it also extends to larger projects. Therefore, I decided to
apply it to a real-world software system to check the usability and usefulness of the
library. I chose the Gobo Eiffel Lint tool as workbench because it relies extensively
on the Visitor pattern.

This section gives more details about the experiment and reports the
(encouraging) results.

Case study

After giving an overview of Gobo Eiffel Lint, this section justifies the choice of
gelint for this case study and gives the objectives when starting this study. Then, it
describes the changes I had to make in order to use the Visitor Library in Gobo
Eiffel Lint.

See “Final version:

With a topological
sort of actions and a
cache”, page 137.

Bezault 2003].

§9.3 GOBO EIFFEL LINT WITH THE VISITOR LIBRARY

What is Gobo Eiffel Lint?

Gobo FEiffel Lint (gelint) is an Eiffel code analyzer. Like a compiler, it is able to
check the validity of an Eiffel program and to report errors about it. Indeed, gelint
provides all the functionalities of the ISE Eiffel compiler from degree 6 to degree 3:

. Gelint reads an Ace file as input and looks through the system clusters to map
the Eiffel class names with the corresponding file names (equivalent to ISE
degree 6).

. Then, gelint parses the Eiffel classes (equivalent to ISE degree 5).

. For each class, gelint generates feature tables including both immediate and
inherited features (equivalent to ISE degree 4).

. Gelint analyzes the feature implementation, including contracts (equivalent to
ISE degree 3).

Gobo Eiffel Lint can also point out validity errors and useful warnings that a
compiler would not judge necessary to report (for performance reasons for example).
Thus, it can help the Eiffel programmers write better code.

Gelint also permits to experiment with possible Eiffel extensions that are not
implemented in Eiffel compiler yet to evaluate their impact on existing code. It can
also detect interoperability problems between different Eiffel compilers.

Beyond the gelint tool, it is important to point out that its code relies on a set
of high-quality Eiffel libraries, which can be used to develop many kinds of
programs taking Eiffel code as input. For example, an FEiffel pretty-printer, a flat-
short form generator, and even an interpreter or an Eiffel compiler. All these tools
start by generating an abstract syntax tree (AST) and then traverse it using the
Visitor pattern.

Why Gobo Eiffel Lint?

I decided to assess the quality and usefulness on the Visitor Library on the Gobo
Eiffel Lint tool for several reasons:

. It makes extensive use of the Visitor pattern, which is the necessary condition
to be able to apply the Visitor Library.

. It is open-source, which facilitates modifying the code to take the Visitor
Library into account.

. It is entirely written in Eiffel.

. It is of topmost quality. The Gobo Eiffel libraries and tools are well-known in
the Eiffel community for their high quality standard. (The code fully respects
the Eiffel style guidelines; it includes comments and many contracts.)

. It has a “proper” size: not too small (to have valuable benchmarks) but not to
big (to be able to master the whole code in a reasonable amount of time).

Objectives

The goal was to assess the usability and usefulness of the Visitor Library by
modifying the source code of Gobo Eiffel Lint to replace its Visitor pattern
implementation by calls to my reusable component.

Then, I wanted to test in particular, the speed overhead of using the Visitor
Library rather than a traditional pattern implementation (due to the list traversal to
discriminate between applicable features) and the gain in terms of number of classes
and number of features in the system.

139

Bezault 2003].

ISE Eiffel compiler
degrees are
described in [Eiffel-
Studio-Web].

Flat-shortform: View
of an Eiffel class
including both imme-
diate and inherited
features.

140

“Mise en oeuvre”

Modifying Gobo Eiffel Lint was not easy. First, I had to get familiar with the code
of gelint but also of the libraries it uses to find the different places where I should
change code. The rest of this section describes the exact changes I had to make.

Before, we need to say a few more words about the implementation of gelint.
Gobo Eiffel Lint is based on AST classes that are “passive” (they are just data) and
on “processors” that traverse the AST (using the Visitor pattern) to perform the
different steps of a compilation. The AST classes do not know how to compile
themselves. This design with “processors” enables developing reusable library
classes. Anybody can program his own processor; no need to write descendants of
the AST classes to add new routines (which would not be easy anyway given the
strong interdependencies between the AST classes).

All “processors” inherit from a class ET AST PROCESSOR, which declares a
set of process * features. The class ET AST NULL PROCESSOR inherits from ET _
AST PROCESSOR and effects all process_* features with an empty body (“do...end”).
This class is an implementation trick: other processors inherit from E7 AST NULL
PROCESSOR rather than ET _AST PROCESSOR to avoid having to effect all deferred
process_* features; they just redefine some of them to give a meaningful
implementation.

One of these processors is E7 INSTRUCTION CHECKER, which checks the
validity of a feature’s instructions.

Here are the changes I had to make in order to use the Visitor Library.
. First, I added an attribute visitor in class ET INSTRUCTION CHECKER:
visitor: VISITOR [ET_INSTRUCTION)]

(It is a VISITOR of ET _INSTRUCTION because this processor visits instructions
only.)

. I modified the creation procedure make of ET INSTRUCTION CHECKER to
create the visitor and register agents corresponding to the process * features
redefined in the class:

make (a_universe: like universe) is
-- Create a new instruction validity checker.
do

create visitors make

visitore append (<<
agent process_static_call_instruction,
agent process_call _instruction,
agent process_semicolon_symbol,
agent process_assignment,
agent process_assignment _attempt,
agent process_check_instruction,
agent process_debug _instruction,
agent process_if instruction,
agent process_inspect_instruction,
agent process_loop_instruction,
agent process precursor_instruction,
agent process_retry_instruction,
agent process_bang_instruction,
agent process _create_instruction

>>)
end

VISITOR §9

Declaration
of the visitor

Creation and
initialization
of the visitor

§9.3 GOBO EIFFEL LINT WITH THE VISITOR LIBRARY

The action features (process_*) can be entered in any order. The Visitor Library
takes care of sorting them to optimize the retrieval of the appropriate action
when the procedure visit (of class VISITOR [G]) gets called.

. Then, in the core procedure check instructions validity of the processor, I
replaced expressions like:

a_compound e item (i) « process (Current)

by:

visitore visit (a_compound e item (7))

. Then, I did the same kind of changes for all processors (all descendants of ET_
AST PROCESSOR).

. Finally, I “cleaned up” the AST classes (descendants of E7 AST NODE): 1
removed all process routines, which were not needed anymore. Indeed, they
were used to find the appropriate process * feature depending on the given
AST node, but this is done by the Visitor Library now (more precisely by the
procedure visit of class VISITOR).

Benchmarks

After changing the code of Gobo Eiffel Lint to make it use the Visitor Library rather
than a direct Visitor pattern implementation, I did some benchmarks with the
resulting executable.

First, I checked that the original gelint and my modified version work the
same way: they report the same errors and warnings, which is reassuring! Then, I
measured the number of lines of code, number of classes, and number of features in
both systems. I also measured the execution times to estimate the performance
overhead of using the Visitor Library. I did the same benchmarks twice:

. I run gelint — the original version and the modified one — on the code of
(the original) gelint itself (meaning about 700 classes).

. I asked Eric Bezault (the author of Gobo Eiffel Lint) to run gelint — his
original tool and my new version — on the source code of his company AXA
Rosenberg (meaning more than 9800 classes).

Being able to test my modified version of gelint on a large-scale system was a great
opportunity. It gives confidence into my benchmarks and allows drawing conclusions.

All measures were taken on a finalized (optimized) system compiled with ISE
Eiffel 5.5.0308 with assertion-monitoring off (to get the best possible performance).

Gelint on gelint itself

This first series of tests was on a Pentium IV machine, 1.8 GHz, with 512MB of
RAM.

First, I launched the original gelint on its own source code and did some
measurements (number of lines of code, number of classes, number of features,
executable size, etc.). Then, I launched my modified version using the Visitor
Library on the same source code (of the original gelint) and did the same
measurements again.

141

The previous section
(starting page 137)
explains how actions
are sorted and
retrieved.

Call to visitor

AXA Rosenberg-
Web].

142

The following table gives the results on the two versions of gelint:

Metrics Original | Modified | Difference | Difference

(in value) (%)

Lines of code 198 263 195 512 - 2751 -1.4 %

Lines of code in cluster with 112 866 109 855 -3011 -2.7%
AST and processor classes

Classes 717 718 +1 +0.1 %

Classes in cluster with AST 362 362 +/-0 +/-0 %

and processor classes

Features 67 382 63 421 - 3961 -5.9 %

Features in cluster with 38 248 33 884 - 4364 -11.4 %
AST and processor classes

Clusters 109 110 +1 +0.9 %

Executable size 4104 KB | 3660 KB | -444 KB -10.8 %

I mentioned at the beginning of the chapter that the Visitor Library removes the need
for “accept” features as in a traditional pattern implementation. (In fact, they are
called “process” in gelint.) These figures confirm the reduced number of features; it
has two reasons:

. There are no more accept features in the AST classes.

. There are no more visit * features with an empty body in the processor
classes; these cases are handled by associating no action with those types
when filling the visitor.

Hence a reduced number of lines of code. The supplementary cluster corresponds to
the Visitor Library cluster and the supplementary class corresponds to the class
VISITOR [G].

Then, I compared the performance of the two versions: the original gelint and
the modified version of gelint using the Visitor Library. The following table reports
the execution times by “degree” (corresponding to the compilation passes of the ISE
Eiffel compiler):

Degrees Original gelint Modified gelint using the
Visitor Library

Degree 6 ls ls

Degree 5 8s 8s

Degree 4 ls 2s

Degree 3 8s 12s

These figures show that the two versions of Gobo FEiffel Lint behave the same for
degrees 6 and 5. This is normal because visitors do not intervene during these
degrees. However, the modified version relying on the Visitor Library is about two
times slower for the degree 4 and one and a half times slower for the degree 3 where
visitors come into play.

The performance overhead corresponds to the time spent in the linear traversal
of actions registered to the visitor whenever the feature visiz is called to select the
action applicable to the given element. This overhead is not as big as expected
thanks to the use of a caching mechanism.

VISITOR §9

Code statistics
of the original
and modified
version of
gelint

See “What is Gobo
Eiffel Lint?”, page
139 for a description
of each “degree”.
Execution
time of the
original gelint
and of the
modified
gelint using
the Visitor
Library

§9.3 GOBO EIFFEL LINT WITH THE VISITOR LIBRARY

The following table compares the execution times on degrees 4 and 3 and the
executable size in both configurations (with the original gelint and with the modified
version using the Visitor Library):

Degrees Original Modified Difference Difference
(in value) (%)
Executable 4104 KB 3660 KB -444 KB -11%
size
Degree 4 Is 2s +1s +100 %
Degree 3 8s 12's +4s +50 %

If the performance difference is non-negligible, it is not one hundred times slower
like the Walkabout variant of the Visitor pattern described by Palsberg et al. A ratio
of less than two makes the Visitor Library usable in practice. (It is comparable to the
performance of Runabout described by Grothoff.) Besides, the size of the Gobo
Eiffel Lint executable is smaller when using the Visitor Library, which is an
advantage.

Gelint on a large-scale system

This second series of tests was on a Pentium IV machine, 2.4 GHz, with 1GB of
RAM.

To assess the truthfulness of the previous benchmarks, I asked Eric Bezault to
measure the execution time of the various versions of gelint on the source code of
the research center of his company (AXA Rosenberg) comprising 9889 Eiffel
classes. The results are reported below:

Degrees Original gelint Modified gelint using the
Visitor Library
Executable 4104 KB 3660 KB
size
Degree 6 6s 6s
Degree 5 51s 51s
Degree 4 23 s 30s
Degree 3 25s 36s

The following table compares the executable sizes and the execution times at
degrees 4 and 3:

Degrees | Original | Modified gelint using | Difference | Difference
gelint the Visitor Library (in value) (%)
Executable | 4104 KB 3660 KB - 444 KB -11 %
size
Degree 4 23 s 30 s +7s +30 %
Degree 3 25s 36 s +11 s +44 %

The performance overhead at degrees 4 and 3 is smaller than in the previous
benchmarks (gelint executed on gelint itself). The difference in terms of number of
classes (9889 instead of 717) does not imply a dramatic increase of the execution
time. On the contrary, the differences at degrees 4 and 3 (+30% and +44%) are even
smaller than before (+100% and +50%).

143

Comparison
of executable
size and exe-
cution time

Palsberg 1998].

Grothoff 2003
explains that the Run-
about is “slower by
less than a factor of
two compared to visi-
tors”.

AXA Rosenberg-
Web].

Executable
size and exe-
cution time of
the original
gelint and of
the modified
gelint using
the Visitor
Library

Comparison
of executable
size and exe-
cution time

144

These results confirm the usability of the Visitor Library on a real-world

large-scale system.

9.4 COMPONENTIZATION OUTCOME

The componentization of the Visitor pattern, which resulted in the development of
the Visitor Library, is a success because it meets the componentizability quality
criteria established in section 6.1:

Completeness: The Visitor Library covers all cases described in the original
Visitor pattern.

Usefulness: The Visitor Library is useful for several reasons. First, it provides
a reusable solution to the Visitor pattern; no need to implement a double
dispatch mechanism each time one wants to use the pattern. Second, it is easy
to use by clients: it removes the need for “accept” features and clients can
insert the possible actions in any order. Third, it makes it easier to have no
action on certain types: no need to write an “accept” feature with an empty
body; one simply does not enter any action for that particular type.

Faithfulness: The Visitor Library is notably different from a traditional
implementation of the Visitor pattern. It does not implement a double dispatch
mechanism. Instead, it represents actions as agents stored in a sorted list and
selects the applicable action through a linear traversal of the list (or a cache
access if an element of the same type has already been passed to the feature
visit). A drawback of using agents is that client classes may be bigger (because
they need to define the actions, which would have been in a visitor class in a
traditional Visitor pattern implementation). However, the case study on the
Gobo Eiffel Lint tool has shown that using the Visitor Library yields fewer
lines of code in total thanks to the removal of the “accept” features. Despite
its original architecture, the Visitor Library fully satisfies the intent of the
Visitor pattern and keeps the same spirit. Therefore I consider the Visitor
Library as being a faithful componentized version of the Visitor pattern.

Type-safety: The Visitor Library relies on unconstrained genericity and agents.
Both mechanisms are type-safe in Eiffel. What may happen is that no action
is available for a given type, and calling visit simply executes an empty body
(as if visit were of the form visit is do end). It was a conscious choice when
designing the library to allow such cases. (This proved useful when applying
the Visitor Library to Gobo Eiffel Lint.) Another possibility would have been
to add an catch-all agent (associated to a feature displaying an error message
or throwing an exception for example) for any type without an associated
action.

Performance: The case study described in 9.3 showed that using the Visitor
Library implies a performance overhead compared to a traditional
implementation of the Visitor pattern. However the cost on performance is
quite low (less than twice as slow in the worst case) compared to the benefits
of the library (reusability, less code, fewer classes, fewer features, etc.).

Extended applicability: The Visitor Library does not cover more cases than
the original Visitor pattern.

9.5 CHAPTER SUMMARY

The Visitor pattern provides a way to add new functionalities to an existing
class hierarchy without modifying those classes. It is widely used in the
domain of compiler construction.

VISITOR §9

Gamma 1995], p
331-344.

§9.5 CHAPTER SUMMARY 145

. The Visitor pattern is appealing but it also has drawbacks:

. It becomes hard to add new elements to a class hierarchy (it involves a
lot of changes), hence a lack of flexibility and extensibility;
. It can become painful to equip a class hierarchy to support the Visitor
pattern (the required accept features all look quite similar).
. The Visitor Library addresses the same issues as the original Visitor pattern
but it is a reusable solution and makes the use of a “visitor” easier. (No need
to change the existing class hierarchy to add accept features anymore.)

. The Visitor Library strongly relies on (unconstrained) genericity and agents. [Dubois 1999] and

It also uses a few queries of class INTERNAL from EiffelBase and a %%%EfZMf[Me: <
topological sorter provided by the Gobo Eiffel Data Structure Library. [Bezault 2001a].

. I applied the Visitor Library on a real-world system called Gobo Eiffel Lint.
Gobo Eiffel Lint (gelint) is an Eiffel code analyzer capable of reporting
system validity errors and warnings. It provides the same functionalities as
degrees 6 to 3 of the ISE Eiffel compiler. For this, it makes extensive use of
the Visitor pattern.

. Gelint relies on a set of high-quality Eiffel libraries.

. Gelint uses “processors” to perform computations on AST nodes. I changed
these processor classes to use the Visitor Library. It simplified parts of the
code: some features were not needed anymore; all “accept” features (called
“process” in gelint) could also be removed; hence a significant gain in terms
of lines of code.

. The only penalty was performance due to the search of the applicable action,
which is a combination of a linear traversal with a cache. But the ratio was
not like one hundred times slower as Palsberg et al. reported for the [Palsberg1998].
Walkabout pattern; it was less than twice as slow as the original
implementation with the Visitor pattern.

. Running the modified version of gelint on a large-scale system of about
10,000 Eiffel classes worked fine, and performance penalty was even better
than on a much smaller system.

. These benchmarks show that the Visitor Library is usable and useful in
practice.

146 VISITOR §9

10

Composite

Fully componentizable

The previous chapter showed that genericity and agents were the keys to the

See chapter 9.

successful componentization of the Visitor pattern. In the case of the Composite [Gamma 1995] p

pattern, genericity appeared to be enough to transform the pattern into a reusable
Eiffel component.

The present chapter explains how to express the Composite pattern in Eiffel
and highlights the limitations of this approach. Then, it goes one step further and
introduces the Composite Library, which addresses the same needs as the design
pattern but is reusable. After illustrating how to use the library on an example, it also
compares the strengths and weaknesses of the library compared to the original
pattern.

10.1 COMPOSITE PATTERN

The Composite pattern is one of the seven “structural” patterns identified by
Gamma 1995]. It describes how to build composites out of individual objects by
using a tree hierarchy and accessing both nodes and leaves in the same way. Let’s
take a closer look at the pattern’s intent, strengths, and weaknesses.

Pattern description

The Composite pattern describes a way to “compose objects into tree structures to
represent part-whole hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly”.

A design following the Composite pattern can be represented as a tree: a
composition of objects (a “composite”) is a tree node and its leaves are the
individual objects of which it is composed.

Gamma 1995] also insists on transparency: a client should not have to know
whether an object is made of multiple parts; both “leaves” and “composites” are
components and should provide the same services to their clients. (This is similar to
the Uniform Access Principle, which says that a client should not need to know,
when calling a feature, whether it is implemented as an attribute or as a routine.)

Nevertheless, combining a tree structure with the transparency dimension
raises the question of the proper location for the traversal features of a tree: in the
parent class COMPONENT or in the COMPOSITE class only?

163-173.

Gamma 1995], p
163.

Meyer 1997], p 57.

148 COMPOSITE §10

. If we favor transparency, these services should be part of the parent class
COMPONENT to enable clients to handle a COMPOSITE and a LEAF in the
same way, seeing them just as COMPONENTS; they may not even know about
these descendants.

. If we think in an object-oriented way and see classes as the representation of
an Abstract Data Type (ADT) with features defining services available on that See chapter 6 of
class and attributes representing properties of the class (what’s sometimes %M“bm”
’ . ’ . stract Data Types.
referred as a “has a” relationship), it no longer makes sense to define routines
such as add, remove, or child for a LEAF. Hence the idea of moving those to the

COMPOSITE class.
Design Patterns mentions this conflict between transparency and safety. The rest [Gamma 1995] p

of the discussion will state which criterion it favors in each case. 167.
Implementation
The Composite pattern involves three classes: COMPOSITE representing complex
structures made of several individual pieces, LEAF representing an individual
element, and COMPONENT describing a common interface: the services that clients
will see and eventually call.
Both transparency and safety versions of the Composite pattern have the same
hierarchical structure; the difference lies in the feature definitions, and more
precisely where the features are actually defined. The class COMPONENT always
provides a feature do something, which is the service clients actually need and use
the component for. Then, depending on the version — transparency versus safety —
the features parzs (listing the individual parts of a composite), zas (to know whether
a composite contains a particular part), i ¢ (to access the ith part of the composite),
add (to add a part to the composite), remove (to remove a part from the composite),
and others, are either in the COMPONENT class or in the COMPOSITE class.
Design Patterns only introduces a feature to add a new part to a composite (Add) and
another one to remove an existing part from a composite (Remove). The version shown
here includes two additional queries sas and count for contract support — they are used
in the pre- and postconditions of features add and remove. Besides, the feature names
introduced by Gamma et al. are slightly different from the ones used here. In particular,
the feature do_something is called Operation; the name was changed to highlight the
Command-Query separation principle of the Eiffel method. The i_th query was originally Meyer 1997], p 751.
named Child; it was changed to use similar terminology as in the CONTAINER classes of
the Kernel Eiffel library (EiffelBase) EiffelBase-Web].
The following picture shows the classes and features involved in an
implementation of the Composite pattern favoring transparency:
do_something*
parts
add Classes
remove involved in
has the transpar-
€ncy version
of the Com-
posite design
pattern

do_something+ do_something+

§10.1 COMPOSITE PATTERN

Here is the variant favoring safety:

do_something*

i th

COMPOSITE

do_something+ do_something+
parts

add
remove
has

The core of class COMPONENT is its routine do_something: the service offered to
clients. Other features are basically just for implementation; they deal with the
traversal of component parts in case the component is in fact a “composite”:

. The attribute parts stores the list of component parts. The query i th gives
access to the i element of the composite component. A client can add or
remove some parts by using the features add and remove, which updates the
list of parts accordingly.

. To ensure validity and safety the class COMPONENT exposes a feature is
composite to enable clients to check whether a certain component is indeed a
composite before adding parts to it or removing existing parts; this query is
used in the precondition of add and remove.

. The queries count — indicating the number of component parts — and has —
testing whether the component contains a certain part — were introduced for
the same validity and safety purposes; they are also used in the contracts of
add and remove.

To reinforce safety and prevent clients from calling the traversal features on a LEAF
— which does not have multiple parts — their export status is restricted to NONE
(meaning no client access) and only the features that are relevant for a LEAF
component — do_something, is_composite — are kept “public”.

The “safety variant” of class LEAF does not need these extra adaptation
clauses; all features dealing with tree traversal are moved to the class COMPOSITE.
The class COMPONENT only keeps the routine do_something, which is the reason
why clients use it.

In the two variants shown here (favoring transparency or safety), a
COMPONENT does not know about its parent. This approach allows an object to be
part of different composites. Implementing a variant where the COMPONENT knows
its parent is straightforward, it suffices to extend the class COMPONENT with an
attribute parent and the corresponding setter ser parent, and take that parent into
account in the contracts and the implementation of features such as add and remove.

Flaws of the approach

The approach presented so far — whether the transparency or the safety variant —
is not satisfactory because it is not reusable. A client programmer who wants to turn
a class MY COMPOSITE into a composite made of parts of type MY LEAF must:

149

Classes
involved in
the safety ver-
sion of the
Composite
design pattern

150 COMPOSITE §10

. Create a descendant MY COMPONENT of class COMPONENT;

. Make MY COMPOSITE inherit from COMPOSITE, and MY LEAF inherit from
LEAF (or from COMPONENT).

. Redefine the query i th to return an instance of type MY COMPONENT —
instead of COMPONENT;

All this causes needless code duplication.

The clue to transform this implementation into a reusable framework is
genericity. Remember the intent of the Composite pattern: it explains that a
“composite” should have a tree structure. As pointed out by Jézéquel et al., it
becomes “natural to represent it as a generic class with a parent and a set of children”.

10.2 COMPOSITE LIBRARY

Using genericity makes it possible to componentize the Composite pattern. This
section presents the resulting Composite Library. Like the Composite pattern, the
Composite Library is available in two variants: a “transparency version” and a
“safety version”.

Transparency version

The class diagram of the transparency version of the Composite Library appears
below. (Only classes COMPONENT [G] and COMPOSITE [G] are part of the library;
class LEAF just shows how to use it.)

do _something*
parts

add

remove

has

item

i_th COMPONENT

: ing+ :
do _something do _something+

The core of class COMPONENT [G] is the procedure do something, which is the
service offered to clients. This routine is deferred in class COMPONENT [G] and
effected in the descendant class COMPOSITE [G].

If we compare this library with the pattern implementation described in the
previous section, we see that genericity removes the need to write descendants of
class COMPONENT and descendants of class COMPOSITE (called MY COMPONENT
and MY COMPOSITE in Flaws of the approach). Clients of the library simply need
to provide their own class LEAF.

Jézéquel 1999], p
100.

Classes
involved in
the transpar-
ency version
of the Com-
posite Library

§10.2 COMPOSITE LIBRARY

The class COMPONENT [G] presented here does not keep a reference to the
component’s parent. The Composite Library also provides a version with parent,
which is available for download from [Arnout-Web]. I chose to present the version
without parent because it is more flexible. As mentioned in the pattern description,
it allows an object to be part of several composites. This property is used by the
Flyweight Library, which will be described in the next chapter.

Class COMPONENT [G] also exposes traversal features like start, item, i th,
forth, and so on. (In the safety version of the library, those features will be moved to
the class COMPOSITE [G].) The Composite pattern only had the query i (called
GetChild in Design Patterns) and the element change routines add and remove (called
Add and Remove). I decided to augment the class COMPONENT [G] with these
additional traversal features to get a design closer to the CONTAINER classes of
EiffelBase and equip the Composite Library with all relevant functionalities. (Most
of these features are used in the Composite Library classes for contract support.)

For greater consistency, the class COMPONENT [G] also provides a query is
composite, which is used in the preconditions of composite-specific features like add
and remove.

Here is the text of class COMPONENT [G]:

deferred class
COMPONENT [(/]
feature -- Basic operation

do_something is
-- Do something.
deferred
end

feature -- Status report

is_composite: BOOLEAN is
-- Is component a composite?
do
Result := False
end

feature -- Access

item: COMPONENT [(/] is
-- Current part of composite
require
is_composite: is_composite
do
Result := parts « item
ensure
definition: Result = parts « item
component not void: Result /= Void
end

151

See “‘Flyweight”, 11
page 161.

Component
class (part of
the transpar-
ency version
of the Com-
posite Library)

152

i th,infix "@" (i: INTEGER): like item is
-- i-th part
require
is_composite: is_composite
index_valid: i > 0 and i <= count
do
Result .= parts @ i
ensure
component not void: Result /= Void
definition: Result = parts @ i
end

first: like item is
-- First component part
require
is_composite: is_composite
not_empty: not is_empty
do
Result := parts «first
ensure
definition: Result = parts first
component not void: Result /= Void
end

last: like item is
-- Last component part
require
is_composite: is_composite
not_empty: not is_empty
do
Result := parts « last
ensure
definition: Result = parts « last
component not void: Result /= Void
end

feature -- Status report

has (a_part: like item): BOOLEAN is
-- Does composite contain a_part?
require
is_composite: is_composite
a part not void: a_part /= Void
do
Result == parts « has (a_part)
ensure
definition: Result = parts « has (a_part)
end

is_empty: BOOLEAN is
-- Does component contain no part?
require
is_composite: is_composite
do
Result == parts «is_empty
ensure
definition: Result = (count = 0)
end

COMPOSITE §10

§10.2 COMPOSITE LIBRARY

off: BOOLEAN is
-- Is there no component at current position?
require
1S_composite: is_composite
do
Result := parts « off
ensure
definition: Result = (after or before)
end

after: BOOLEAN is
-- Is there no valid position to the right of current one?
require
is_composite: is_composite
do
Result .= parts « after
ensure
definition: Result = parts « after
end

before: BOOLEAN is
-- Is there no valid position to the left of current one?
require
is_composite: is_composite
do
Result .= parts « before
ensure
definition: Result = parts « before
end

feature -- Measurement

count: INTEGER is
-- Number of component parts
require
is_composite: is_composite
do
Result == parts « count
ensure
definition: Result = parts « count
end

feature -- Element change

add (a_part: like item) is
-- Add a_part to component parts.
require
is_composite: is_composite
a_part not void: a_part /= Void
not_part: not has (a_part)
do
parts e extend (a_part)
ensure
one more: parts « count = old parts « count + 1
part_added: parts e last = a_part
end

feature -- Removal

153

154 COMPOSITE §10

remove (a_part: like item) is
-- Remove a_part from component parts.
require
is_composite: is_composite
a_part not void: a_part /= Void
has_part: has (a_part)

do
parts e search (a_part)
parts e remove
ensure
one_less: parts e count = old parts ¢ count — 1
not part: not has (a_part)
end

feature -- Cursor movement

start is
-- Move cursor to first component part. Go affer if no such part.
require
is_composite: is_composite
do
parts e start
end

forth is
-- Move cursor to the next component. Go affer if no such part.
require
is_composite: is_composite
not after: not afier
do
parts « forth
end

finish is
-- Move cursor to last component. Go before if no such part.
require
is_composite: is_composite
do
parts « finish
end

back is
-- Move cursor to the previous component. Go before if no such part.
require
is_composite: is_composite
not before: not before
do
parts e« back
end

feature { VONE} -- Implementation

parts: LINKED LIST [like item] is

-- Component parts (which are themselves components)
deferred
end

invariant

parts_consistent:
is_composite implies (parts /= Void and then not parts « has (Void))

end

§10.2 COMPOSITE LIBRARY 155

The class COMPOSITE [G] inherits from COMPONENT [G] and effects its routine do_
something by traversing the composite parts and calling do_something on each part.

Here is the corresponding class text:

class

COMPOSITE [(]
inherit

COMPONENT [(]
redefine
is_composite
end

create

make,
make_from_components

feature {NONE} -- Initialization Composite
class (part of
the transpar-

make is
-- Initialize component parts. ency version
do of the Com-
create parts e make posite Library)
end

make_from_components (some_components: like parts) is
-- Set parts to some_components.
require
some components not void: some_components /= Void

no_void _component: not some_components ¢« has (Void)

do

parts = some_components
ensure

parts_set: parts = some_components
end

feature -- Status report

is_composite: BOOLEAN is
-- Is component a composite?
do
Result := True

end
feature -- Basic operation

do_something is
-- Do something.

do
from parts « start until parts « after loop

parts eitem e do_something
parts o forth
end

end

156
invariant
is_composite: is_composite
parts_not void: parts /= Void
no void part: not parts e has (Void)
end

Safety version

The safety version of the Composite Library (see class diagram below) does not
differ much from the transparency version (see diagram on page 150). Again, class
LEAF only illustrates the library usage; it is not part of the library itself.

Like the transparency version, the safety variant of the Composite Library is
made of two generic classes: COMPONENT [G] and COMPOSITE [G]. The difference
is that composite-specific features like add, remove and traversal features like i A,
start, forth, etc. are defined in the descendant class COMPOSITE [G] only — instead
of being defined in the parent class COMPONENT [G], namely for any kind of
components. Therefore clients cannot treat components transparently anymore:
before calling features like add, they have to check that they are allowed to do so,
namely that the component is really a “composite”.

Hence higher safety, but less transparency.

do_something*

N

item
+ i th
COMPOSITE

[G]

do_something+

do_something~+

parts
add
remove
has

Like for the transparency variant, there also exists an implementation of Composite
Library favoring safety where the COMPONENT knows about its parent. Again, I chose
to present the implementation that keeps no reference to the parent because it is more
flexible and allows an object to be part of different composites.

Here is the safety variant of class COMPONENT [G]:

deferred class

COMPONENT [(]
feature -- Basic operation

do_something is
-- Do something.
deferred
end

COMPOSITE §10

Classes
involved in
the safety ver-
sion of the
Composite
Library

Component
class (part of
the safety ver-
sion of the
Composite
Library)

§10.2 COMPOSITE LIBRARY

feature -- Status report

is_composite: BOOLEAN is
-- Is component a composite?
do
Result := False
end

end

Here is the safety variant of class COMPOSITE [G]:

class
COMPOSITE [(]
inherit

COMPONENT [(]
redefine

is_composite
end
create

make,
make_from_components

feature {NONE?} -- Initialization

make is
-- Initialize component parts.
do
create parts e make
end

make_from_components (some_components: like parts) is
-- Set parts to some_components.
require
some components not void: some_components /= Void

no void component: not some_components « has (Void)

do

parts = some_components
ensure

parts_set: parts = some_components
end

feature -- Status report

is_composite: BOOLEAN is
-- Is component a composite?
do
Result := True
end

feature -- Basic operation

157

Composite
class (part of
the safety ver-
sion of the
Composite
Library)

158

do_something is
-- Do something.

do
from parts « start until parts « after loop
parts eitem o do_something
parts e« forth
end
end

feature -- Access

item: COMPONENT [(/] is
-- Current part of composite

do
Result := parts « item
ensure
definition: Result = parts « item
component not void: Result /= Void
end

feature -- Others

-- Same features as in the transparency version

-- (except that the features do not have a precondition is_composite any more):

-- Access: i_th, first, last

-- Status report: has, is_empty, off, after, before
-- Measurement: count

-- Element change: add

-- Removal: remove

-- Cursor movement: start, forth, finish, back

feature {NONE?} -- Implementation

parts: LINKED LIST [like item]

-- Component parts (which are themselves components)

invariant

is_composite: is_composite
parts not void: parts /= Void
no_void part: not parts « has (Void)

end

COMPOSITE §10

The code of all composite-specific and traversal features was not reproduced here — See “Compositeclass
only the feature names are mentioned as comments — because their implementation (24/Le/the ranspar-
ency version of the

is the same as the one shown on page 155.

Composite pattern vs. Composite Library

Composite
Library)”, page 155.

The Composite pattern is not an implementation, it is an idea represented by a class
diagram and a few lines explanation in Design Patterns that leads, when correctly [Gamma 1995], p

applied, to better design and more flexible applications. The problem is that software

163-173.

programmers have to rewrite the same pieces of code again and again, by lack of

reusable code. The Composite Library solves this issue.

§10.2 COMPOSITE LIBRARY

Let’s consider the example used in previous chapters: a library with different
kinds of BOOKs and VIDEO RECORDERs that users can borrow. We can say that an
ENCYCLOPEDIA is a composite of BOOKs or more generally a composite of
BORROWABLE elements.

. Applying the Composite pattern would mean writing a class COMPOSITE _
BORROWABLE and have ENCYCLOPEDIA inherit from it:

BORROWABLE COMPOSITE

COMPOSITE™
BORROWABLE

A

BOOK

ENCYCLOPEDIA

But imagine we want to compose something else, say ELECTRONIC
COMPONENTs (for example VIDEO RECORDERs are made of electronic
components); we would need to write a new class COMPOSITE ELECTRONIC _
COMPONENT, which would reproduce most of the code (at least the “composite
features™) of COMPOSITE BORROWABLE.

With the Composite Library, it becomes much simpler: we just need to
make class ENCYCLOPEDIA inherit from COMPOSITE [BORROWABLE] and
VIDEO RECORDER inherit from COMPOSITE [ELECTRONIC COMPONENT). The
“composite machinery” is already written in the library; we can just reuse it.
Hence less code duplication.

. As a consequence of the previous point, a design relying on the Composite
Library is likely to require fewer classes to build the same application: instead
of having classes like COMPOSITE BORROWABLE and COMPOSITE
ELECTRONIC_COMPONENT, we can just reuse the same generic class
COMPOSITE [G] and derive it with actual generic parameters BORROWABLE
and ELECTRONIC _COMPONENT.

Criticisms against the Composite Library may say that it yields using multiple
inheritance everywhere (our class ENCYCLOPEDIA would inherit from
BORROWABLE and COMPOSITE [BORROWABLE)) and leaves clients with the burden
of solving name clashes and other nightmares of repeated inheritance. But in fact,
clients would have to handle this anyway; for example, a class ENCYCLOPEDIA
implemented with the Composite pattern would inherit from class COMPOSITE
BORROWABLE, which looks nice in appearance, but in appearance only since
COMPOSITE_BORROWABLE multiple inherits from classes COMPOSITE and

159

Example
using the
Composite
pattern

BORROWABLE (see diagram above). Besides, the benefits of reusability overcomes See chapter 2.

this apparent complexity of combining genericity and inheritance.

160 COMPOSITE §10

10.3 COMPONENTIZATION OUTCOME

The componentization of the Composite pattern, which resulted in the development
of the Composite Library, is a success because it meets the componentizability
quality criteria established in section 6.1. (The Composite Library is available in two
variants: the first version favors transparency, the second version favors safety; the
componentizability quality criteria apply to both variants.)

. Completeness: The Composite Library covers all cases described in the
original Composite pattern.

. Usefulness: The Composite Library is useful because it provides a reusable
library from the Composite pattern description, which developers will be able
to apply to their programs directly; no need to implement the same design
scheme again and again because it is captured in the reusable component.

. Faithfulness: The Composite Library is similar to a direct implementation of
the Composite pattern, with the benefits of reusability; it just introduces
(unconstrained) genericity to have a reusable solution. The Composite Library
fully satisfies the intent of the original Composite pattern and keeps the same
spirit. Therefore 1 consider the Composite Library as being a faithful
componentized version of the Composite pattern.

. Type-safety: The Composite Library relies on unconstrained genericity and
makes extensive use of assertions. Both mechanisms are type-safe in Eiffel.
As a consequence, the Composite Library is also type-safe.

. Performance: The only difference between the pattern implementation and the
Composite Library is genericity. Using genericity in Eiffel does not imply any
performance penalty. Therefore, the performance of a system based on the
Composite Library is in the same order as the performance of the same system
implementing the Composite pattern directly.

. Extended applicability: The Composite Library does not cover more cases
than the original Composite pattern.

10.4 CHAPTER SUMMARY

. The Composite pattern describes a way to compose software elements into [Gamma 1995], p
bigger structures while keeping an application flexible and maintainable. 163-173

. However the Composite pattern is just a design idea; it does not come with
any implementation code. It is not componentizable.
. The Composite Library embodies the idea of the Composite pattern into a

reusable component. The library provides two variants: a “transparency
variant” and a “safety variant” that mirror the corresponding variants of the

pattern described by [Gamma 1995].

11
Flyweight

Fully componentizable

The previous chapter introduced the Composite Library, which addresses the same
needs as the Composite design pattern but is reusable.

This chapter focuses on another fully componentizable pattern: Flyweight.
First, it describes the pattern and its weaknesses. Then, it presents the
componentized version, the Flyweight Library, which relies on the Composite
Library introduced in chapter 10.

11.1 FLYWEIGHT PATTERN

This section shows that the scope of the Composite Library is broader than what we
could imagine at first. Indeed, it is the basis of another pattern component: the
Flyweight Library.

Pattern description

See chapter 10.

The purpose of the Flyweight pattern is to “use sharing to support large numbers of [Gamma 1995], p

fine-grained objects efficiently”.

Sometimes, the fact that every object is based on a class may yield creating a
huge number of objects and cause performance penalty. For example, trees can have
an unlimited number of nodes. Another typical application example is a document
editor for which it would be much too costly to have one object per character. The
idea of the Flyweight pattern is to have a pool of shared “flyweight” objects, each
corresponding to one alphabet letter, which significantly reduces the number of
created objects.

If we do not go into implementation details, we can say in brief that
flyweights are shared objects and that using them can result in substantial
performance gains.

Flyweights typically get instantiated by a factory according to some criteria.
Clients get the flyweights from the factory: the factory checks whether a flyweight
with the required criteria is available; if yes, it just passes it to the client, otherwise
it creates it first. For example, one could have a pool of LINE objects with a
procedure for drawing a line and the factory could create one LINE object per color.
Say we want to draw 5000 red lines and 2000 blue lines; using flyweights would
mean creating only 2 objects instead of 7000 in a traditional design.

195.

The rest of the discus-
sion uses “fly-
weights” and
“flyweight objects”
as synonyms.

162

FLYWEIGHT §11

Reusing the same objects is possible because properties of the flyweights are
split in two categories: intrinsic (core properties that belong to the underlying
abstract data type) and extrinsic (other properties that may be kept by another
object). The latter are externalized in a flyweight “context”. Therefore it is possible
to reuse the flyweight objects that have the same intrinsic characteristic (the color in
the line for example) while adapting the extrinsic characteristic (for example the
location of the line).

Trees in the Java Swing library use flyweights for performance. They have a [Geary 2003d].

single component for all nodes in the tree. The component is created by a
TreeCellRenderer with method getTreeRendererComponent whose signature is as

follows:

public Component getTreeRendererComponent (

JTree tree,

Object value,
boolean selected,
boolean expanded,
boolean leaf,

int row,

boolean hasFocus

)

All arguments correspond to the extrinsic characteristics of the flyweight.

Another example, which was sketched above, is the case of LINEs that can
draw themselves. Typical client code without the Flyweight pattern would be:

class

CLIENT

draw_lines is

feature -- Basic operation

-- Draw some lines in color.

local
linel, line2: LINE
red: INTEGER
do
create /inel « make (red, 100, 200)
linel o draw
create /ine2 e make (red, 100, 400)
line2 o draw
end
end
with:

class interface

LINE

create

make

feature -- Initialization

Java Swing
tree renderer

Client using a
class LINE
implemented
without the
Flyweight
pattern

Class LINE
designed
without the
Flyweight
pattern in
mind

§11.1 FLYWEIGHT PATTERN

make (a_color, x, y: INTEGER)

ensure
color_set: color =a_color
X_set: x_position = x
y_set: y_position =y

feature -- Access

color: INTEGER
-- Line color

x_position, y_position: INTEGER
-- Line position

feature -- Basic operation

draw
-- Draw line at position (x_position, y position) with color.

end

-- Set color to a_color, x as x_position, and y as y_position.

With the Flyweight pattern, the client code evolves as follows:

class
CLIENT
feature -- Basic operation

draw_lines is
-- Draw some lines in color.

local
line_factory: LINE FACTORY
red: INTEGER
do
red_line := line_factoryenew_line (red)
red_line « draw (100, 200)
red_line « draw (100, 400)
end
end
with:

class interface
LINE FACTORY
feature -- Initialization
new_line (a_color: INTEGER): LINE
-- New line with color a_color
ensure

new _line not void: Result /= Void

end

163

Client using a
class LINE
implemented
with the Fly-
weight pat-
tern

Line factory
creating the

flyweight
LINE objects

This class could be
implemented with the
Factory Library. It is
just an example illus-
trating the purpose of
the Flyweight pat-
tern.

164 FLYWEIGHT §11

and:

class interface
LINE
create
make
feature -- Initialization
make (a_color: INTEGER) is
-- Set color to a_color.
ensure
color_set: color =a_color

feature -- Access

color: INTEGER
-- Line color

feature -- Basic operation

draw (x, y: INTEGER)
-- Draw line at position (x, y) with color.

end

No need to create a new object for each line if those lines have the same color.

If automatic garbage collection makes space optimizations less crucial than
before, some specialized domains of computer science like embedded systems still
require a lot of attention in terms of performance. This is where the Flyweight
pattern can be very useful.

We can now turn our attention to implementation.

Implementation

There are two kinds of flyweights: shared (objects that may be part of several
composites) and unshared (objects with a single owner). In the editor example
mentioned at the beginning of the chapter, shared flyweights are the objects
representing the characters; unshared flyweights are the objects representing the
rows and columns of characters. As explained in Design Patterns, it is common that
unshared flyweights are composed of shared ones. The implementation of the
Flyweight design pattern described in this dissertation has a slightly restricted view
and considers that it is always the case. Therefore it represents unshared flyweights
as “composite” of shared flyweights by using the safety version of the Composite
Library presented in the previous chapter.

As mentioned above, flyweight objects may be of two kinds: composites,
which may be shared or unshared, and non-composites, which are always shared
(given the restriction stated in the previous paragraph). Hence the introduction of a
deferred class FLYWEIGHT capturing the commonalities between these two kinds of
flyweights, and two effective descendants, SHARED FLYWEIGHT (non-composite)
and COMPOSITE FLYWEIGHT (shared or unshared). In fact, COMPOSITE _
FLYWEIGHT has two proper ancestors: the class FLYWEIGHT and the generic class
COMPOSITE [G] coming from the Composite Library.

Class LINE
designed with
the Flyweight
pattern in
mind

Gamma 1995], p
199.

§11.1 FLYWEIGHT PATTERN

The two categories of flyweights have in common the service offered to
clients — a feature do_something for example — and the external property that
characterizes these flyweights. Indeed, the Flyweight pattern is meant to reduce the
storage costs and enhance the performance of an application by relying on object
sharing. It also means that only the minimum intrinsic characteristics are stored in
the class corresponding to a shared flyweight, all other properties — “extrinsic” ones
— being moved to an external FLYWEIGHT CONTEXT class, and computed on
demand. For this to work there must be far less such external properties as there are
objects before sharing. In the editor example, an extrinsic characteristic could be the
character font, because it is very unlikely that characters all have a different font.
Therefore one can introduce CONTEXT ZONEs where all characters have the same
font for example.

To ensure object sharing, COMPOSITE FLYWEIGHT uses a FACTORY of
SHARED FLYWEIGHTS; it is implemented using the Factory Library described in
chapter 8.

Here is the resulting class diagram of this possible implementation of the
Flyweight pattern in Eiffel:

composite_library

1
______________ PR
|

+

COMPOSITE
add [G]
remove
T e emmmmm
: flyweight 1
P , * external_characteristic
Slyweight_
; FLYWEIGHT,
Jactory do_something*
set_external_characteristic

COMPOSITE_Y .

1

1

1

1

1

1

1

|

1

1

1

do_something+ do_something+ 1
add_flyweights !
. . 1
insert_flyweights 1
set_external_characteristic_range 1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

set_context

resize

insert
set_external_characteristic
set_zone_number
new zone

index

size

start, forth, move

external_characteristic

165

Class dia-
gram of a
possible
implementa-
tion of the
Flyweight
pattern

166 FLYWEIGHT §11

As mentioned before, the Composite Library is used to compose flyweights.
Therefore FLYWEIGHT needs to inherit from COMPONENT [FLYWEIGHT] and
COMPOSITE FLYWEIGHT from COMPOSITE [FLYWEIGHT].

The class FLYWEIGHT groups the commonalities between the two categories
of flyweights (composites and non-composites): the procedure do_something and the
external_characteristic. It also provides the corresponding setter. The external
characteristic is represented by a function, meaning that the result is computed on
demand from the FLYWEIGHT CONTEXT given as argument; it is not stored as an
attribute of the class.

Above that, shared flyweights also have an intrinsic characteristic, which is
kept as an attribute of the corresponding class SHARED FLYWEIGHT. The internal
property of a SHARED FLYWEIGHT must be provided to the creation procedure of
the class (make). It must be in a certain range and must never be Void. Setting the
external property of a SHARED FLYWEIGHT means setting this property to the
current zone of the FLYWEIGHT CONTEXT given as argument. This class and the
related CONTEXT ZONE are described in a later section.

The second category of flyweights is COMPOSITE FLYWEIGHTS, which are
both FLYWEIGHTs and COMPOSITE of FLYWEIGHTs; hence the use of multiple
inheritance here. As composite, they have all composite-specific features like add,
remove, and so on — which we renamed as add _flyweight, remove_flyweight — for
clarity. Class COMPOSITE FLYWEIGHT also provides a procedure to add several
flyweights at a time (add_flyweights) and another one to insert some flyweights at a
certain point of the flyweight context (insert flyweights). As flyweight, they also
expose a feature do_something, which outputs a message depending on the external
characteristic of the current context zone; its implementation simply traverses the list
of flyweights the composite is made of and call the corresponding do_something
feature on each. In fact, the different parts a COMPOSITE FLYWEIGHT may contain
are SHARED FLYWEIGHTS; hence the redefinition of item.

The creation procedure make of class COMPOSITE FLYWEIGHT does not take
any arguments contrary to most of the other routines; in particular several routines
expect an instance of FLYWEIGHT CONTEXT. What happens is that the creation
procedure creates and initializes a default context with a default external
characteristic. Then, every other feature — apart from the setter procedures — uses
this context, unless a non-void context is given as argument, which would overwrite
the default one. In other words, a feature of class COMPOSITE FLYWEIGHT that is
not a setter procedure but expects an argument of type FLYWEIGHT CONTEXT may
be passed a Void reference, yielding the feature execution to rely on the internal
context; if the argument given is not Veid, then the class context will be set to this new
context. Let’s now consider the particular case of setter procedures:

. The first one is set _external characteristic. Its implementation is in two steps:
first, it calls the feature ser external characteristic on the context given as
argument specifying the number of flyweights concerned by this new external
characteristic, namely flyweights«count; second, it updates the context of the
composite flyweight by calling set _context. (That is the context overwriting
phase we mentioned above in the case of a non-void argument.)

. The class COMPOSITE FLYWEIGHT also provides the feature set external
characteristic range to set the external characteristic of several shared
flyweights at a time. To achieve this, it uses the traversal features of class
FLYWEIGHT CONTEXT.

The context allows to
keep the flyweight's
external characteris-
tics by groups (zones)
with the same exter-
nal characteristic.

§11.1 FLYWEIGHT PATTERN

. As mentioned before, instantiating a new COMPOSITE FLYWEIGHT creates a
default context, which is used by the other class features unless another context
is provided. The setter procedure set_context gives the ability to provide a new
context independently from any change to the composite flyweight.

The FLYWEIGHT CONTEXT will be of particular use for all features modifying the
structure of the composite, namely addition and removal features. Let’s review them
now and examine their exact behavior:

. add_flyweights traverses the list of shared flyweights and call add flyweight on
each item.

. add_flyweight is the redefined version of feature add originally defined in the
parent class COMPOSITE [G]. It extends the list of flyweights with the new
elements given as argument and updates the context accordingly. (It calls
insert on the context to update the CONTEXT ZONES.)

. insert_flyweights has the same behavior as add_flyweights, except that it allows
specifying the position in the composite — more accurately, the position in
the list of shared flyweights making the composite flyweight — where to add
the new shared flyweights.

. remove_flyweight was first defined in the parent library class COMPOSITE [G]
under the name remove. It is redefined here in COMPOSITE FLYWEIGHT to
ensure that in addition to the element removal, it also updates the composite
context. (In fact, it updates the context zones by calling the feature insert with
argument -/ on the actual context.)

As a FLYWEIGHT, the class COMPOSITE FLYWEIGHT exposes a feature do_something,
which traverses the list of flyweights and outputs a message for each item according
to the current FLYWEIGHT CONTEXT. The class COMPOSITE FLYWEIGHT also
counts a few implementation features, which are exported to NONE:

. default _external characteristic is the default value used to initialize context in
the creation procedure make.

. All other non-exported features deal with sharing. Indeed, the very first goal
of applying the Flyweight pattern is to avoid wasting computer resources by
using shared flyweights. To do this, the class COMPOSITE FLYWEIGHT has a
Jflyweight pool, which is a pool of shared flyweights with maximum count
Jflyweight pool _count. This pool gets created with the composite. Then,
whenever clients ask to add new flyweights to the composite, the
corresponding routine (add_flyweight, insert flyweights) will retrieve the
required flyweight from the pool of shared objects, unless it does not exist yet,
and in that case only create it and put it into the pool for subsequent accesses.
Same process when removing flyweights from the composite.

. The creation of shared flyweights relies on the Factory Library: the class
COMPOSITE FLYWEIGHT has a once function flyweight factory, which returns
an instance of type FACTORY [SHARED FLYWEIGHT) by calling back the
feature new flyweight thanks to the Eiffel agent mechanism.

A flyweight — shared or unshared — is characterized by an external property
(called external characteristic in class FLYWEIGHT). This example simply assumes
that an external characteristic can be represented by a code of type INTEGER.

Going through the text of class COMPOSITE FLYWEIGHT highlighted the use
and usefulness of the FLYWEIGHT CONTEXT. A FLYWEIGHT CONTEXT describes a
list of flyweights grouped by CONTEXT ZONEs with the same external
characteristic. Let’s review the class features:

. The creation procedure make creates a new CONTEXT ZONEs with the
EXTERNAL PROPERTY given as argument.

167

Gamma 1995], p
195-206.

See chapter §.

Dubois 1999] and

chapter 25 of [Meyer
200?b].

168

FLYWEIGHT §11

The external _characteristic of a FLYWEIGHT CONTEXT is defined as a function
— not as an attribute — returning the external characteristic of the current
CONTEXT ZONE.

There also needs to be a way to modify the context to reflect addition or
removal of flyweights. This is the purpose of insers: it notifies the current
context that a_number of flyweights have been inserted — this number can be
positive or negative to cover both addition and removal of flyweights — and
resize the corresponding CONTEXT ZONE to take this change into account.

The next feature — the setter procedure set external characteristic — 1is
essential to the class FLYWEIGHT CONTEXT: it enables changing the external
characteristic of a_number of flyweights, starting from the current position in
the current CONTEXT ZONE.

Let’s have a look at the implementation features of the class — the
features exported to NONE — to better understand what the procedure ser
external_characteristic actually does:

. A FLYWEIGHT CONTEXT stores a list of CONTEXT ZONEs called
external _characteristic_zones.

. zone_number corresponds to the index in this list (i.e. the current cursor
position in external _characteristic_zones).

. set zone number moves the list cursor to the ith element, more precisely
to the a_numberth zone in external_characteristic_zones.

. new zone — used in set external characteristic — creates a new
CONTEXT ZONE with the characteristic and size given as argument.

. The class FLYWEIGHT CONTEXT also has an index, which is not the
index of list external characteristic zone, but the position in the current
CONTEXT ZONE during a zone traversal.

Let’s come back to the feature set external characteristic now. What does it do
exactly? The figure below illustrates the algorithm: in case index equals 1, it
replaces the external characteristic from the beginning of the zone; otherwise, it
shortens the current zone and inserts a new one.

Current context zone
(external characteristic old_external _characteristic)

A 7
T —
< a_number p right_size !
— 1
index
zone 1 zone 2 zone 3
! ! a number - =
S index | » - right_size '
Reinitialize current zone to |||Create a new zone If right size > 0 then create
have a new size of index, with external a new zone with external
and same external characteristic characteristic
characteristic a_characteristic and |||old_external_characteristic
old_external characteristic |||size a_number.

The query size traverses all CONTEXT ZONEs and sums up the size of each
zone.

Algorithm
used in set
external
characteristic
of class
FLYWEIGHT
_CONTEXT

§11.2 FLYWEIGHT LIBRARY

. Then, we have the traversal features start, forth, and move. (The names used
for features are in harmony with the conventions of CONTAINER classes in
EiffelBase.)

. start sets index to the first position in the first CONTEXT ZONE, by
calling start on the list external characteristic zones — which moves the
list cursor to the first CONTEXT ZONE — and by setting index to 1 —
to make index point to the first position in this zone.

. Sorth calls move with a_step equals to 1. move increases index by a_step,
taking into account the size of the current zone, meaning that it will
update the zone _number depending on the value of a_step and adjust the
index accordingly.

We have seen that the FLYWEIGHT CONTEXT relies on a class CONTEXT ZONE. lts
implementation is quite straightforward: it has two attributes — external
characteristic and size — which are given as arguments to the creation procedure
make; it also exposes a feature resize, which increases the zone size by a_delta on
condition that size increased by a_delza is still positive.

Flaws of the approach

The implementation of the Flyweight pattern described in the previous pages is not
that trivial and already consumes two reusable components: the Composite Library
and the Factory Library.

However, it is still not a reusable component. The flaw lies in the external
characteristic of a FLYWEIGHT: if we stick to the current implementation, clients
must rewrite all FLYWEIGHT classes just to adapt to another external property; hence
a lot of code repetition and low maintainability. This thesis claims it is a sign of
bad design and preaches the No Code Repetition principle that may also be called
“No Copy-Paste principle”:

Definition: No Code Repetition principle

If you find yourself having to copy and paste code, just stop: there is something
wrong with your design.

There is a simple way to satisfy the No Code Repetition principle and transform the
Flyweight implementation into a reusable solution: we just need to parameterize the
class FLYWEIGHT and its descendants by the external characteristic. This is the key
design idea of the Flyweight Library.

11.2 FLYWEIGHT LIBRARY

The Flyweight Library relies on two “pattern libraries” previously described: the
Factory Library — to provide the sharing facilities of the Flyweight pattern — and
the Composite Library — to represent “composite flyweights”. The library relies on
constrained genericity and agents.

169

EiffelBase-Web].

See chapter 10.
See chapter 8.

See chapter 8.
See chapter 10.

170 FLYWEIGHT §11

Library structure

Here is the class diagram of the Flyweight Library, which also includes the classes
of the libraries it depends on (the Composite Library and the Factory Library):

conposite _library

1
______________ [P
1

COMPOSITE

add
remove
(LTS E N —— I— mmmmmmmm—mn
____________________________________ 1 flyweight Tbrary | _
I I
! * |
: Shyweight _ I Classes
; factory . LIRS | involved in
| [> SHARABLE create make end] | the Flyweight
: 1 Library
: X do_something* is_valid y
I external_characteristic :
| set_external_characteristic |
! |
I |
I
. I SHARED FLYWEIGHT ;
: (7 > SHARABLE create make end, :
! |
: do_something+ do_something+ :
| add _fhweights characteristic I
| insert _flyweights |
: context set_external_characteristic_range !
| set_context :
! |
: FLYWEIGHT \&ternal_characteristic zone :
: CONIEXT [:
: external _characteristic @enM_cMacta’istic :
| insert size !
I set_external_characteristic resize |
: set zone number !
| hew zone :
I index |
: size |
| Start, forth, move :
! |
I]
Flyweight objects are represented by a class FLYWEIGHT, which is generic. The
generic parameter G denotes the flyweight’s external characteristic; it is constrained
by the class SHARABLE, meaning that any actual generic parameter needs to conform
to SHARABLE (typically inherit from class SHARABLE). See section 6.9 of
Meyer 200?b] about
SHARABLE means that it is possible to share an object; in other words, this object has at non-conforming

least an integer code and a feature is_valid. inheritance.

§11.2 FLYWEIGHT LIBRARY

The class FLYWEIGHT [G] is deferred. It has two concrete descendants:
COMPOSITE_FLYWEIGHT [G, H] and SHARED FLYWEIGHT [G, H]. The second
generic parameter corresponds to the intrinsic characteristic of shared flyweights and
needs to conform to HASHABLE — because it is used as the key of the flyweight
pool represented as a HASH TABLE (more details on this in a few pages). The class
COMPOSITE _FLYWEIGHT [G, H] is a descendant of COMPOSITE [G] from the Composite
Library.

The Flyweight Library uses the “safety version” of the Composite Library, but it could
also rely on the “transparency version”. I preferred the “safety variant” because it better
complies with the principles of object technology.

It provides a feature do something that performs an operation depending on a
FLYWEIGHT CONTEXT, which itself is made of CONTEXT ZONEs. The
implementation of feature do_something relies on an agent procedure that gets passed
to the creation routine of any FLYWEIGHT.

The class COMPOSITE FLYWEIGHT [G, H] also relies on the library class
FACTORY [G] to handle the creation of the SHARED FLYWEIGHTS it is composed of
and ensure that these parts are actually shared.

Library classes

Here is the text of class FLYWEIGHT [G]:

deferred class
FLYWEIGHT [G —> SHARABLE create make end]

inherit

COMPONENT [FLYWEIGHT [(]]
rename
do_something as do_something_component
end

feature -- Initialization

make (a_procedure: like procedure) is
-- Set a_procedure to a_procedure.
require
a_procedure not void: a_procedure /= Void
do
procedure .= a_procedure
ensure
procedure_set: procedure = a_procedure
end

feature -- Access

external_characteristic (a_context: FLYWEIGHT CONTEXT [(]): G is
-- External characteristic of flyweight in a_context
require
a_context not void: a_context /= Void
do
Result := a_context « external_characteristic
ensure
external characteristic not void: Result /= Void
end

171

See “Class
COMPOSITE_FLY-
WEIGHT (part of the
Flyweight Library)”.
page 179.

See section ““Safety
version”, page 156
and “‘Transparency
version”, page 150.

Deferred
class FLY-
WEIGHT
(part of the
Flyweight
Library)

172

procedure: PROCEDURE [ANY,
TUPLE [FLYWEIGHT [G], FLYWEIGHT CONTEXT [G]]]
-- Procedure called by do_something for shared flyweights

feature -- Element change

set_external _characteristic (a_characteristic: like external _characteristic;
a_context: FLYWEIGHT CONTEXT [G]) is
-- Set external _characteristic of a_context to a_characteristic.
require
a_characteristic not void: a_characteristic I= Void
a_context not void: a_context /= Void
do
a_context e start
ensure
external characteristic_set:
a_context e external_characteristic /= Void and then
a_contexteexternal characteristic = a_characteristic
end

feature -- Output

do_something (a_context: FLYWEIGHT CONTEXT [(]) is
-- Do something with flyweight according to a_context.
require
a_context not void: a_context /= Void
deferred
end

end

This library class FLYWEIGHT [G] is quite similar to the class FLYWEIGHT described
for the pattern implementation. The main difference lies in the presence of an
attribute procedure in the above version that is initialized at creation with an agent
given as argument to the creation procedure make. This agent is called by the
effected versions of procedure do_something (more details in the next pages). Also,
FLYWEIGHT [G] is a generic class constrained by class SHARABLE whose text is
presented below:

deferred class

SHARABLE
inherit

FLYWEIGHT CONSTANTS
feature { NONE} -- Initialization

make (a_code: like code) is
-- Set code to a_code.

require
a_code is valid: is_valid code (a_code)
do
code = a_code
ensure -
code set: code =a_code
end

feature -- Access

code: INTEGER
-- Code of the item

FLYWEIGHT §11

See section 11.1.

The class
FLYWEIGHT CON-
STANTS provide the
constant attributes
minimum_code and
maximum_code used
in feature is_valid
code appearing on the
next page.

Deferred
class SHAR-
ABLE (part
of the Fly-
weight
Library)

§11.2 FLYWEIGHT LIBRARY

feature -- Status report

is_valid: BOOLEAN is
-- Is current valid?
do
Result == is valid code (code)
ensure
definition: Result = is_valid code (code)
end
is_valid _code (a_code: INTEGER): BOOLEAN is
--Is a_code a valid code?
do
Result := (a_code = default code or
(a_code >= minimum_code and a_code <= maximum_code))
ensure
definition: Result = (a_code = default code or
(a_code >= minimum_code and a_code <= maximum_code))
end
invariant

is_valid: is_valid

end
The code of class SHARABLE corresponds to the one of class EXTERNAL PROPERTY
in the pattern implementation.

The class FLYWEIGHT [G] relies on a class FLYWEIGHT CONTEXT [G] whose
text is shown below.

class
FLYWEIGHT CONTEXT [(]

create
make
feature { NONE?} -- Initialization
make (a_characteristic: like external _characteristic) is
-- Create a first context zone from a_characteristic.
require
a_characteristic_not_void: a_characteristic /= Void
do
create external _characteristic_zones « make
external_characteristic_zones o extend (
new_zone (a_characteristic, 0))
external_characteristic_zones o start
ensure
is_first external characteristic_zone: zone number = 1
end

feature -- Access

external_characteristic: G is
-- External characteristic of current zone
do
Result =
external _characteristic zones « item « external_characteristic
ensure
definition: Result =
external_characteristic_zones « item « external_characteristic

end

173

Class
FLYWEIGHT
_CONTEXT
(part of the
Flyweight
Library)

174

FLYWEIGHT §11

feature -- Element change

insert (a_number: INTEGER) is
-- Insert a_number of flyweights at the current place
-- in the composite.
require
a number strictly positif: a_number >0
do
external_characteristic_zones o item o resize (a_number)
ensure
inserted: external characteristic_zones « item ¢ size

= old external characteristic zones «item e size +a_number
end

set_external_characteristic (a_characteristic: like external characteristic;

a_number: INTEGER) is
-- Change the external characteristic for a_number of flyweights
-- from current position in the context to a_characteristic.
require
a_characteristic not void: a_characteristic /= Void

a number strictly positive: a_number >0
local
right size: INTEGER
old_external_characteristic: G
do
-- Space left at the right of the new zone
right size = external_characteristic_zones « item ¢ Size
— (index + a_number)
old_external_characteristic .=
external_characteristic_zones « item « external_characteristic

if index =1 then
-- Replace from the beginning of the zone.
external_characteristic_zones o item ¢ make (
a_characteristic, a_number)
else
-- Shorten the current zone, and insert the new one.
external_characteristic_zones o item « make (
old_external characteristic, index)
external_characteristic_zones ego_i_th (zone_number)
external_characteristic_zones ¢ put_right (
new zone (a_characteristic, a_number))
external_characteristic_zones « forth
end
if right size >0 then
-- Insert a new zone at the right
-- with old_external characteristic.
external_characteristic_zones e go_i_th (zone_number)
external_characteristic_zones ¢ put_right (
new_zone (old_external characteristic, right size))
external_characteristic_zones « forth
end

-- first flyweight in the new zone
start
end

§11.2 FLYWEIGHT LIBRARY

size: INTEGER is
-- Total size of the context (in number of flyweights)

do
from
external _characteristic_zones o start
until
external_characteristic_zones « after
loop
Result .= Result +
external_characteristic_zones ¢ item « size
external _characteristic_zones o forth
end
end

feature -- Traversal

start is
-- Start a traversal.
--|Start external characteristic_zones. Set index to 1.
do
external_characteristic_zones « start
index =1
ensure
first external characteristic zone: zone number =1
index_equals one: index =1
end
forth is
-- Advance to the next flyweight.
do
move (1)
end

move (a_step: INTEGER) is
-- Move index a_step times.
require
a_step positive: a_step >=0

do
from
index := index + a_step
until
zone_number = external_characteristic_zones « count
or else index <= external_characteristic_zones s item « size
loop
index = index — external characteristic_zones « item ¢ Size
set_zone_number (zone_number + 1)
end
end

feature { VONE} -- Implementation

external characteristic_zones: LINKED LIST [CONTEXT ZONE [(]]
-- Item zones in composite

zone_number: INTEGER is

-- Index of current external _characteristic zone
-- in external_characteristic_zones
do
Result := external _characteristic_zones « index
ensure
definition: Result = external characteristic zones ¢ index

end

175

176
set_zone_number (a_zone_number: like zone_number) is
-- Set zone number with a_zone_number.
require
a_zone number is valid:
external _characteristic zonesevalid index (a_zone number)
do
external _characteristic_zonesego i th (a_zone number)
ensure
zone number set: zone number = a_zone number
end
index: INTEGER
-- Position in external characteristic_zones during traversals
new zone (a_characteristic: Gy a_size: INTEGER): CONTEXT ZONE [(] is
-- New external characteristic zone
-- with a_characteristic and size a_size
require
a_characteristic not void: a_characteristic I= Void
a size positive: a_size >=0
do
create Result« make (a_characteristic, a_size)
end
invariant
zones_not void: external characteristic_zones /= Void
no void zone: not external characteristic zones « has (Void)
zones_not_empty: not external characteristic_zones «is_empty
index_positive: index >=0
end

FLYWEIGHT §11

The implementation of class FLYWEIGHT CONTEXT [G] relies on CONTEXT ZONES,

which are defined as follows:

class

CONTEXT ZONE [(]

create {FLYWEIGHT CONTEXT}
make

feature {FLYWEIGHT CONTEXT?} -- Initialization

make (a_characteristic: like external_characteristic; a_size: like size) is

-- Set external_characteristic to a_characteristic.
-- Set size to a_size.

require
a_characteristic_not void: a_characteristic |= Void
a_size positive: a_size >=0

do
external_characteristic := a_characteristic
size :=a_size

ensure

size set: size =a_size
end

external characteristic_set: external _characteristic = a_characteristic

Class
CONTEXT _
ZONE (part
of the Fly-
weight
Library)

§11.2 FLYWEIGHT LIBRARY

feature -- Access

external _characteristic:
-- Item used in the current zone

size: INTEGER
-- Size of current external characteristic zone

feature -- Element change

resize (a_delta: like size) is
-- Add a_delta to size.
require
adjusted_size is_positive: size + a_delta >=0

do

size = size + a_delta
ensure

size adjusted: size = old size + a_delta
end

invariant
external characteristic not void: external characteristic /= Void
positive_size: size >=0

end

A context zone is defined by its size, of type INTEGER, and an external _characteristic,
of type G — the generic parameter of the class — corresponding to the extrinsic
characteristic of the flyweight objects.

As shown on the class diagram of the Flyweight Library, there are two kinds
of FLYWEIGHTS: SHARED FLYWEIGHTs and COMPOSITE FLYWEIGHTs. Here are
the corresponding class texts:

class

SHARED FLYWEIGHT [—> SHARABLE create make end, // —> HASHABLE]
inherit

FLYWEIGHT [(]
rename
make as make_flyweight
redefine
procedure,
set_external _characteristic
end

create

make,
make_from_procedure

feature -- Initialization

make (a_characteristic: like characteristic) is
-- Set characteristic to a_characteristic.
require
a characteristic not void: a_characteristic /= Void
do
characteristic := a_characteristic
ensure
characteristic_set: characteristic = a_characteristic
end

177

See “Classes

involved in the Fly-
page 170.

Class
SHARED
FLY-
WEIGHT
(part of the
Flyweight
Library)

178 FLYWEIGHT §11

make_from_procedure (a_characteristic: like characteristic;

a_procedure: like procedure) is
-- Set characteristic to a_characteristic.
-- Set procedure to a_procedure.
require
a_characteristic not void: a_characteristic /= Void

a procedure not void: a_procedure /= Void

do
characteristic == a_characteristic
make_flyweight (a_procedure)
ensure
characteristic_set: characteristic = a_characteristic
procedure_set: procedure = a_procedure
end

feature -- Access

characteristic: H
-- Internal property of the flyweight

procedure: PROCEDURE [ANY,
TUPLE [like Current, FLYWEIGHT CONTEXT [(1]]
-- Procedure called by do_something

feature -- Element change

set_external characteristic (a_characteristic: like external characteristic;
a_context: FLYWEIGHT CONTEXT [(]) is

-- Set external characteristic of a_context to a_characteristic
-- (i.e. for all flyweights of the composite).
do

Precursor {FLYWEIGHT} (a_characteristic, a_context)

a_contexteset_external characteristic (a_characteristic, 1)
end

feature -- Output

do_something (a_context: FLYWEIGHT CONTEXT [(]) is

-- Call procedure if not Void; otherwise do nothing.
do

if procedure /= Void then

procedure « call ([Current, a_context])

end
end

feature {NONE?} -- Basic operations

do_something _component is
-- Do nothing.
-- (May be redefined in descendants.)
do
-- Do nothing by default.
end

end

§11.2 FLYWEIGHT LIBRARY

A SHARED FLYWEIGHT is parameterized, first by its external characteristic —
corresponding to the formal parameter G of the class header — and second by its
intrinsic characteristic — corresponding to the formal parameter H of the class
header. It implements the procedure do_something by calling the agent procedure —
if it has already been set — with the FLYWEIGHT CONTEXT given as argument.

Let’s concentrate on the class COMPOSITE FLYWEIGHT [G, H] now (see class
text below). Like the class SHARED FLYWEIGHT [G, H], it has two generic
parameters whose first one needs to conform to class SHARABLE and the second one
to HASHABLE (because it is used as a key of the flyweight pool).

class

COMPOSITE FLYWEIGHT [G —> SHARABLE create make end, /7 —> HASHABLE]

inherit

FLYWEIGHT [(]
undefine
is_composite
redefine
make,
procedure,
set_external _characteristic
end

COMPOSITE [FLYWEIGHT [(]]
rename
make as make_composite,
parts as flyweights,
add as add_flyweight,
remove as remove_flyweight,
do_something as do_something_component

redefine
fhyweights,
add_flyweight,
remove_flyweight,
item

end

create
make
feature -- Initialization

make (a_procedure: like procedure) is
-- Set procedure to a_procedure.
-- Initialize context and pool of instantiated flyweights.
do
Precursor { FLYWEIGHT?} (a_procedure)
make_composite
create context e make (default_external _characteristic)
create flyweight pool e make (flyweight pool count)
ensure then
context external characteristic_set:
context « external_characteristic « code =
feature {FLYWEIGHT CONSTANTS} «default code
end

179

This notation is
explained in appen-
dix A with the notion
of constrained
genericity, starting
on page 387.

Class
COMPOSITE
_FLY-
WEIGHT
(part of the
Flyweight
Library)

180

feature -- Access

procedure: PROCEDURE [ANY,
TUPLE [like item, FLYWEIGHT CONTEXT [G]]]
-- Procedure to be called on each shared flyweight

item: SHARED FLYWEIGHT G, H] is
-- Current item
do
Result 7= Precursor { COMPOSITE}
end

feature -- Element change

set_external characteristic (a_characteristic: like external characteristic;
a_context: FLYWEIGHT CONTEXT [(]) is
-- Set external characteristic of a_context to a_characteristic
-- (i.e. for all flyweights of the composite).

do
Precursor { FLYWEIGHT} (a_characteristic, a_context)
a_context e set_external _characteristic (
a_characteristic, flyweights « count)
set_context (a_context)
end

set_external characteristic_range (

a_characteristic: like external characteristic; lower, upper: INTEGER) is
-- Set external characteristic of current context
-- to a_characteristic for lower to upper flyweights.

require
a characteristic not void: a_characteristic /= Void
valid range: lower <= upper

and then lower >= 1 and upper <= context.size

do
context « start; context « move (lower — 2)
contexteset_external_characteristic (
a_characteristic, upper — lower + 1)
end

set_context (a_context: like context) is
-- Set context to a_context.
require
a_context not void: a_context /= Void
do
context := a_context
ensure
context set: context = a_context
end

add _flyweight (a_flyweight: like item) is
-- Add a_flyweight to composite and update current context.
--|[Extend flyweights.
do
context e Start
if not flyweights « is_empty then
context e move (flyweights « count — 1)
end
context e insert (1)
flyweights « extend (
flyweight factoryenew with_args (
[a_flyweight « characteristic, procedure]))
end

FLYWEIGHT §11

Assignment attempts
7= are explained in
appendix4, p 378.

§11.2 FLYWEIGHT LIBRARY

add_flyweights (some_flyweights: ARRAY [like item]) is
-- Extend current composite with some_flyweights.
require
some_flyweights not void: some_flyweights /= Void
no void flyweight: not some_flyweights « has (Void)
some_flyweights not empty: not some_flyweights «is _empty
local
it INTEGER
do
from i := 1 until i > some_flyweights « count loop
add_flyweight (some_flyweights @ 1)
i=i+1
end
ensure
flyweight count increased: flyweights « count =
old flyweights « count + some_flyweights « count
end

insert_flyweights (some_flyweights: ARRAY [like item]; an_index: INTEGER) is

-- Insert some_flyweights in current composite flyweight
-- starting from an_index.

require
some_flyweights not void: some_flyweights /= Void
no void flyweight: not some_flyweights « has (Void)
some_flyweights not empty: not some flyweights«is empty
an_index is positive: an_index >=0

local
i: INTEGER

do
if flyweights « is_empty then

add_flyweights (some_flyweights)

end

context ¢ Start
contextemove (an_index — 2)
context e insert (some_flyweights « count)

from
flyweightsego i th (an_index — 1)
i=1
until
i > some_flyweights ¢ count
loop
flyweights « put right (
flyweight factoryenew with_args (
[(some_flyweights @ i) « characteristic,
procedurel))
flyweights « forth
i=i+1
end
ensure
flyweight count increased: flyweights « count =
old flyweights « count + some_flyweights « count
end

feature -- Access

context: FLYWEIGHT CONTEXT [(/]
-- Extrinsic context of the flyweight

181

182 FLYWEIGHT §11

feature -- Removal

remove_flyweight (a_flyweight: like item) is

-- Remove a_flyweight from composite and update current context.
-- (Extend flyweights.)

do
flyweights e search (a_flyweight)
contextestart
contextemove (flyweights e index — 1)
contexteinsert (—1)
flyweights « remove

end

feature -- Output

do_something (a_context: FLYWEIGHT CONTEXT [(]) is
-- Do something on current composite flyweight
-- according to a_context.
require else
a context may be void: a_context = Void and then context /= Void
local
a_size: INTEGER
do
if a_context /= Void then
context *= a_context
a_size = context ¢ Size
if a_size /= flyweights « count then
context e Start
context o insert (flyweights « count — a_size)

end
end
from
start
context e Start
until
after
loop
item e do_something (context)
forth
context e forth
end

ensure then
context set: old context = Void implies context = a_context

end

feature { NONE} -- Constant

Flyweight pool count: INTEGER is 128
-- Number of flyweights that can be created

feature { NONE} -- Implementation

flyweights: LINKED LIST [like item]
-- Parts of composite flyweight

flyweight_pool: HASH TABLE [like item, /7]
-- Pool of instantiated flyweights

§11.2 FLYWEIGHT LIBRARY

flyweight factory: FACTORY [like item] is
-- Factory of bolts
do
create Result e make (agent new_flyweight)
ensure
flyweight factory created: Result /= Void
end

new_flyweight (a_characteristic: I;
a_procedure: like procedure): like item is
-- New flyweight with characteristic a_characteristic
require
a_characteristic not void: a_characteristic I= Void
a procedure not void: a_procedure /= Void

do
if not flyweight poolehas (a_characteristic) then
create Result o make from procedure (a_characteristic,
a_procedure)
flyweight pool e put (Result, a_characteristic)
else
Result = flyweight pool @ a_characteristic
end
ensure
flyweight not void: Result /= Void
flyweight characteristic_set: Result « characteristic = a_characteristic
end

default external characteristic: G is
-- Default external characteristic
--|Should be effected as a once function.

do
create Result« make (
feature { FLYWEIGHT CONSTANTS} «default code)
ensure
default external characteristic not void: Result /= Void
definition: Result«code =
feature {FLYWEIGHT CONSTANTS} odefault code
end

invariant

procedure not void: procedure /= Void

context not void: context /= Void

flyweight pool not void: flyweight pool /= Void

consistent_flyweight pool: flyweight poolecount <= flyweight pool count

end

Flyweight pattern vs. Flyweight Library

This section illustrates the differences between the Flyweight pattern and its
componentized version, the Flyweight Library, on an example. Let’s consider again
the example of a physical library where users can borrow items (books, video
recorders, etc.).

A BOOK is made of SENTENCEs, which are themselves made of
CHARACTERs. Thus, we can say that a SENTENCE is a COMPOSITE FLYWEIGHT of
CHARACTERS.

183

184 FLYWEIGHT §11

Whether we use a direct pattern implementation to code the class SENTENCE
or apply the Flyweight Library is almost transparent for the users. In the case of a
direct implementation of the Flyweight pattern, we would have features like:

new_sentence: SENTENCE is
-- New sentence

local
context: FLYWEIGHT CONTEXT
do
create Result s make
Result.set_text (“Patterns are good; components are better’)
create contextemake (‘e”)
Result « draw (context)
end

In the case of an implementation relying on the Flyweight Library, the code
becomes:

new_sentence: SENTENCE is
-- New sentence

local
context: FLYWEIGHT CONTEXT [CHARACTER)]
do
create Result« make (agent draw)
Result.set_text (“Patterns are good; components are better’)
create context «make ('e')
Resultodo _something (context)
end

Only the creation of the composite flyweight SENTENCE differs because we need to
pass the agent called to draw shared flyweights (CHARACTERs) in the case of an
implementation using the Flyweight Library.

The two code extracts shown above may seem very similar. Indeed, they look
very similar, but they are not. Here we simply reused existing classes to build our
own application, whereas we had to implement everything from scratch in the
previous example. This is one of the benefits of reuse described in chapter 2.

11.3 COMPONENTIZATION OUTCOME

The componentization of the Flyweight pattern, which resulted in the development
of the Flyweight Library, is a success because it meets the componentizability
quality criteria established in section 6.1.

. Completeness: The Flyweight Library covers all cases described in the
original Flyweight pattern.

. Usefulness: The Flyweight Library is useful because it provides a reusable
library from the Flyweight pattern description, which developers will be able
to apply to their programs directly; no need to implement the same design
scheme again and again because it is captured in the reusable component.

. Faithfulness: The Flyweight Library is similar to a direct implementation of
the Flyweight pattern, with the benefits of reusability. It just introduces
(constrained) genericity to have a reusable solution and uses the Composite
Library and the Factory Library described in previous chapters. The Flyweight
Library fully satisfies the intent of the original Flyweight pattern and keeps
the same spirit. Therefore I consider the Flyweight Library as being a faithful
componentized version of the Flyweight pattern.

§11.4 CHAPTER SUMMARY

TBype-safety: The Flyweight Library relies on constrained genericity, the
Composite Library, and the Factory Library. It also makes extensive use of
assertions. First, constrained genericity and Design by Contract™ are type-
safe in Eiffel. Second, chapters 8 and 10 explained that the Factory Library
and the Composite Library are type-safe. As a consequence, the Flyweight
Library is also type-safe.

Performance: Comparing the implementation of the Flyweight Library with a
direct pattern implementation shows that the only differences are the use of
genericity and agents. Using genericity in Eiffel does not imply any
performance penalty. Using agents implies a performance overhead, but very
small on the overall application. Therefore, the performance of a system based
on the Flyweight Library will be in the same order as when implemented with
the Flyweight pattern directly.

Extended applicability: The Flyweight Library does not cover more cases than
the original Flyweight pattern.

11.4 CHAPTER SUMMARY

The Flyweight pattern suggests relying on object sharing when it would be too
costly to have one object per “entity”; instead it advises having a pool of
shared “flyweight” objects, each corresponding to one entity (for example a
character in a document editor).

The “extrinsic” properties of flyweights are moved to a flyweight “context”
and computed on demand rather than stored in the corresponding class.

The Flyweight pattern defines two kinds of flyweights: shared and unshared
flyweights, unshared flyweights being usually composed of shared ones.

The Flyweight pattern is not a reusable solution; it is just a design idea that
developers have to implement anew whenever they want to use it.

The Flyweight Library captures the idea of the Flyweight pattern into a
reusable component. It uses the Composite Library and on the Factory
Library; it also strongly relies on constrained genericity and on the Eiffel
agent mechanism.

The Flyweight Library supposes unshared flyweights are always composites
of shared flyweights.

185

The performance
overhead of agents is
explained in detail in
appendix A, p 390.

Gamma 1995], p
195-206.

See chapter 10.
See chapter 8.

186 FLYWEIGHT §11

12

Command and Chain of
Responsibility

Fully componentizable

Two fully componentizable patterns have not been presented yet: Command and
Chain of Responsibility. The first one can be transformed into a reusable component
thanks to unconstrained genericity and agents, and its componentized version uses
the Composite Library introduced in the previous chapter. The second one is
componentizable thanks to unconstrained genericity only.

This chapter first describes the Command pattern and its different flavors
(history-executable and self-executable commands). Then it presents the Chain of
Responsibility pattern and its componentized version, the Chain of Responsibility
Library.

12.1 COMMAND PATTERN

The Command pattern is a widely used pattern that makes commands (requests)
first-class objects. Let’s study the pattern’s intent and possible implementations in
more detail.

Pattern description

The Command pattern was described by Meyer in Object-Oriented Software
Construction as a way to implement an undo-redo mechanism in text editors. Design
Patterns presents it as a way to “encapsulate a request as an object, thereby letting
you parameterize clients with different requests, queue or log requests, and support
undoable operations”.

Having commands as first-class objects enables combining them into
composite commands. (We will see later in this chapter how to combine the
Command pattern with the Composite Library.)

Besides, it is easy to add new commands to an existing architecture by writing
a new descendant of class COMMAND; no need to change existing classes.

See chapter 10, page
147.

Meyer 1988], p 285-
290.

Gamma 1995], p
233.

See chapter 10, page
147.

188 COMMAND AND CHAIN OF RESPONSIBILITY §12

Here is the class diagram of a typical application using the Command pattern:

. commands
APPLICATION

is_once_command

executed i execute*
caizi_un Z, can_redo undo*
undo, redo redo*®

undo_all, redo_all
commands, arguments

extend
+
COMMAND |
execute+ execute+
undo+ undo+
redo+ redo+

A COMMAND object is able to execute an action on a certain target. It is also possible
to undo and redo actions. The HISTORY keeps track of all executed commands.

An example APPLICATION class may look like this:

class
APPLICATION
create
make
feature { NONE?} -- Initialization

make is

-- Create a command and execute it. (Use the undo/redo mechanism.)

local
command_1: COMMAND 1
command_2: COMMAND 2

do
create command_1 e make (True)
create command_2 e make (False)
historys execute (command 1, [])
historys execute (command 2, [])
historys undo
historys execute (command 1, [])
historysundo; historys undo
historysredo; historys redo
historys execute (command 2, [])
historys execute (command_1, ["Command"])
historys execute (command 2, [])
historys undo
historyeundo_all
historysredo_all

end

feature { NONE?} -- Implementation
history: HISTORY is

-- History of executed commands

once
create Result e make

ensure
history not void: Result /= Void

end

end

Class dia-
gram of a typ-
ical
application
using the
Command
pattern

Example
application
using com-
mands

The argument of make
specifies whether the
command can be exe-
cuted only once.

Feature execute has
two arguments: first
the command to be
executed, then some
arguments to be given
when executing the
command.

The following section
about the pattern
implementation will
explain why we need
two arguments.

§12.1 COMMAND PATTERN 189

In this example, the history always executes the commands. In GUI applications, it
is common to have commands executing themselves: for example, clicking on a
button calls a certain command to execute itself. In that case, it is up to the
COMMAND to register itself in the history during its execution. Here is the
corresponding class diagram:

iston SHARED_
HISTORY
APPLICATION
Class dia-
gram of a
command
commands * pattern vari-
i COMMAND)/is once command ant
execute™
has undo™
execute redo™®
can_undo, can_redo
undo, redo
undo_all, redo_all
commands, arguments
extend execute+ execute+
undo+ undo+
redo+ redo+

Since both classes APPLICATION and COMMAND need to access the history, it is
moved to a common ancestor SHARED HISTORY. The history is implemented as a
once function to ensure that the APPLICATION and the COMMAND objects access the See [Meyer 1992], p
same hiStOI'y. t]l 51 .Zsc.zbout once rou-

Let’s now have a look at some points of implementation.

Implementation

Here are some issues that need to be taken care of when implementing the Command
pattern (in any object-oriented programming language):

. How can we manage the history of executed commands? If it were an attribute
of class COMMAND, we would end with one history per command, which is
not what we want. A proper solution is to introduce a class HISTORY with a
list of commands keeping the previously executed requests, which we can undo
or redo.

. How can we manage a history with several occurrences of a given COMMAND
object? A solution is to keep along with the list of commands, the list of their
arguments (or just use one list of [command, argument] pairs.)

190 COMMAND AND CHAIN OF RESPONSIBILITY §12

. Some commands keep information during execution that will be useful for the
undo afterwards. In that case, it is not possible to execute and put into the
history several times the same objects. I call these special commands “once
commands” (commands that can be executed only once). The class
COMMAND should have a boolean query is_once_command specifying whether
a command can be executed only once. If it is a once command then the
object must be cloned or a new instance must be instantiated before executing
it. Class COMMAND does not provide a setter set_once_command because being
a “once command” is a property of the command that should be set at creation

time and should not be changed afterwards.

The Command pattern’s description by [Gamma 1995] says that it allows to

“parameterize clients with different requests”. Design Patterns adds that “you can
express such parameterization in a procedural language with a callback function,
that is, a function that’s registered somewhere to be called at a later point”. Eiffel’s

agents provide a typed form of callback.

The next section explains how the agents mechanism can help transform the

Command pattern into a reusable Eiffel component.

12.2 COMMAND LIBRARY

Representing actions to be executed as agents proved a successful idea and enabled
transforming the Command pattern into a reusable Eiffel component: the Command

Library. This section describes it in more detail.

Like the original pattern presented before, the Command Library is available
in two variants: the first variant lets the history execute commands; the second

variant provides commands that execute themselves.

Commands executed by the history

The Command Library uses agents to represent actions to be executed. A
COMMAND object is created with an agent action, which is called by feature execute,
and possibly a second agent undo_action for the undo mechanism. A COMMAND
object can only do one thing: executing action. The action may be called with
different arguments (thanks to feature execute with_args). One can also create
different COMMAND objects with different agents to perform different tasks.

Gamma 1995], p
235.

Dubois 1999] and

chapter 25 of [Meyer
200?7b].

§12.2 COMMAND LIBRARY

Here is the class diagram of a typical application using the first variant of the

Command Library:

*

[G

A

COMPONENT

|

item

[G]

history
APPLICATION

|

|

|

|

|

|

: do_something execute
I undo something
|

|

|

|

|

|

|

extend

COMPOSITE

can_undo, can_redo
undo, redo

undo_all, redo_all
commands, arguments

commands

COMMAND

action

undo_action

set_undo_action

is_once_command
execute
execute_with_args

undo, redo

- o oy

As mentioned before, one advantage of using the Command pattern is to be able to
compose different commands. The Command Library provides this ability by
relying on the Composite Library, which I presented in chapter 10. Indeed, the class
COMMAND inherits from COMPONENT [COMMAND], meaning it is possible to use

COMMAND objects in any COMPOSITE.

Here is the implementation of class COMMAND:

class
COMMAND
inherit

COMPONENT [COMMAND)]
rename
do_something as execute
redefine
execute
end

create

make,
make_with_undo

191

Class dia-
gram of a typ-
ical
application
using the first
variant of the
Command
Library

Command
supporting
undo and
redo

192 COMMAND AND CHAIN OF RESPONSIBILITY §12

feature { NONE?} -- Initialization

make (an_action: like action; a_value: like is_once _command) is
-- Set action to an_action and is_once_command to a_value.

require
an_action_not void: an_action /= Void
do
action := an_action
is_once_command = a_value
ensure
action_set: action = an_action
is_once_command_set: is_once_command = a_value
end

make_with_undo (an_action: like action; an_undo_action: like undo_action;
a_value: like is_once _command) is

-- Set action to an_action and undo_action to an_undo_action.
-- Set is_once_command to a_value.

require
an_action_not void: an_action /= Void
an_undo_action not void: an_undo_action /= Void

do
action :=an_action
undo_action = an_undo_action
is_once _command :=a_value
ensure
action_set: action = an_action
undo_action_set: undo_action = an_undo_action
is_once command_ set: is _once command = a_value
end

feature -- Access

action: PROCEDURE [ANY, TUPLE]
-- Action to be executed
undo_action: PROCEDURE [ANY, TUPLE]
-- Action to be executed to undo the effects of calling action

feature -- Status report

is_once_command:. BOOLEAN
-- Can this command be executed only once?
valid _args (args: TUPLE): BOOLEAN is

-- Are args valid arguments for execute with args and redo?
do

Result .= action e valid_operands ([args])
end

feature -- Status setting

set undo_action (an_action: like undo_action) is
-- Set undo_action to an_action.

require

an_action_not void: an_action /= Void
do

undo_action = an_action
ensure

undo_action_set: undo_action = an_action
end

§12.2 COMMAND LIBRARY

feature {HISTORY} -- Command pattern

execute is
-- Call action with an empty tuple as arguments.
do
if action e valid_operands ([[]]) then
action e call ([[1])
end
end

execute_with_args (args: TUPLE) is
-- Call action with args.
require
args not void: args /= Void
valid args: valid args ([args])
do
action « call ([args])
end

feature {HISTORY?} -- Undo

undo (args: TUPLE) is
-- Undo last action. (Call undo_action with args.)
require
undo_action not void: undo_action /= Void
args_not_void: args /= Void
valid args: undo_action e valid operands ([args])
do
undo_action « call ([args])
end

feature { HISTORY} -- Redo

redo (args: TUPLE) is
-- Redo last undone action. (Call action with args.)
require
args not void: args /= Void
valid args: valid args ([args])
do
action « call ([args])
end

invariant

action_not_void: action /= Void

end

The routines execute, execute_with_args, undo, and redo are exported to class HISTORY
and its descendants because COMMANDs are executed by the HISTORY. (The
implementation will be different for the second variant of the Command Library
where we can ask COMMANDs to execute themselves.)

The text of class HISTORY appears below:

class
HISTORY
create

make

193

See “Commands exe-
cuting themselves”,
page 197.

History of
executed
commands

194 COMMAND AND CHAIN OF RESPONSIBILITY §12

feature { NONE} -- Initialization

make is
-- Initialize history. (Initialize commands and arguments.)
do
create {TWO WAY LIST [COMMAND]} commands « make
create {TWO WAY LIST [TUPLE]} arguments « make
end

feature -- Status report

can_undo: BOOLEAN is
-- Can last command be undone?

do
Result .= (not commands «is_empty
and not commancds « off
and then commands « item e undo_action /= Void)
ensure
definition: Result = (not commands «is_empty
and not commands « off and then
commands e item « undo_action /= Void)
end

can_undo_all: BOOLEAN is
-- Can all previously executed commands be undone?
local
a_cursor: CURSOR
do
a_cursor == commands e cursor
Result .= True
from
until
commands « before or not Result
loop
Result := Result and commands « item « undo_action /= Void
commands « back
end
commands «go_to (a_cursor)
end

can_redo: BOOLEAN is
-- Can last command be executed again?
do
Result = (commands « index /= commands « count)
ensure
definition: Result = (commands « index /= commands « count)
end

can_redo_all: BOOLEAN is
-- Can all previously executed commands be executed again?
do
Result == True
ensure
definition: Result
end

feature -- Command pattern

§12.2 COMMAND LIBRARY

execute (a_command: COMMAND; args: TUPLE) is
-- Execute a_command.
require
a_command not void: a_command /= Void
args not void: args /= Void
local
new_command: COMMAND
do
if a_commandeis once command then
new _command := clone (a_command)
new_command e execute_with _args (args)
extend (new_command, args)
else
a_command « execute_with_args (args)
extend (a_command, args)
end
ensure
can_undo: can_undo
one more: commands « count = old commands « index + 1
one _more argument: arguments « count = old arguments « index + 1
is_last: commands o islast
is_last argument: arguments o islast
command_inserted: not a_command «is_once_command
implies commands « last = a_command
arguments_inserted: arguments ¢ last = args
end

feature -- Undo/Redo

undo is
-- Undo last command. (Move cursor of commands and
-- arguments one step backward.)
require
can_undo: can_undo
do
commands « item ¢ undo (arguments « item)
commands « back; arguments « back
ensure
can redo: can_redo
command_cursor moved backward:
commands « index = old commands « index — 1
argument_cursor moved backward:
arguments « index = old arguments.index — 1
end

redo is
-- Redo next command. (Move cursor of commands and
-- arguments one step forward.)
require
can_redo: can_redo
do
commands « forth; arguments « forth
commands « item o redo (arguments o item)
ensure
can_undo: can_undo
command cursor moved forward:
commands «index = old commands « index + 1
argument_cursor moved forward:
arguments « index = old arguments ¢ index + 1
end

195

196 COMMAND AND CHAIN OF RESPONSIBILITY §12

feature -- Multiple Undo/Redo

undo_all is
-- Undo all commands.
-- (Start at current position.)
require
can_undo_all: can_undo_all
do
from until commands « before loop
undo
end
ensure
cannot_undo: not can_undo
before: commands « before
arguments_before: arguments « before
end
redo_all is
-- Redo all commands.
-- (Start at current position.)
require
can redo all: can redo_all
do
from until commands « index = commands « count loop
redo
end
ensure
cannot redo: not can_redo
is_last: commands o islast
is_last argument: arguments o islast
end

feature { VONE} -- Implementation (Access)

commands: LIST [COMMAND]
-- History of commands

arguments: LIST [TUPLE]
-- History of arguments (corresponding to the history of commands)

feature { NONE} -- Implementation (Element change)

extend (a_command: COMMAND; args: TUPLE) is
-- Extend commands with a_command and arguments with args.
require
a_command not void: a_command /= Void
args not_void: args /= Void
do
from commands « forth until commands « after loop
commands « remove
end
from arguments « forth until arguments « after loop
arguments « remove
end
commands « extend (a_command)
arguments « extend (args)
commands « finish
arguments e finish

§12.2 COMMAND LIBRARY 197

ensure
one_more: commands « count = old commands « index + 1
one more argument: arguments « count = old arguments « index + 1
is_last: commands e islast
is_last argument: arguments o islast
command inserted: commands ¢ last = a_command
arguments_inserted: arguments « last = args

end

invariant

commands not void: commands /= Void

no void command: net commands « has (Void)
commands not after: not commands « after
arguments not void: arguments /= Void

consistent: commands « count = arguments « count
same_cursor position: commands e index = arguments « index

end

Clients will use the Command Library in a slightly different way from a traditional
pattern implementation. They will pass agents to the creation procedure of class See “Example appli-
COMMAND to get command objects ready to be used instead of writing descendants S2/2Lse colle,

s”, page .
of a deferred class COMMAND.

Here is a typical creation instruction using the Command Library:

create a_command e make with undo (Creati
agent do_something, reation dof a
agent undo_something, comman
True - with the Com-
) mand Library
where a_command is of type COMMAND, do _something and undo something are
routines declared in the class where the above code appears; the third argument
specifies whether the command can be executed only once.
Class COMMAND also has a creation procedure make with only two arguments, the first
one being an agent corresponding to the action to be executed.
Executing commands is the same in both cases:
historys execute (.
a_command, Execution of
[some arguments for feature do something] a command
)

where history is of type HISTORY and the tuple given as second argument of execute
corresponds to the arguments to be passed to the routine that will be executed (do_
something in our example).

Commands executing themselves

The second variant of the Command Library allows calling execute directly on
commands.

198

The corresponding class diagram is given below:

parent

item

[C]

history SHARED _
HISTORY
APPLICATION

do_something
undo_something

commands
COMMAND
execute action
has undo_action

can_undo, can_redo
undo, redo

undo_all, redo_all
commands, arguments
extend

set_undo_action
is_once_command
execute
execute_with_args
undo, redo

The SHARED HISTORY class simply declares a once function returning the history.
Classes APPLICATION and COMMAND inherit from SHARED HISTORY to share the
same history.

class
SHARED HISTORY
feature { NONE?} -- Implementation

history: HISTORY is
-- History of executed commands
once
create Result e make
ensure
history not void: Result /= Void
end

end

The implementation of class HISTORY is the same as in the first variant of the
Command Library. Therefore it is not reproduced here.

COMMAND AND CHAIN OF RESPONSIBILITY §12

Class dia-
gram of an
application
using the sec-
ond variant of
the Command
Library

Class
SHARED
HISTORY
declaring the
history

See “History of exe-

cuted commands
page 193.

§12.2 COMMAND LIBRARY

The implementation of class COMMAND is slightly different: the two features
execute and execute_with_args need to take care of registering the command into the
history (after doing a clone if it is a once command). Here are the corresponding texts:

class

COMMAND

feature -- Command pattern

execute is
-- Call action with an empty tuple as arguments.
do
if action e valid_operands ([[]]) then
if is once command and then historys has (Current) then
historys extend (clone (Current), [])
else
historys extend (Current, [])
end
action e call ([[1])
end
end

execute_with_args (args: TUPLE) is
-- Call action with args.
require
args_not_void: args /= Void
valid_args: valid_args ([args])

do
if is once command and then historys has (Current) then
historys extend (clone (Current), args)
else
historys extend (Current, args)
end
action e call ([args])
end

end

From the client, creating a command with either version of the Command
Library is the same:

create @ _command e make with undo (agent do_something,
agent undo something,
True)

The difference is how clients execute commands: in the first version, we called
execute on the history:

historys execute (a_command, [])
historys execute (a_command, ["Command"])

In this second version, we can call execute (or execute with args) directly on the
command (no need to pass it as an argument) because features execute and execute
with_args take care of registering the command into the Aistory:

a_command e execute
a_command e execute_with_args (["Command"])

199

Commands
registering
themselves in
the history
during execu-
tion

Creating a
command
with the Com-
mand Library

Asking the
history to exe-
cute a com-
mand

Executing a
command
directly

200 COMMAND AND CHAIN OF RESPONSIBILITY §12

The second variant of the library is more in line with object-orientation because it
avoids passing command objects as arguments to the feature execute and execute
with_args. However, the first variant may be useful in some cases; hence the reason
to provide both versions in the final Command Library.

Componentization outcome

The componentization of the Command pattern, which resulted in the development
of the Command Library, is a success because it meets the componentizability
quality criteria established in section 6.1:

. Completeness: The Command Library covers all cases described in the
original Command pattern.

. Usefulness: The Command Library is useful because it provides a reusable
solution to the Command pattern, which is as powerful as an implementation
from scratch of the pattern, and it is easy to use by clients.

. Faithfulness: The architecture of the Command Library and architecture of
systems designed and implemented with the Command Library are slightly
different from the original Command pattern and the systems that are based
on it (use of agents vs. inheritance). However, the Command Library fully
satisfies the intent of the original Command and keeps the same spirit.
Therefore I consider the Command Library as being a faithful componentized
version of the Command pattern.

. TBype-safety: The Command Library relies on agents and on the Composite
Library. The agent mechanism is type-safe in Eiffel and the Composite
Library is also type-safe as explained in section 10.2. As a consequence, the
Command Library is type-safe too.

. Performance: Comparing the implementation of the Command Library with a
direct pattern implementation shows that the only differences are the use of
agents and of the Composite Library. Chapter 10 explained that using the
Composite Library has no performance impact. Using agents implies a
performance overhead, but very small on the overall application. Therefore,
the performance of a system based on the Command Library will be in the
same order as when implemented with the Command pattern directly.

. Extended applicability: The Command Library does not cover more cases
than the original Command pattern.

Let’s examine another design pattern, the Chain of Responsibility, which could be
transformed into a reusable Eiffel library thanks to genericity.

12.3 CHAIN OF RESPONSIBILITY PATTERN

The Chain of Responsibility pattern addresses situations where several objects may
possibly handle a client request but one does not know in advance which object will
eventually treat the request. Let’s now take a closer look at the pattern.

Pattern description

The Chain of Responsibility pattern “avoid[s] coupling the sender of a request to its
receiver by giving more than one object a chance to handle the request. [It] chain[s] the
receiving objects and pass[es] the request along the chain until an object handles it”.

The Command
Library is available
intwo versions: in the
first version, com-
mands are executed
by the history, in the
second version, com-
mands can execute
themselves.

See ‘Componentiza-

tion outcome”, page
160.

The performance
overhead of agents is
explained in detail in
appendix A, p 390.

Gamma 1995], p
223.

§12.3 CHAIN OF RESPONSIBILITY PATTERN

Here is the class diagram of a typical application using the Chain of

Responsibility pattern:

*
{PPLICATIO ANDLER ﬂ next

X handle
can_handle*
do_handle*
handled

set next

+
FINAL HANDLER

+
INTERMEDIATE _
HANDLER

can_handle+
do _handle+

can_handle+
do_handle+

The APPLICATION sends a request to a HANDLER. A handler belongs to a chain of
handlers (the “chain of responsibility”). If the handler receiving the request does not
know how to process this request (the INTERMEDIATE HANDLER in the previous
diagram), it simply forwards the request to its neighbor. The neighbor may be able
to handle the request; if yes, it handles it, otherwise it passes the request again to the
next link on the chain. The request follows the “chain of responsibility” until one
HANDLER is able to handle the request (the FINAL HANDLER in the previous
picture). Only one object handles the request.

A HANDLER only needs to know the next handler on the chain; it does not
need to know which handler will process the request in the end. Hence less coupling
between objects and more flexibility. It is also easy to change responsibilities or add
or remove potential handlers from a chain because other objects do not know which
handler will eventually take care of the request.

However there is no guarantee that a request gets handled in the end. There
may be no handler with the right qualification to handle a special request. The
boolean query handled gives clients the ability to check whether their requests have
been processed.

Pattern implementation

Contracts play an important role in implementing the Chain of Responsibility pattern to
. enforce that some objects can_handle requests and some others cannot;

. provide some information to clients through the query handled.

201

Class dia-
gram of a typ-
ical
application
using the
Chain of
Responsibil-
ity pattern

This property differ-
entiates the Chain of
Responsibility pat-
tern from classes like
ACTION_SEQUENCE
in EiffelBase (used
for the agent mecha-
nism) where all
actions of the
sequence are exe-
cuted, not only one.

202 COMMAND AND CHAIN OF RESPONSIBILITY §12

The implementation of feature handle of class HANDLER appears next. Features can_ Eiffel allows having
handle and handled are two boolean queries of class HANDLER; they are deferred in ;””y implemented

. . ‘eatures in a deferred
the parent class HANDLER and effected in descendants. (For example, can_handle is class.
likely to return False for an INTERMEDIATE HANDLER and True for a FINAL

HANDLER.)

deferred class
HANDLER
feature -- Basic operation
handle is
-- Handle request if can_handle otherwise forward it to next.
-- If next is void, set handled to False.
do .
if can_handle then Handling
do_handle requests
handled = True
else
if next /= Void then
next s handle
handled = next « handled
else
handled = False
end
end
ensure
handled if possible: can_handle implies handled
handled by next otherwise:
(not can_handle and then next /= Void) implies
handled = next « handled
not_handled if next is void:
(not can_handle and then next = Void) implies not handled
end
end

The handle routine could also have arguments. What this thesis presents here is just
one possible implementation of the pattern. The next section will explain how to
componentize it.

12.4 CHAIN OF RESPONSIBILITY LIBRARY

Jézéquel et al. use genericity to implement a reusable class from the Chain of [Jézéquel 1999] p
Responsibility pattern. They have a class HANDLER [REQUEST| where REQUEST is 1%
the formal generic parameter. Genericity proved useful to componentize the pattern.

I added the notion of “being able to handle a request” (can_handle), which is
in the pattern’s book description but not taken into account by Jézéquel et al.’s
solution. I wanted to include that point into the design of the library because it
appears quite central in the pattern’s description by Gamma et al. For example, they
say: “if the [object of type] ConcreteHandler can handle the request, it does so; [Gamma 1995], p
otherwise it forwards the request to its successor”. 226.

§12.4 CHAIN OF RESPONSIBILITY LIBRARY

The result is a reusable Eiffel Chain of Responsibility Library. Following
Jézéquel et al.’s idea, it is made of one generic class HANDLER [G] (where G is the
request) with a feature handle. (The actual implementation of handle is done in
feature do_handle that descendants of HANDLER must effect.)

Here is the class diagram of a possible application using the Chain of
Responsibility Library. (Classes INTERMEDIATE HANDLER, FINAL HANDLER, and
APPLICATION are part of the example application; they do not belong to the library.):

o

*

HANDLER

APPLICATIO

7'y handle

next

can_handle*
do_handle*
handled

set next

+

INTERMEDIATE
HANDLER

[G]

can_handle+
do_handle+

A HANDLER knows the next element on the chain of responsibility. There is also a
procedure set next to add a next element to an existing object. (For example, when
changing a “final handler” that does not have any neighbor into an “intermediate

handler” that has one.)

The class HANDLER also provides two boolean queries: can_handle to specify
what request a HANDLER object can process, and handled to tell clients whether their
requests have been taken care of. Both queries are deferred in class HANDLER and

must be effected in descendants.

The text of the library class HANDLER is given next:

FINAL HANDLER

[G]

can_handle+
do_handle+

deferred class
HANDLER [(/]
feature { NONE?} -- Initialization

make (a_successor: like next) is
-- Set next to a_successor.
require
a_successor_not void: a_successor = Void
do
next :=a_successor
ensure
next set: next = a_successor
end

203

Jézéquel et al. pre-
sented a reusable
class HANDLER[G]in
Design Patterns and
Contracts. The solu-
tion provided here is
extended with the
notion of possibility
to handle (ensured by
assertions) and gets
closer to the pattern
descriptionin Design
Patterns.

Class dia-
gram of a typ-
ical
application
using the
Chain of
Responsibil-
ity Library

The class FINAL
HANDLER [G] is pro-
vided as part of the
Chain of Responsibil-
ity Library as a con-
venience for the users
who may need such a
class, but it could be
omitted.

Chain of
Responsibil-
ity Library

204 COMMAND AND CHAIN OF RESPONSIBILITY §12

feature -- Access

next: HANDLER [(]
-- Successor in the chain of responsibility

feature -- Status report

can_handle (a_request: -): BOOLEAN is deferred end
-- Can current handle a_request?

handled: BOOLEAN
-- Has request been handled?

feature -- Basic operation
handle (a_request: (7) is

-- Handle a_request if can_handle otherwise forward it to next.
-- If next is void, set handled to False.

do
if can_handle (a_request) then
do_handle (a_request)
handled = True
else
if next /= Void then
next s handle (a_request)
handled = next « handled
else
handled = False
end
end
ensure
handled if possible: can handle (a_request) implies handled
handled by next otherwise: (not can handle (a_request)
and then next /= Void) implies handled = next « handled
not handled if next is void: (not can handle (a_request)
and then next = Void) implies not iandled
end

feature -- Element change

set_next (a_successor: like next) is

-- Set next to a_successor. The routine set_next
do accepts Void argu-
ments to provide the

next ;= a_successor ability to remove

ensure parts of the chain of
t set: f= responsibility. Hence
next Sset: next = a_successor no precondition a
end successor /= Void.

feature { VONE} -- Implementation

do_handle (a_request: () is
-- Handle a_request.
require
can_handle: can_handle (a_request)
deferred
end

end

§12.4 CHAIN OF RESPONSIBILITY LIBRARY

Here is an example of what a concrete descendant of class HANDLER [G] could look like:

class

FINAL HANDLER [(]
inherit

HANDLER [(]
create

default create,
make

feature -- Status report

can_handle (a_request: G): BOOLEAN is
-- Can current handle a_request?
do
Result == (a_request /= Void)
ensure then
a request not void: Result implies a_request /= Void
end

feature { NONE?} -- Implementation

do_handle (a_request: () is
-- Handle a_request.
do
-- Do something.
end

end

It effects do_handle (that performs the actual request processing when possible) and
the query can_handle (which specifies what kind of requests instances of this class
will handle). In this example, objects of type FINAL REQUEST [SOME _TYPE] will be
handled if and only if the request given as argument of feature handle is non-void.

We could go even further in terms of reusability and transform the routines can_handle
and do_handle into calls to agents. As a consequence, the class HANDLER would not be
deferred; hence no need to write descendants of HANDLER anymore.

Componentization outcome

The componentization of the Chain of Responsibility pattern, which resulted in the
development of the Chain of Responsibility Library, is a success because it meets
the componentizability quality criteria established in section 6.1:

. Completeness: The Chain of Responsibility Library covers all cases described
in the original Chain of Responsibility pattern.

. Usefulness: The Chain of Responsibility Library is useful because it provides
a reusable library from the Chain of Responsibility pattern description, which
developers will be able to apply to their programs directly; no need to
implement the same design scheme again and again because it is captured in
the reusable component.

205

Concrete
descendant of
class HAN-
DLER [G]

206

COMMAND AND CHAIN OF RESPONSIBILITY §12

Faithfulness: The Chain of Responsibility Library is similar to an
implementation of the Chain of Responsibility pattern with the benefits of
reusability; it just introduces (unconstrained) genericity to have a reusable
solution. The Chain of Responsibility Library fully satisfies the intent of the
original Chain of Responsibility pattern and keeps the same spirit. Therefore |
consider the Chain of Responsibility Library as being a faithful
componentized version of the Chain of Responsibility pattern.

DBype-safety: The Chain of Responsibility Library relies on unconstrained
genericity and makes extensive use of assertions. Both mechanisms are type-
safe in Eiffel. As a consequence, the Chain of Responsibility Library is also
type-safe.

Performance: Comparing the implementation of the Chain of Responsibility
Library with a direct pattern implementation shows that the only difference is
the use of unconstrained genericity. Using genericity in Eiffel does not imply
any performance overhead Therefore, the performance of a system based on
the Chain of Responsibility Library will be in the same order as when
implemented with the Chain of Responsibility pattern directly.

Extended applicability: The Chain of Responsibility Library does not cover
more cases than the original Chain of Responsibility pattern.

12.5 CHAPTER SUMMARY

The Command pattern encapsulates requests (“commands”) into objects,
making it possible to build composite commands.

A “history” keeps all executed commands, making it possible to undo or redo
previously executed requests.

There exist several possible implementations of the Command pattern: one
variant forces to ask the history to execute commands; another variant allows
executing commands directly.

The Command pattern is fully componentizable thanks to agents in particular.

The resulting Command Library is available in two variants (like the original
pattern): the first variant forces client applications to go through the history to
execute commands; the second variant enables executing commands directly
(commands register themselves directly into the history at execution time).

The Chain of Responsibility pattern describes a way to handle client requests
by a chain of objects: if one object cannot handle the demand, it forwards it
to its neighbor until one handler can process the request (or the end of the
“chain of responsibility” is reached).

The Chain of Responsibility pattern allows minimum coupling between
objects and makes it easy to add or remove handlers from the chain or change
the responsibilities of existing handlers.

The Chain of Responsibility pattern is fully componentizable thanks to
genericity.

The Chain of Responsibility Library makes extensive use of contracts.

Gamma 1995], p
233-242.

See “Mechanisms

used to transform
componentizable
patterns intoreusable
Eiffel components”’
page 91.

Gamma 1995], p
223-232.

See “‘Design pattern
componentizability
classification
(filled) ", page 90.

13
Builder, Proxy and State

Componentizable but not comprehensive

All six previous chapters were devoted to fully componentizable patterns
corresponding to the level 1.3.1 of the pattern componentizability classification
presented earlier.

The present chapter is going one level down in the hierarchy to focus on
patterns of category “1.3.2 Componentizable but not comprehensive”: Builder,
Proxy, and State. All three patterns can be turned into reusable components;
however, the resulting components do not cover all possible cases of the original
pattern (hence the expression “not comprehensive”).

The chapter follows the same description scheme for each pattern: first, it
presents the pattern and explains how to implement it in Eiffel; second, it focuses on
the componentization work, highlighting the difficulties of providing a
comprehensive component solution.

13.1 BUILDER PATTERN

The Builder pattern is a “creational design pattern”; therefore it has some common
points with the Abstract Factory pattern presented in chapter 8. Let’s see how we
can take advantage of these similarities to develop a reusable Builder Library.

Pattern description

The purpose of the Builder pattern is to “separate the construction of a complex
object from its representation so that the same construction process can create
different representations”.

A “complex object” means a multi-part product. The key idea of a “builder”
is to construct this product step-by-step, part-by-part. Forthcoming examples will
illustrate the point.

See “‘Design pattern
componentizability
classification
(filled) ", page 90.

See “Definition:
Componentization”,
page 26.

Gamma 1995], p 97.

208 BUILDER, PROXY AND STATE §13

The following class diagram shows the relationships between classes involved
in the Builder pattern:

my_builder

build build*

last_product™®

+ last_product+
MY BUILDER DU

build-+ f;-”a::’[—z
build product Set_prt ! PART B

build part a
build part b

PART A

part b

Here is how everything works: the CLIENT — called Director in Design Patterns —
notifies the BUILDER whenever a new product should be built. The deferred
BUILDER does not know about the type of the product it will build. Only the
effective builder MY BUILDER has knowledge about the product to build. This
product is composed of several parts, two in this example: part_a of type PART A and
part b of type PART B. Class MY BUILDER effects the procedure build inherited from
BUILDER to successively call features build product (to create an instance of MY
PRODUCT), build part_a and build part b to construct the parts of the new product,
which is made available to clients through the attribute last product.

In fact, last_product is defined as a deferred function in the parent class BUILDER returning
an instance of type 4ANY, and it is effected as an attribute in the heir MY BUILDER.

From this description, the Builder and the Abstract Factory design patterns
appear to have similar goals, but they are not quite the same: the Builder insists on
constructing a multi-part product step-by-step whereas the Abstract Factory focuses
on families of objects; the Builder returns the product when the construction process
is complete whereas the Abstract Factory returns the new instance immediately. We
will see later whether this resemblance can help us turning the Builder pattern into
a reusable component.

The CLIENT is initialized with a BUILDER given as argument to the creation
routine make. This ensures that a valid instance of class CLIENT can never have a
void builder. Procedure build is the core of class CLIENT; it actually builds the multi-
part product by calling the build feature of class BUILDER.

A Builder Library?

The example implementation of the Builder design pattern given above targets a
two-part product (part_a, part b). It can easily be extended to a n-part product —
although it may quickly become tiresome. Thanks to genericity, it was possible to
develop some library classes that handle the usual cases where programmers would
apply the Builder pattern, for example a product composed of two or three elements.

However, this “Builder Library” is not exhaustive: it provides a builder for
two-part products (which I call “two-part builder”) and another one for three-part
products (“three-part builder”). It could include four-part and five-part builders as
well, but it can hardly cover all possible cases. Indeed, products that a builder can
create have no reason to have common properties. In particular, they may be
composed of as many parts they like: it is impossible to foresee how many build
part_* features the builder should contain. Hence the categorization as “1.3.2
Componentizable but not comprehensive”.

Class dia-
gram of a typ-
ical
application
using the
Builder pat-
tern

Gamma 1995], p 97-
106.

The Abstract Factory
pattern is described

in section 8.1, page
117.

See “‘Design pattern
componentizability
classification
(filled)”, page 90.

§13.1 BUILDER PATTERN 209

Let’s describe a possible Eiffel implementation of such two-part and three-part
builders. They would have a common ancestor class BUILDER [G] defining the
procedure build and the query last product:

deferred class
BUILDER [(]
feature -- Access
last _product: G is
-- Product under construction
deferred

end

feature -- Status report

is_ready: BOOLEAN is Common
-- Is builder ready to build last product? interface to
deferred all builders
end

feature -- Basic operations

build is
-- Build last_product.
require
is_ready: is_ready
deferred
ensure
last product not void: last product /= Void
end

end

“Two-part builder”

The following class text describes the case of builder to construct two-part products.
This class TWO _PART BUILDER [F, G, H] is parameterized by three generic
parameters: the first one corresponds to the type of products the builder can
construct and the last two give the types of the product parts. In other words, TWO_
PART BUILDER [F, G, H] builds products of type F, these products being composed
of two parts, the first part of type G and second part of type H. This property of the
products to be built are expressed in class BUILDABLE, to which actual products
need to conform.

The implementation of class TWO_PART BUILDER relies on the Factory
Library presented in chapter 8. Using factories makes the creation of product parts
more flexible because one can pass any agent as long as it has a matching signature
and creates the product parts; one is not restricted to a fixed list of creation
procedures.

class

TWO_PART BUILDER [I'—> BUILDABLE, G, 1] Two-part
inherit builder

BUILDER [F']

210 BUILDER, PROXY AND STATE §13

create
make
feature { NONE?} -- Initialization

make (f: like factory function f; g: like factory function g;
h: like factory function_h) is
-- Set factory function_fto f. Set factory function_gto g.
-- Set factory function_h to h.
require
f not void: f/= Void
g not void: g /= Void
h not void: & /= Void
do
factory function_f:=f
factory function g:=g
factory function_h :=h
create f factorysmake (factory function_f)
create g factorys make (factory function g)
create /i_factorys make (factory function h)
ensure
factory function f set: factory function f=f
factory function g set: factory function g=g
factory function h set: factory function h=h
end

feature -- Access

last_product. I¥
-- Product under construction

feature -- Status report

is_ready: BOOLEAN is
-- Is builder ready to build last product?
do
Result == valid_args (1, [1, [1)
end

valid args (args_f, args g, args h: TUPLE): BOOLEAN is
-- Are args_f,args gand args h valid arguments to build last_product?

do
Result .= factory function fevalid operands (args_f)
and then factory function gevalid operands (args g)
and then factory function hevalid operands (args h)
end

feature -- Basic operations
build is

-- Build last_product.
-- (Successively call build g and build h to build product parts.)

do
last_product :=f factorys new
check

last product not void: last product /= Void

end
build_g ([1)
build h ([])

ensure then
g not void: last _product«g /= Void
h not void: last producte«h /= Void

end

§13.1 BUILDER PATTERN

build with_args (args_f, args g, args_h: TUPLE) is

-- Build last_product with args_f. (Successively call build g with

-- args_g and build h with args_h to build product parts.)
require
valid args: valid args (args_f, args g, args_h)
do
last_product :=f factoryenew with_args (args_f)
check
last product not void: last product /= Void
end
build g (args_g)
build h (args_h)
ensure
g not void: last producteg /= Void
h not void: last producteh I= Void
end

feature -- Factory functions

factory function_f: FUNCTION [ANY, TUPLE, I]
-- Factory function creating new instances of type F'

factory function_g: FUNCTION [ANY, TUPLE, (7]
-- Factory function creating new instances of type G

factory function_h: FUNCTION [ANY, TUPLE, H]
-- Factory function creating new instances of type H

feature { VONE?} -- Basic operations

build g (args g: TUPLE) is
-- Set last_product g with a new instance of type G
-- created with arguments args g.
require
last product not void: new product /= Void
valid args g: factory function gevalid operands (args g)
do
last producteset g (g factorysnew with args (args g))
ensure
g not void: last producteg /= Void
end

build h (args _h: TUPLE) is
-- Set last_product « h with a new instance of type H
-- created with arguments args h.
require
last product not void: last product /= Void
valid args h: factory function hevalid operands (args_h)
do
last_producteset h (h_factoryenew with args (args_h))
ensure
h not void: last producteh I= Void
end

feature { NONE?} -- Factories

[factory: FACTORY [I]
-- Factory of objects of type F’

211

212

end

invariant

BUILDER, PROXY AND STATE §13

g factory: FACTORY [(]
-- Factory of objects of type G

h_factory: FACTORY [H]
-- Factory of objects of type H

factory function f not void: factory function f/= Void
factory function g not void: factory function g /= Void
factory function h not void: factory function h /= Void
f factory not void: f factory /= Void
g factory not void: g factory /= Void
h factory not void: &_factory /= Void

The generic class TWO_PART BUILDER [F, G, H] relies on the Factory Library. It See chapter s.
needs two factories: g_factory to create the first product part, which is of type G, and
h_factory to build the second part, of type H, plus one more factory (f factory) to
create a new instance of the product (of type F). Now, into the details:

The creation procedure make takes three arguments: they are used to create the
factories f factory, g _factory, and h_factory mentioned above.

The core of class TWO_PART BUILDER [F, G, H] are the procedures build and
build with_args, which build last product of type F, part by part: the first two
lines create an empty product by calling the function new on the product
factory 1 factory or new_with_args with args_f passed as argument; then it calls
the internal features build g and build h, which build the product parts one at
a time. Procedures build g and build h are not part of the interface of class
TWO_PART BUILDER [F, G, H] (they are exported to NONE, meaning to no
client).

The formal generic parameter F of class TWO _PART BUILDER [F, G, H] is
constrained by class BUILDABLE, meaning that the actual parameter type will
have to conform to BUILDABLE, which captures the common properties that a
product must satisfy to be created through a “two-part builder”.

The text of class BUILDABLE is reported next:

deferred class

BUILDABLE

feature -- Access

g: ANY
-- First part of the product to be created

h: ANY
-- Second part of the product to be created

feature {TWO_PART BUILDER} -- Status Setting

Class
BUILD-
ABLE defin-
ing the
properties
that any
“buildable”
product must

satisfy

§13.1 BUILDER PATTERN

set g (a_g:like g) is
--Setgtoa_g.
require
a_g not void: a_g /= Void
do
g—asg
ensure
g setig=a g
end

set_h (a_h: like h) is
--Sethtoa h.
require
a_h not void: a_h /= Void
do
h=a h
ensure
h set:h=a h
end

end

A better (more typed) version of class BUILDABLE would be to make it generic and
have two generic parameters corresponding to the product parts, namely a class
BUILDABLE [G, H], and g of type G and & of type H. However, such an
implementation would yield declaring the “two-part builder” as TWO PART
BUILDER [F -> BUILDABLE |G, H]; G; H], which is not permitted by the current
version of Fiffel; it should be possible with the next version of the language.

The two following classes — APPLICATION and PRODUCT — give an
example of how to use this Builder Library:

class

APPLICATION
create

make

feature { NONE?} -- Initialization

make is
-- Build a new two-part product with a two-part builder.
local
my _builder: TWO_PART BUILDER [TWO_PART PRODUCT,
PART A, PART B]
my product: TWO_PART PRODUCT
do
create my builders make (agent new product,
agent new part a,
agent new_part_b)
my_builders build_with_args (["Two-part product"], ["Part A"], ["Part B"])
my_product :=my_builders last_product
end

feature -- Factory functions

213

See section 12.6 of
Meyer 200?b] about

recursive generic
constraints.

Client appli-
cation using a
two-part
builder

214 BUILDER, PROXY AND STATE §13

new_product (a_name: STRING): TWO_PART PRODUCT is

-- New object of type TWO_PART PRODUCT from a_name

require
a name not void: a_name /= Void
a_name not_empty: not a_name«is_empty

do
create Resultemake (a_name)

ensure
new_product not void: Result /= Void
name_set: Resultoname = a_name

end

new_part_a (a_name: STRING): PART A is
-- New object of type PART A from a_name
require
a name not void: a_name /= Void
a name_not_empty: not a_nameeis_empty
do
create Result« make (a_name)
ensure
new part a not void: Result /= Void
name_set: Resultoname_a =a _name
end

new part b (a_name: STRING): PART B is
-- New object of type PART B from a_name
require
a name not void: a_name /= Void
a_name_not_empty: not a_nameeis_empty
do
create Result« make (a_name)
ensure
new_part b not void: Result /= Void
name set: Resultename b =a _name
end

end

APPLICATION is the root class of this example application. It creates a new two-part

product using a “two-part builder” (see creation routine make). The class text below
describes what a “two-part product” looks like:

class
TWO_PART PRODUCT
inherit
BUILDABLE
rename
as part a,)
i as Zzﬂt_z Kind of prod-
set uct created by
set_g as set part a, o b
set_h as set_part b Z .ktl)-par
redefine uilder
part_a,
part b
end
create
make

§13.1 BUILDER PATTERN

feature { NONE} -- Initialization

make (a_name: like name) is

-- Set name to a_name.

require
a name not void: a_name /= Void
a name not empty: not a_nameesis_empty

do
name :=a_name

ensure
name_set: name = a_name

end

feature -- Access

name: STRING
-- Name of product part
part_a: PART A
-- First part of product
part_b: PART B
-- Second part of product
invariant
name_not_void: name /= Void
name not empty: not name o is_empty
end

with PART A (and similarly PART B) written as follows:

class
PART A
create
make
feature { NONE?} -- Initialization
make (a_name: like name_a) is
-- Set name_a to a_name.
require

a name not void: a name /= Void
a name not empty: not a_nameeis_empty

do

name_a = a_name
ensure

name a set: name_a =a_name
end

feature -- Access
name_a: STRING
-- Name of product part

invariant

name a not void: name_a /= Void
name_a not empty: not name_a«is_empty

end

215

Product part

216 BUILDER, PROXY AND STATE §13

“Three-part builder” and then?

We can easily imagine providing two kinds of builders, one for two-part products
and another one for three-part products. By symmetry with the previous TWO_PART _
BUILDER, the class could be called THREE PART BUILDER, whose header would
look like this:

class

THREE PART BUILDER [I"—> BUILDABLE, G, 1, J]

But this cannot be extended much further. It would even be difficult to try to apply
it for the Maze example presented in [Gamma 1995] and [Jézéquel 1999]. As a
matter of fact, the maze game contains a maze, some rooms, doors and walls,
namely four kinds of components. The Builder Library reaches its limits.
Nevertheless it is important to stress that these two library classes (TWO_PART
BUILDER and THREE PART BUILDER) are much better than no reusable component
at all and can already handle quite a few typical application cases.

Componentization outcome

The componentization of the Builder pattern, which resulted in the development of
the Builder Library, is a mixed success because it does not meet all
componentizability quality criteria established in section 6.1:

. Completeness: The Builder Library does not cover all cases described in the
original Builder pattern. It supports builders that need to construct two-part
and three-part products but not more. As explained earlier, we cannot know
the number of parts of the product to be built in the general case. Therefore
the Builder Library provides only incomplete support for the Builder pattern.

. Usefulness: The Builder Library is useful because it provides a reusable
library for some common variants of builders. Having a library removes the
need to implement the same design scheme again and again because the
functionality is already captured in the reusable component.

. Faithfulness: The Builder Library is similar to a traditional implementation of
the Builder pattern. It simply introduces (constrained) genericity and agents to
get reusability. The Builder Library fully satisfies the intent of the original
Builder pattern and keeps the same spirit. Therefore I consider the Builder
Library as being a faithful componentized version of the Builder pattern.

. Type-safety: The Builder Library relies on constrained genericity and agents.
Both mechanisms are type-safe mechanism in Eiffel. Furthermore, all routines
involving agent calls have a precondition using valid operands of class
ROUTINE, ensuring that all calls to agents will succeed. As a consequence, the
Builder Library is also type-safe.

. Performance: Comparing the implementation of the Builder Library with a
direct pattern implementation shows that the only differences are the use of
constrained genericity and agents. Using genericity does not have any
performance impact in Eiffel. Using agents implies a performance overhead,
but very small on the overall application. Therefore, the performance of a
system based on the Builder Library will be in the same order as when
implemented with the Builder pattern directly.

. Extended applicability: The Builder Library does not cover more cases than
the original Builder pattern. (It covers less as explained in the “Completeness”
section.)

Class declara-
tion of a
“three-part
builder”

The performance
overhead of agents is
explained in detail in
appendix A, p 390.

§13.2 PROXY PATTERN

13.2 PROXY PATTERN

We have reviewed two “structural patterns” so far: Composite and Flyweight. Both
yield a reusable component: the Composite Library and the Flyweight Library,
comforting our intuition that at least some design patterns can be componentized.
Can the pattern Proxy also be turned into a reusable component? This section shows
the cases where reuse is possible and highlights the difficulties to provide a complete
solution.

Pattern description

The Proxy pattern describes how to “provide a surrogate or placeholder for another
object to control access to it”.

Typical cases are what Design Patterns calls a “virtual proxy” and a
“protection proxy”. The former is used to create expensive objects on demand (for
example, loading a picture only if it is strictly necessary, otherwise accessing its
virtual proxy). The latter is more about control access policies, using the protection
proxy to give objects different access rights.

How to write a Proxy in Eiffel? The following class diagram corresponds to
the pattern implementation proposed by Jézéquel et al.:
request*

{PPLICATIO w
characteristic*
request_with_args*
actual subject
< _ -
R PROXY

set _characteristic*

characteristic+ characteristic+

set _characteristic+ set_characteristic+
request+ request+
request_with_args+ request_with_args+

cached characteristic

The APPLICATION accesses a SUBJECT; it does not know whether it is a REAL
SUBJECT or a PROXY to the actual subject. Internally though, depending on the
APPLICATION’s request, the work is forwarded to, either an “image” of the actual
subject (the PROXY), or to the REAL SUBJECT itself.

A SUBJECT exposes two services request and request_with_args, which are the
features directly useful to the APPLICATION.

The function request with_args is described in neither [Gamma 1995] nor [Jézéquel 1999].
This example introduces it to generalize the pattern implementation and enable
APPLICATIONS to pass arguments to the request feature. The argument of request_with_args
is of type TUPLE; it is a way to handle multiple arguments: if one needs to pass two
arguments arg/ and arg2 (possibly of different types) to request_with_args, one will use a
tuple [argl, arg2].

217

See chapters 10 and
11

Gamma 1995], p
207-217.

Gamma 1995], p
208-209.

Jézéquel 1999], p
131-137.

Classes
involved in
the Proxy pat-
tern

This implementation
is type-safe; more in

Componentization
outcome”, page 223

218 BUILDER, PROXY AND STATE §13

A SUBJECT also has a certain characteristic, which is the information the
PROXY will keep to avoid useless access to the REAL_SUBJECT. A concrete subject
may be either a REAL SUBJECT or a PROXY. In a REAL _SUBJECT, the characteristic
is set at creation time and can never be Joid. It is not the case of a PROXY where
characteristic is implemented as a function, returning the cached characteristic.

In Eiffel, a client cannot detect whether a feature is implemented as a function
or as an attribute. It is the Uniform Access principle. This property is central in the
implementation of the Proxy design pattern described in this thesis. Indeed,
characteristic is implemented as an attribute in REAL SUBJECT but as a function in
PROXY. In Eiffel, attributes and functions are considered as queries with no
syntactical difference. If the syntax had been different like in other languages such
as C++ or Java (call of the form x. /() for a function, of the form x./ for an attribute),
using a PROXY would not be transparent to the APPLICATION anymore.

There is a slight difference between functions and attributes in the current version of
Eiffel: a function can have assertions whereas an attribute cannot have any (they are put
into the class invariant). The next version of the language will remedy this infringement
of the Uniform Access principle mentioned above.

As mentioned before, the PROXY keeps a cached characteristic. It is initialized
at instantiation time with the argument given to the creation procedure make. Then,
whenever the APPLICATION asks for the subject characteristic, by calling the
corresponding feature, the PROXY returns the cached characteristic. The CLIENT can
also set the subject characteristic: set characteristic updates both the cached
characteristic and the characteristic of the real subject.

When the APPLICATION calls either of the request features, the PROXY
forwards the call to the actual subject, updating in passing its cached characteristic.

The pattern implementation described here is not perfect though:

. It does not provide a reusable solution. Indeed, the developer needs to write it
afresh for each SUBJECT class. (We will see next how genericity can help.)

. It only tackles one kind of proxies: “virtual proxy”; it does not cover the cases
of “remote proxy”, “protection proxy” or “smart reference” described in
Design Patterns. (The next section will explain why.)

A reusable library?

Using genericity makes it possible to componentize the Proxy pattern. Instead of
writing a new PROXY class for each kind of SUBJECT, the idea is to provide a
generic class PROXY [G] where G is constrained to SUBJECT (meaning actual generic
parameters need to conform to SUBJECT). Then, we can have a PROXY [SUBJECT 1],
PROXY [SUBJECT 2], and so on. No need to rewrite the PROXY class each time.

Again, TUPLE is used
to model multiple
characteristics.

Meyer 1997], p 57.

Meyer 200?b].

See[Gamma 1995], p
208-209 about the

different kinds of

proxies.

SUBJECT 1 and
SUBJECT 2 are
descendants of class
SUBJECT.

§13.2 PROXY PATTERN 219

Here is the class diagram of the Proxy Library:

APPLICATIO.
characteristic*
set_characteristic*
request™®
request_with_args™
Class dia-
gram of the
N Proxy Library
n actual_subject PROXY
AL SUBJECT [> SUBJECT create make end
characteristic+ characteristic+
set_characteristic+ set_characteristic+
request+ request+
request_with_args+ request_with_args+
cached_characteristic
and the full code of class PROXY:
class
PROXY [G —> SUBJECT create make end]
inherit
SUBJECT
create
make
feature { NONE?} -- Initialization
make (a_characteristic: like characteristic) is
-- Initialize subject with a_characteristic. Virtual proxy

do

cached_characteristic := a_characteristic
ensure then

cached characteristic_set: cached characteristic = a_characteristic
end

feature -- Access

characteristic: TUPLE is
-- Characteristic of a subject
do
Result := cached characteristic
ensure then
is_cached characteristic: Result = cached characteristic
end

feature -- Status report

220 BUILDER, PROXY AND STATE §13

valid args (args: TUPLE): BOOLEAN is
-- Are args valid arguments for request with_args?
do
Result .= subject e valid args (args)
ensure
definition: Result = subject e valid_args (args)
end

feature -- Basic operations

request is
-- Request something on current subject.
do
subject « request
end

request with_args (args: TUPLE) is
-- Request something on current subject using args.

require

valid args: valid args (args)
do

subject s request_with_args (args)
end

feature -- Status setting

set_characteristic (a_characteristic: like characteristic) is
-- Set characteristic to a_characteristic.
do
subjecteset characteristic (a_characteristic)
cached characteristic :== a_characteristic
ensure then
cached characteristic_set: cached characteristic = a_characteristic
end

feature { VONE} -- Implementation

actual subject: G
-- Actual subject (loaded only when needed)

subject: G is
-- Subject
do
if actual subject = Void then
create actual subject s make (cached characteristic)
cached characteristic := actual subject « characteristic
end
Result := actual subject
ensure
subject not void: Result /= Void
is_actual subject: Result = actual subject
cached characteristic not void: cached characteristic /= Void
end

cached_characteristic: like characteristic
-- Cache of characteristic of actual subject

invariant

cached characteristic not void: cached characteristic /= Void
consistent: actual subject |= Void implies
cached_characteristic = actual _subject « characteristic

end

§13.2 PROXY PATTERN

221

The library class PROXY is very similar to the class PROXY described earlier for the See “Classes

pattern implementation. Only two features change: subject and actual subject (namely
implementation features); they have a generic return type in the library version.

Therefore, the class can handle any kind of SUBJECT.

The deferred class SUBJECT specifies the minimal properties that any
SUBJECT must provide. It has five features: make (to become the creation procedure
of concrete descendants), characteristic of type TUPLE and the corresponding setter,

request, and request with_args. All five features are deferred.
Here is the text of class SUBJECT:

deferred class
SUBJECT

feature { NONE?} -- Initialization

make (a_characteristic: like characteristic) is
-- Initialize subject with a_characteristic.
require
a characteristic not void: a_characteristic /= Void
deferred
end

feature -- Access

characteristic: TUPLE is
-- Characteristic of a subject
deferred
ensure
characteristic not void: Result /= Void
end

feature -- Status report

valid_args (args: TUPLE): BOOLEAN is
-- Are args valid arguments for request_with_args?
deferred
end

feature -- Status setting

set_characteristic (a_characteristic: like characteristic) is
-- Set characteristic to a_characteristic.
require
a characteristic not void: a_characteristic /= Void
deferred
ensure
characteristic_set: characteristic = a_characteristic
end

feature -- Basic operations

request is
-- Request something on current subject.
require
characteristic_not void: characteristic /= Void
deferred
end

involved in the Proxy
pattern”’, page 217.

Class SUB-
JECT

222 BUILDER, PROXY AND STATE §13

request with_args (args: TUPLE) is
-- Request something on current subject using args.
require
characteristic_not void: characteristic /= Void
valid args: valid args (args)
deferred
end

end

However, the Proxy Library is not perfect. In particular, it covers only one kind of
proxy, namely “virtual proxies”, when Design Patterns describes three other cases:

. “Smart references”: This first pattern variant requires the ability to redefine
the dot operator (for example to add reference counting), which is not possible
in Eiffel. We can simulate such behavior with the Proxy Library.

. “Protection proxies”: This second pattern variant is used to give objects
different access rights. It would be possible to extend the current
implementation of request and request with _args in the Proxy Library to have
conditional statements of the form:

class

PROXY [—> SUBJECT create make end]
inherit

SUBJECT

feature -- Basic operations .
Proxy with

request is access rights

-- Request something on current subject.

do
if some_access rights then
subject « request
elseif some other access rights then
end
end

end

The problem is that we cannot know what access rights will be needed in
general. In other words, we cannot implement the features some access rights
and some_other_access_rights of the above example without context information.
Therefore the “protection proxy” variant cannot be componentized.

. “Remote proxies”: This third pattern variant means that subject and proxy may
be on different physical machines. Therefore we cannot provide a reusable
Proxy Library without knowing the inter-process communication mechanism.

Eiffel bindings for CORBA and COM already exist. For example, in

CORBA, the developer must write an IDL file (like in COM) describing the = This approach with
interface he wants and a tool generates automatically three classes according to g? L is at the opposite

) .) irection of my work:
the given interface: a deferred parent class (corresponding to SUBJECT of the with IDL files, clients
Proxy Library) and two descendgnt' classes (corre@ogding to PROXY and ;;"gsfvltf,’fzxfbrle
REAL _SUBJECT). The proxy class is implemented (like in the Proxy Library) components, the
with CORBA’s inter-process communication machinery; the other class is just é’f’&“%;’fﬁ;ﬁs "

a skeleton with empty bodies.

§13.2 PROXY PATTERN

Because CORBA and COM providers already take care of generating
these proxies, it does not really make sense to write yet another tool. It may be
interesting for these providers to develop a reusable proxy component to be
used instead of generating a new proxy class for each interface.

But the Proxy Library is definitely an improvement comparing to just a pattern
description that programmers need to write afresh whenever they want to use it. |
believe that the Proxy Library provides developers with a good solution for some
usual cases they have to deal with. The following section compares the pattern with
the library solution.

Proxy pattern vs. Proxy Library

From the user point of view, there is almost no difference; just the use of a generic
class PROXY in the latter. However, there is a big change when thinking in terms of
reuse: in the second case, we don’t have to write the classes SUBJECT and PROXY,
we can just rely on them because they are part of a library. We just need to
implement the class whose instance should be used as a proxy and make it inherit
from SUBJECT. This is inevitable because this is not part of the proxy mechanism
itself. The class SUBJECT simply gives a mould that needs to be filled by the
programmer.

We may compare that to class STRING, which inherits from HASHABLE. 1t is likely that
class STRING will be equipped with a routine that computes a hash value for the current
string. But if we want to use that string as a key of a hash table, we are better off inheriting
from HASHABLE and call our hashing function hash_code (which is deferred in HASHABLE).

Besides, extending an application to have several kinds of proxies is easy. No
need to create a PROXY class per SUBJECT thanks to genericity: we can write PROXY
[BOOK] or PROXY [VIDEO RECORDER] as long as classes BOOK and VIDEO
RECORDER inherit from SUBJECT. (The formal generic parameter G of class PROXY
is constrained by SUBJECT.) No need for a class BOOK PROXY nor VIDEO
RECORDER_PROXY. Hence less code duplication and better software maintainability.

Nevertheless, the Proxy Library is not perfect. First, it requires some changes
to the class you want to shadow by a proxy to satisfy the generic constraint just
mentioned, which may not be much convenient. Second, it targets only one category
of proxies, “virtual proxies”, when Design Patterns also describes “remote proxies”,
“protection proxies” and “smart references”. But having one reusable facility is
already an achievement, even if it does not cover all possible cases.

Componentization outcome

The componentization of the Proxy pattern, which resulted in the development of the
Proxy Library, is a mixed success because it does not meet all componentizability
quality criteria established in section 6.1:

. Completeness: The Proxy Library does not cover all cases described in the
original Proxy pattern. Remote proxies, protection proxies, and smart
references are not supported.

. Usefulness: The Proxy Library is useful because it provides a reusable library
for the most common variant of proxies: virtual proxies. Having a library
removes the need to implement the same design scheme again and again
because the functionality is already captured in the reusable component.

223

The key of a hash
table is constrained
by HASHABLE:

class HASH TABLE|[G,
K-> HASHABLE).

See chapter 2 for
more details about
the benefits of reuse.

224 BUILDER, PROXY AND STATE §13

. Faithfulness: The Proxy Library is similar to a traditional implementation of
the Proxy pattern. It simply introduces (constrained) genericity to get
reusability. The Proxy Library fully satisfies the intent of the original Proxy
pattern and keeps the same spirit. Therefore I consider the Proxy Library as
being a faithful componentized version of the Proxy pattern.

. Type-safety: The Proxy Library relies on constrained genericity, which is a
type-safe mechanism in FEiffel. As a consequence, the Proxy Library is also
type-safe.

. Performance: Comparing the implementation of the Proxy Library with a

direct pattern implementation shows that the only difference is the use of
constrained genericity. Using genericity does not have any performance
impact in Eiffel. Therefore, the performance of a system based on the Proxy
Library will be in the same order as when implemented with the Proxy pattern
directly.

. Extended applicability: The Proxy Library does not cover more cases than the
original Proxy pattern. (It covers less as explained in the “Completeness”
section.)

13.3 STATE PATTERN

Another design pattern belongs to the category “1.3.2 Componentizable but not
comprehensive”: the State pattern. As seen earlier, the State pattern has different
implementation variants. The reusable component described in this section covers

one typical case called “state-driven transitions” State pattern by Dyson et al. See “Seven State
variants”, page 47
and [Dyson 1996].

Pattern description

The State pattern “allow[s] an object to alter its behavior when its internal state [Gamma 1995], p
changes. The object will appear to change its class”. 303.

It describes a flexible way to make an object react differently depending on
its state by encapsulating state-dependent features into a class STATE and possible
descendants (if several possible states).

Let’s come back to the example presented in “Seven State variants”, page 47.
We had BOOKs that could be either FREE or BORROWED. A typical implementation
without the State pattern is to equip class BOOK with two boolean attributes fiee and
borrowed and discriminate between those states in features of class BOOK, like
borrow or return. However, such design is not flexible: adding a state would mean
adding a new attribute to class BOOK and change the implementation of existing
features to take this new state into account (typically add an elseif ... then branch in
a control structure).

The State pattern provides a solution to this problem by moving state-
dependent features to another class (typically a descendant of a deferred class
STATE). Adding a new state simply means writing a new heir of class STATE at no
change to existing code.

§13.3 STATE PATTERN

Here is the class diagram of a typical application using the State pattern:

context

*
tat
— STATE
do_something™

do_something]

+
INITIAL STATE

initial st

do something+ do something+

do_something+

intermediary state
final state

The CONTEXT class provides a feature do_something, which is the service clients are
interested in. This feature should react differently depending on the CONTEXT’s state.
Therefore, the implementation of do_something in class CONTEXT will simply
delegate the call to the current state:

class
CONTEXT
feature -- Basic operation
do_something is
-- Do something depending on the state.
do
state e do_something
end

feature { NONE} -- Implementation

state: STATE
-- Current state

end

Each descendant of class STATE has its own implementation of do_something.

The CONTEXT class knows its possible states; they are three in the above
figure: initial state of type INITIAL STATE, intermediary state of type
INTERMEDIARY STATE, and final state of type FINAL STATE.

In fact, the State pattern describes how to get a finite state machine. The
machine starts in a certain initial_state. Then, when a certain condition is realized, the
machine changes state until it reaches its final state. If the transition criteria are
fixed, the CONTEXT may be responsible for changing state. However, it is usually
more flexible to let the STATE initiate the change.

225

Class dia-
gram of a typ-
ical
application
using the
State pattern

Delegating
work to the
state object

These state attributes
cannot be imple-
mented as singletons;
otherwise one could
not apply them to sev-
eral contexts.

226 BUILDER, PROXY AND STATE §13

For example, feature do_something of class INITIAL STATE would set the
CONTEXT's state t0 intermediary_state:

class
INITIAL STATE
inherit

STATE

. _ State change
feature -- Basic operation initiated by

the state itself
do_something is
-- Do something depending on the state.
do
-- Do something.
contexteset_state (context s intermediary_state)
end

end

However, applying the State pattern also has drawbacks. In particular, it usually
yields many STATE classes with just a few features. It is possible to use the
Flyweight pattern and share state objects when the corresponding classes do not have
attributes (in the case of “Pure States™). Still, many classes are going to remain, See “Seven State

. o variants”, page 47
which may reduce the readability of the software. and [Dyson 1996].

Towards a State Library

Instead of requiring the CONTEXT to know all its possible states, I decided to extend
class STATE with a notion of next state, which enabled me to write a reusable State
Library.

Here is the diagram of a typical application using the State Library. (Classes
INITIAL STATE, INTERMEDIARY STATE, and FINAL STATE are not part of the library;
they just illustrate how clients can use it.)

context "
@ stale » STUTE red

do something _ Class dia-

B do_something* gram of a typ-
ical
application
using the

+ + + + State Library
NULL STATE/ \ INITIAL STATE /) \ INIERMEDIARY FINAL STATE
STATE
do something+ do_something+ do_something+ do_something+

The class NULL STATE only serves to avoid dependency circles: at creation, the
CONTEXT is initialized with a NULL_STATE. 1t is the client application that will set
the initial state after creating the context. Then, the STATE object will be in charge
of setting the new CONTEXT’s state whenever do_something gets called.

§13.3 STATE PATTERN

The text of class CONTEXT appears below:

class

CONTEXT

create

make

feature { NONE} -- Initialization

make is
-- Initialize state to a "null" state that does nothing.

do
create { NULL STATE?} state e make (Current)

ensure
null_state: state s conforms_to (
create {NULL STATE?} « make (Current))

end
feature -- Basic operations

do_something is
-- Do something depending on the state.

do
state e do_something

end
feature -- Access

state: STATE
-- Current state of the application

feature -- Element change

set_state (a_state: like state) is
-- Set state to a_state.
require
a_state not void: a_state /= Void
do
State = a_state

ensure
state_set: state = a_state

end

invariant

state not void: state /= Void

end

One drawback of this implementation is that set state is exported to ANY client —
not only descendants of STATE. (The client application needs to be able to set the

initial state by using set_state.)

The class could have provided an attribute initial state and a feature set_initial _
state and have set_state exported to class STATE and its descendants only (allowing

clients to set only the initial state).

227

Class CON-
TEXT (part of
the State
Library)

228

However, set initial state would need to initialize both attributes initial state

and state as shown below

class

CONTEXT

feature -- Access
initial state: INITIAL STATE
-- Initial state of the application

state: STATE
-- Current state of the application

feature -- Status setting

set _initial state (a_state: like initial state) is
-- Set initial state and state to a_state.

require
a state not void: a_state /= Void
do
initial state := a_state
state := a_state
ensure
initial state set: initial state = a_state
state_set: state = a_state
end

end

I thought it was quite complicated and overkill. Therefore I opted for the simple

solution and made set_state public.

Another core class of the State Library is STATE. Here is its implementation:

deferred class
STATE
feature {NONE?} -- Initialization

make (a_context: like context) is
-- Set context to a_context.
require
a_context not void: a_context /= Void

do

context ;= a_context
ensure

context set: context = a_context
end

make_with_next (a_context: like context; a_state: like next) is
-- Set context to a_context and next to a_state.

require
a_context not void: a_context /= Void
a state not void: a_state /= Void
do
context = a_context
next :=a_state
ensure
context set: context = a_context
next set: next=a_state
end

BUILDER, PROXY AND STATE §13

Allowing cli-
ents to set the
initial state
only

Deferred
class STATE
(part of the
State Library)

§13.3 STATE PATTERN

feature -- Access

context: CONTEXT
-- Application context

next: STATE
-- Next state

feature -- Status setting

set_next (a_state: like next) is
-- Set next to a_state.
do
next :=a_state
ensure
next set: next =a_state
end

feature -- Basic operations

do_something is
-- Do something depending on the state.

do

do_something_imp

if next /= Void then

context s set_state (next)

end
ensure

next state set: next /= Void implies context « state = next
end

feature { NONE} -- Implementation
do_something _imp is
-- Do something depending on the state.
deferred
end

invariant

context not void: context /= Void

end

Clients of the State Library will write their customized STATE classes (descendants
of STATE) and initialize each state with their nexs state (to build the state automaton).

Language support

Some languages support the State pattern natively. It is the case of delegation-based
languages (for example Self), which enable changing an object’s state at run time.

However, the Self approach has many drawbacks:

. Being able to modify a program “on the fly” seems nice. However, it can be
misused. Besides it does not encourage programmers to think about core
abstractions, which should be the main task of a developer. Meyer underlines
that “the key step in an object-oriented solution is the search for the right
abstraction”.

229

do_something imp
enables to reposition
next, which makes the
state automaton
dynamic.

Group G-Web].

Meyer 1997], p 699.

230 BUILDER, PROXY AND STATE §13

. Self is dynamically typed like Smalltalk. Hence, no error detected at compile
time, which is very dangerous and not the right approach in my opinion.

Therefore it is not desirable to change the Eiffel language, which is statically typed
and emphasizes the search for the right abstractions, to support the State pattern
natively. (Maybe some other language mechanism could be added to enable writing
the State pattern more easily; I could not find any though.)

Componentization outcome

The componentization of the State pattern, which resulted in the development of the
State Library, is a mixed success because it does not meet all componentizability
quality criteria established in section 6.1:

. Completeness: The State Library does not cover all cases described in the

original State pattern. It only covers one case among the seven variants

identified by Dyson et al.: “State-driven transitions”. [Dyson 1996].
. Usefulness: The State Library is useful because it provides a reusable library

for a common variation of the State pattern. Having a library removes the
need to implement the same design scheme again and again because the
functionality is already captured in the reusable component.

. Faithfulness: The State Library is similar to a traditional implementation of
the State pattern. It uses simple inheritance and extensive contracts to ensure
reusability. The State Library fully satisfies the intent of the original State
pattern and keeps the same spirit. Therefore I consider the State Library as
being a faithful componentized version of the State pattern.

. TBype-safety: The State Library relies on simple inheritance and Design by
Contract™, which are two type-safe mechanisms in Eiffel. As a consequence,
the State Library is also type-safe.

. Performance: Comparing the implementation of the State Library with a
direct pattern implementation shows that the only difference is the extensive
use of contracts, which does not imply any performance overhead when
compiled in finalized (i.e. production) mode. Therefore, the performance of a
system based on the State Library will be in the same order as when
implemented with the State pattern directly.

. Extended applicability: The State Library does not cover more cases than the
original State pattern. (It covers less as explained in the “Completeness”
section.)

13.4 CHAPTER SUMMARY

. The Builder pattern describes how to build a composite product part by part. [Gamma 1995], p 97-
106.

. It is possible to provide reusable library classes to handle the most usual
cases, for example two- or three-part products.

. It is hardly possible to cover all possible cases the Builder pattern can handle
because there is no requirement on the products to be created. Hence the See “Design partern
categorizatic?n of the Builder pattern as “1.3.2 Componentizable but not 2P =Init: W
comprehensive”. (filled) . page 90.
. The Proxy pattern enables shadowing a “subject” while being invisible to the [Gamma 1995], p
client (for example to enhance performance, or to give special permissions to 207-?!7

some subjects).

. The Uniform Access principle — advocated and put into practice in Eiffel — [Meyer 1997], p 57.
is at the core of a Proxy implementation using Eiffel.

§13.4 CHAPTER SUMMARY 231

. There are different kinds of proxies: “remote proxies”, “virtual proxies”, [Gamma 1995] p
“protection proxies”, and “smart references”. 208-209.

. It is possible to provide a reusable Proxy Library to build “virtual proxies” by
using constrained genericity. Other kinds of proxies still need to be =
implemented by the programmer. Hence the classification of the Proxy pattern componentizability

as “1.3.2 Componentizable but not comprehensive”. L‘;fm 00

. The State pattern provides a flexible way to make an object react differently [Gamma 1995], p
depending on its state. 305-313.

. The State pattern can be turned into a reusable State Library. However, Dyson See “Seven State
. : . : variants”, page 47
et al. po¥nted out that the State pattern has many implementation Varlanj[s. The _ [Dyson 1996]
State Library supports the most typical cases but does not provide an
exhaustive solution. Hence the categorization of the State pattern as “1.3.2 See “Design pattern
Componentizable but not comprehensive”. compunentizihiy

classification
(filled)”, page 90.

232 BUILDER, PROXY AND STATE §13

14
Strategy

Componentizable but unfaithful

Going one level further down in the pattern componentizability classification, we
find the Strategy pattern. It is categorized as “1.3.3 Componentizable but unfaithful”.
Indeed, this chapter shows that it is feasible to turn the pattern into a reusable
component. However the approach that enables writing a reusable Strategy Library
does not fully respect the “spirit” of the original pattern.

14.1 STRATEGY PATTERN

The Strategy pattern describes a way to “define a family of algorithms, encapsulate
each one, and make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it”.

Here is the class diagram of a typical application using the Strategy pattern:

strategy *
CONTEXT STRATEGY .
do_something*
do_something 1
set_strategy
+
STRATEGY B

do_something+ do_something+ do_something+

Class CONTEXT exposes a feature do_something, which is the service offered to
clients. This routine may be implemented in many different ways. Therefore, the
Strategy pattern suggests extracting the algorithmic part into a separate class: the
strategy class. Thus, a CONTEXT has a strategy, declared of type STRATEGY and the
implementation of do_something is just a simple delegation to the corresponding
feature of class STRATEGY:

class

CONTEXT
create

make

feature { NONE?} -- Initialization

See “‘Design pattern
componentizability
classification

illed) ", page 90.

Gamma 1995], p
315.

Class dia-
gram of a typ-
ical
application
using the
Strategy
design pattern

Delegating
the core work
to the strategy
object

234

make (a_strategy: like strategy) is
-- Set strategy to a_strategy.
require
a_strategy not void: a_strategy /= Void
do
Strategy = a_Sstrategy
ensure
strategy set: strategy = a_strategy
end

feature -- Basic operation

do_something is
-- Do something. (Call algorithm corresponding to strategy.)
do
strategysdo_something
end

feature -- Element change

set _strategy (a_strategy: like strategy) is
-- Set strategy to a_strategy.
require
a_strategy not void: a_strategy /= Void
do
strategy = a_strategy
ensure
strategy_set: strategy = a_strategy
end

feature { NONE?} -- Implementation

strategy: STRATEGY
-- Strategy to be used

invariant
strategy not void: strategy /= Void

end

STRATEGY §14

The actual strategy may be of any type conforming to STRATEGY: in the figure on the
previous page, it can be either of type STRATEGY A or STRATEGY B or STRATEGY C.

The CONTEXT has different kinds of clients:

. Producers that create the context. They need to know possible concrete
strategies to pass to the context, either with make or set strategy. Thus, the
Strategy pattern exposes implementation details (in this case the different

algorithms) to the producer clients, which can be viewed as a drawback.

. Consumers that use the context. They do not need to know about concrete
strategies. Thus, changing the strategy is completely transparent to consumer
clients. The easiness to change, add, or remove strategies is the core strength

of the Strategy pattern.
In some cases, producer clients may also be consumers.

However flexible it may be, such an implementation of the Strategy pattern is
still not a reusable solution. Let’s explore ways to transform Strategy into a reusable

component.

§14.2 STRATEGY LIBRARY

14.2 STRATEGY LIBRARY

235

This section presents two attempts at componentizing the Strategy. pattern and [Gamma 1995], p
discusses the pros and cons of each approach regarding componentizability and 3/5-323.

faithfulness to the original pattern description.

With constrained genericity

The previous chapters showed several componentization processes, all of them were
relying on genericity (constrained in some cases, unconstrained in some other cases).
Let’s see whether genericity can help componentizing the Strategy pattern.

Using genericity means having a generic class CONTEXT [G] where G is a
certain strategy. In other words, we need constrained genericity; hence the class diagram:

CONTEXT
[> STRATEGY)

do_something™

Strategy
set_strategy
do_something + +

STRATEGY A STRATEGY B

do_something+ do_something+ do_something+

The attribute strategy of class CONTEXT is now declared of type G whereas it was
declared of type STRATEGY in the pattern implementation. The other features of
class CONTEXT remain unchanged. The corresponding class text appears below. The
hierarchy of STRATEGY classes is also the same as in the pattern implementation.
(Only class STRATEGY belongs to that Strategy component; descendant classes just
illustrate how to use it.)

class

CONTEXT [—> STRATEGY)
create

make
feature { NONE?} -- Initialization

make (a_strategy: like strategy) is
-- Set strategy to a_strategy.
require
a strategy not void: a_strategy /= Void
do
strategy ‘= a_strategy
ensure
strategy set: strategy = a_strategy
end

feature -- Basic operations

do_something is
-- Do something. (Call algorithm corresponding to strategy.)
do
strategysdo_something
end

Class dia-
gram of an
application
using a
generic con-
text

Context using
constrained
genericity

236

feature -- Access

strategy:
-- Strategy to be applied

feature -- Element change

set_strategy (a_strategy: like strategy) is
-- Set strategy to a_strategy.
require
a_strategy not void: a_strategy /= Void
do
strategy = a_Sstrategy
ensure
strategy_set: strategy = a_strategy
end

invariant
strategy not void: strategy /= Void

end

The implementation of the constraint class STRATEGY is quite straightforward. It is
a deferred class exposing one deferred feature do_something (which is called by the
corresponding feature of class CONTEXT).

deferred class
STRATEGY
feature -- Basic operations

do_something is
-- Do something.
deferred
end

end

Here is how clients would use such a generic implementation of the Strategy pattern:

class
APPLICATION

feature -- Initialization

make is

-- Do something using different strategies.

local
a_context: CONTEXT [STRATEGY)

do
create a_contextemake (create {STRATEGY A})
a_contextedo _something
a_contexteset_strategy (create {STRATEGY B})
a_contextedo _something
a_contexteset_strategy (create {STRATEGY C})
a_contextedo _something

end

end

STRATEGY §14

The type of strategy is
the only difference
with a pattern imple-
mentation. Here, it is
of type G because the
class CONTEXT is
generic and con-
strained by the
STRATEGY. In a tradi-
tional pattern imple-
mentation, it is
declared of type
STRATEGY.

Constraint

class
STRATEGY

Client using a
Strategy
library built
with con-
strained
genericity

§14.2 STRATEGY LIBRARY

Is this implementation of the Strategy pattern reusable? Does it bring something
more than the traditional pattern implementation?
It does allow writing code like this:

context: CONTEXT [STRATEGY A]
strategy _a: STRATEGY A

create context . make (create {STRATEGY A})
Strategy a := context e Strategy

with no assignment attempt whereas in a traditional pattern implementation one
needs to write:

context. CONTEXT
strategy _a: STRATEGY A

create context . make (create {STRATEGY A})
strategy a 1= context « strategy

But that kind of code does not correspond to a real need. Indeed, it is improbable we
would need to retrieve the CONTEXT’s strategy and have the right type with no
assignment attempt. Even if we do want such code, it is likely we would also like to
know the precise type of sirategy _a, which may be STRATEGY Al or STRATEGY A2
for example; hence the need for assignment attempts again. Anyway, genericity does
not bring much to componentize the Strategy pattern.

Let’s try another approach that proved quite successful with other patterns: the
Eiffel agent mechanism.

With agents

What about encapsulating the strategy algorithm in an agent? The Eiffel text below
shows what such CONTEXT class would look like. Instead of having a class
STRATEGY and one descendant class per algorithm, the class CONTEXT has an
attribute strategy procedure of type PROCEDURE (a procedure object ready to be
called), which gets initialized at creation time (with the argument passed to the
creation routine make). Then, clients have the ability to change the strategy by
calling set strategy procedure.

class
CONTEXT
create
make
feature { NONE?} -- Initialization

make (a_procedure: like strategy procedure) is
-- Set strategy procedure to a_procedure.
require
a_procedure not void: a_procedure /= Void
do
strategy procedure := a_procedure
ensure
strategy procedure_set: strategy procedure = a_procedure
end

237

With generic-
ity

Without
genericity

Assignment attempts
7= are explained in
appendixA, p 378.

Dubois 1999] and

chapter 25 of [Meyer
200?b].

Context using
agents

238

feature -- Basic operations

do_something is
-- Do something. (Call algorithm corresponding to strategy.)
do
if strategy procedure « valid operands ([]) then
strategy procedure « call ([])
end
end

feature -- Access

strategy procedure: PROCEDURE [ANY, TUPLE]
-- Strategy procedure to be called

feature -- Element change

set_strategy procedure (a_procedure: like strategy procedure) is
-- Set strategy procedure to a_procedure.
require
a procedure not void: a_procedure /= Void
do
strategy procedure == a_procedure
ensure
strategy procedure_set: strategy procedure = a_procedure
end

invariant
strategy procedure not void: strategy procedure /= Void

end

Here is how clients would use the class CONTEXT:

class
APPLICATION
feature -- Initialization

make is
-- Do something using different strategies.
local
a_context.: CONTEXT
do
create a_contextemake (
agent (create {STRATEGY A})edo something)
a_contextedo_something
a_context e set_strategy procedure (
agent (create {STRATEGY B})edo something)
a_contextedo_something
a_context e set_strategy procedure (
agent (create {STRATEGY C})edo something)
a_contextedo_something
end

end

STRATEGY §14

Instead of strat-
egy.do_something.

Instead of strategy:
STRATEGY.

Client using a
Strategy
library built
with agents

§14.2 STRATEGY LIBRARY

The class CONTEXT is reusable. Client applications just create CONTEXT objects
with different kinds of strategies as shown above. In fact, strategy procedures do not
need to be in separate classes anymore. One could have an already written class
STRATEGY with several features do something a, do_something b, and do_something c
corresponding to different strategies and reuse them directly as agents. No need to
write extra classes anymore like in the traditional Strategy pattern implementation.

But is this new Strategy component faithful to the original Strategy pattern?
Let’s investigate further.

Componentizability vs. faithfulness

As seen before, agents provide a way to write a fully reusable Strategy library. Now,
the question is: does the Strategy pattern accept having strategies that are just
routines to be executed (namely agents) or does it require strategies to be objects
(which may have attributes to store some information about the strategy)? The
answer is not obvious.

239

Design patterns says that “hierarchies of Strategy classes define a family of g, [Gamma 1995]

algorithms or behaviors for contexts to reuse. Inheritance can help factor out
common functionality of the algorithms”. The fact that strategies are implemented as
classes implies that the algorithm may rely on attributes that may be used by the
context later on. Agents do not allow to do that. (The algorithm can rely on attributes
of the class in which the routine is defined but the context cannot access them when
the routine is passed as an agent.)

Let’s take the example of algorithms to invert a matrix to show why the
context may need to access attributes of the strategy class. Inverting a matrix
requires the matrix to be not singular (the determinant should not be zero). Thus the
code should be written as follows:

class
MATRIX
feature -- Basic operation

inverse: MATRIX is
-- Inverse of current matrix
require
not_singular: not is_singular
do

ensure
inverse not void: Result /= Void

end

end

1. Families of related
algorithms, p 317.

Theoretical
implementa-
tion of the
inverse of a
matrix

240 STRATEGY §14

On the other hand, the algorithms to calculate whether the matrix is singular
and to calculate the inverse of the matrix are very similar. Therefore it is common
practice to remove the precondition and to add an attribute inverted, which is used in
the postcondition:

class
MATRIX

feature -- Access

inverted: BOOLEAN
-- Has the matrix been inverted? (i.e. was the matrix non-singular?)

inverse: MATRIX
-- Inverse of current matrix

feature -- Basic operation

invert is
-- Invert current matrix. If inverted, put result into inverse.
do
ensure
inverse not void if inverted: inverted implies inverse /= Void
end

end

Now suppose there are several possible strategies to invert a matrix and features
invert, inverted, and inverse are moved to a class STRATEGY. (The signature of invert
needs to be changed and take an argument of type MATRIX.) Then, context code will
look like this:

class

CONTEXT

feature -- Access

strategy: MATRIX INVERSION STRATEGY
-- Strategy to be used to inverse a matrix

feature -- Status report

inverted: BOOLEAN is
-- Has matrix been inverted?
do
Result := strategys inverted
end

feature -- Basic operation

inverse (a_matrix: MATRIX): MATRIX is
-- Inverse of a_matrix

do

strategye invert (a_matrix)

if strategys inverted then

Result .= strategy. inverse

end
ensure

inverse not void if inverted: inverted implies Result /= Void
end

end

Typical imple-
mentation of
the inverse of
a matrix

Implementa-
tion of the
inverse of a
matrix using
strategies

§14.3 COMPONENTIZATION OUTCOME

Here the context needs access to the attributes inverted and inverse of the strategy.
That would not be possible in a solution using agents.

Design Patterns also mentions that “strategies increase the number of objects
in an application. Sometimes you can reduce this overhead by implementing
strategies as stateless objects that contexts can share. Any residual state is
maintained by the context, which passes it in each request to the Strategy object”.
This note may leave some space open for agents.

However, Design Patterns categorizes the Strategy pattern as an “object
behavioral pattern”; thus the notion of object seems quite important.

As a summary, we have two implementations of the Strategy pattern:

. One without agents, which is less reusable but involves objects that may have
some attributes and full respects the “spirit” of the original pattern;

. One with agents, which is fully reusable but does not have “true” objects (we
may view agents as “false” objects); hence “betrays” somehow the original
Strategy pattern (even if it solves the same problems).

Hence the title of this chapter and the Strategy pattern’s category: “1.3.3
Componentizable but unfaithful”.

It is also possible to consider an aspect implementation of the Strategy pattern but it
proves hardly maintainable.

14.3 COMPONENTIZATION OUTCOME

The componentization of the Strategy pattern, which resulted in the development of
the Strategy Library, is a mixed success because it does not meet all
componentizability quality criteria established in section 6.1:

. Completeness: The Strategy Library covers all cases described in the original
Strategy pattern.

. Usefulness: The Strategy Library is useful because it provides a reusable
library from the Strategy pattern description, which developers will be able to
apply to their programs directly; no need to implement the same design
scheme again and again because it is captured in the reusable component.

. Faithfulness: The Strategy Library uses agents to represent the different
strategies, which is much different from a traditional implementation of the

Strategy pattern. Therefore I do not consider the Strategy Library as a faithful
componentized version of the Strategy pattern.

. Type-safety: The Strategy Library relies on agents, which is a type-safe Eiffel
mechanism. As a consequence, the Strategy Library is also type-safe.

. Performance: Comparing the implementation of the Strategy Library with a

direct pattern implementation shows that the only difference is the use of
agents. Using agents implies a performance overhead, but very small on the
overall application. Therefore, the performance of a system based on the
Strategy Library will be in the same order as when implemented with the
Strategy pattern directly.

. Extended applicability: The Strategy Library does not cover more cases than
the original Strategy pattern.

14.4 CHAPTER SUMMARY

. The Strategy pattern provides a way to encapsulate algorithms (called
“strategies”) and make them interchangeable (transparently to clients).
However it is not a reusable solution.

241

See [Gamma 1995

7. Increased number
of objects, p 318.

Gamma 1995], p
315.

See “‘Design pattern
componentizability
classification
(filled) ", page 90.

Hachani 2003].

See the above discus-

sion on Componen-
tizability vs.
faithfulness.

The performance
overhead of agents is
explained in detail in
appendix A, p 390.

Gamma 1995], p
315-323.

242

STRATEGY §14

Genericity does not help componentizing the Strategy pattern.

Agents enable writing a reusable Strategy Library. However it is not clear
whether it can still be considered as a “strategy”. A solution with agents is
quite far from the original pattern (algorithms are not encapsulated into
different classes anymore); hence the categorization of the Strategy pattern: See “Design pattern
“1.3.3 Componentizable but unfaithful”. componentizability

classification
(filled) ", page 90.

15

Memento

Componentizable but useless

We are reaching the last category of componentizable patterns: “1.3.4 See “Design pattern
: » : : componentizability

Componentlzat?le but useless”. It consists of design pgttems thgt can be trapsformed classification

into reusable Eiffel components but whose componentized version is not quite useful (filled)”. page 90.

in practice because implementing the pattern from scratch is simpler than using the

reusable library. The Memento is the only pattern described in Design Patterns that

belongs to this category.

The present chapter focuses on the Memento pattern: it describes the original
pattern, explains how to componentize it, and shows the limitations of the resulting
Memento Library.

15.1 MEMENTO PATTERN

The Memento pattern permits to capture a snapshot of an object’s state at a certain
point of a program execution and restore this state later on demand. Let’s see how
this pattern works and how to implement it in Eiffel.

Pattern description

The Memento pattern describes a way to “capture and externalize an object’s [Gamma 1995], p

internal state (without violating encapsulation) so that the object can be restored to 283.
this state later”.
Here is the class diagram of a typical application using the Memento pattern:
4P ORIGINATOR
Class dia-
set_state_from memento gram of a typ-
ical
attibute 3 application
= using the
Memento pat-
tern

The above example shows an ORIGINATOR with a set of three attributes: attribute I of
type TYPE 1, attribute 2 of type TYPE 2, and attribute 3 of type TYPE 3.

244 MEMENTO §15

The idea of the Memento pattern is to store the internal state of the
ORIGINATOR to be able to restore it later. It may be a partial view of the
ORIGINATOR’s state (i.e. the values of some attributes, not necessarily all of them).
In the above example, the ORIGINATOR creates a new_memento that keeps the value
of attribute 1 and attribute 2; it does not save the value of attribute 3.

The ORIGINATOR gives the MEMENTO to the APPLICATION that will keep it
for a while and may give it back to the ORIGINATOR later through feature ses state
from_memento.

Like threads are a lightweight form of processes, Memento can be viewed as
a lightweight form of persistence. It enables keeping some information for a while
and retrieve it later in the same program execution. If the execution terminates, the
data are lost (contrary to persistence).

Usefulness of non-conforming inheritance

In the above example used to introduce the Memento pattern, attributes astribute 1
and attribute 2 are present in both classes ORIGINATOR and MEMENTO. Therefore
we could imagine implementing it with non-conforming inheritance:

class
ORIGINATOR
inherit

expanded MEMENTO

end

The keyword expanded in front of the class name MEMENTO means that
ORIGINATOR inherits from MEMENTO but does not conform to it. Therefore, an
assignment such as:

a_memento = an_originator

with a_memento declared of type MEMENTO and an_originator declared of type
ORIGINATOR would be invalid.

However attractive it may be, non-conforming inheritance cannot be applied
to all cases covered by the original pattern. Indeed, we may want to keep not only
attribute values in the MEMENTO but also the result of some functions of the
ORIGINATOR. For example, we may want to store the value returned by function
price of the following class:

class
ORIGINATOR
feature -- Access

price: DOUBLE is
-- Price of originator
do
if price calculated then
Result .= internal_price

else
Result := ...
internal_price := Result
price_calculated := True
end

end

Non-conforming
inheritance does not
exist in the current
version of Eiffel; it
will be introduced in
the next version;

Meyer 200?b].

Using non-
conforming
inheritance

When storing
the value of a
function in a
memento may
be useful

The example assumes
there is a boolean
queryprice_calculated
and an attribute
internal_price
exported to NONE.

§15.1 MEMENTO PATTERN

feature -- Element change

set_price (a_price: like price) is
-- Set internal_price to a_price and set price_calculated to True.
do
internal_price = a_price
price_calculated := True
ensure
price_set: price = a_price
end

end

In that case, storing the result of the function price is interesting because it preserves
the Uniform Access principle. Indeed, set_price makes it possible to change the price
of the ORIGINATOR. If we want to restore the state of the object later on, we have
the choice between keeping the values of the internal attributes internal price and
price_calculated and keeping the result of the function price. But storing internal price
and price_calculated is exposing the implementation in a way. What we want when
restoring the previous state is that price returns the same value as before, whatever
its implementation is. Function or attribute should not make a difference; both are
queries and should be treated in the same way. Another advantage of this approach,
which respects the Uniform Access principle, is that it becomes possible to redefine
the function price into an attribute without breaking the memento; the memento
would still work correctly.

Regarding the use of non-conforming inheritance, it would not be possible
here because class MEMENTO would have an attribute price whereas it is a function
in class ORIGINATOR.

Implementation issues

Before applying the Memento pattern, it is important to check that the ORIGINATOR
does not modify the values stored in the MEMENTO after creating it. For example, if
class ORIGINATOR has a feature set_attribute I and it calls:

set_attribute I (new_attribute 1)

it also modifies the value stored in the MEMENTO because attribute I is the same
object in both cases. Thus, we lost the interest of having a MEMENTO in the first
place (we cannot restore the previous state anymore).

Jézéquel et al. explain this issue in Design Patterns and Contracts:
“Identification of the Memento pattern may come easily at the implementation stage.
An object A has to be reset to a previous state by an object B. Nevertheless, this may
be obscured by B's just storing some attribute values of A. The main point to check
is that B never modifies these values before returning them to A”.

A solution would be to clone the attribute objects before putting them into the
MEMENTO. But should it be a shallow clone or a deep clone (recursive clone on each
field of an object)? If we opt for deep clone, the implementation will become
inefficient. Besides, the ORIGINATOR may want to retrieve the same objects and not
clones of the original attributes.

245

Meyer 1997], p 57.

Jézéquel 1999], p
178.

246
15.2 TOWARDS A REUSABLE MEMENTO LIBRARY

The Memento pattern enables to save parts or all of an object’s state and restore it
later if necessary. The traditional implementation shown before relies on a class
MEMENTO, which has some attributes corresponding to the information to be kept.
(In the previous example, we wanted to store the values of attribute 1 of TYPE I and
attribute_2 of TYPE 2 of ORIGINATOR objects; hence a class MEMENTO with two
attributes, one of type TYPE I and another one of type TYPE 2, referencing the
ORIGINATOR’s attribute_1 and attribute 2 at the time of creation of the memento.)

But do we really need the class MEMENTO? Don’t existing Eiffel library
classes already provide a way to store object state information?

First step: Simplifying the pattern implementation

One idea would be to represent a memento as a CELL [SOME _TYPE], SOME TYPE
being the type of the internal state to be stored. However, this representation is too
restrictive. Indeed, the “internal state” is typically a set of attributes of which we
want to keep the values at a certain point during execution; it is not only one
attribute (rather different attributes of different types).

A better approach would be to use the class TUPLE. First, it exists in all Eiffel
variants, which was not the case with CELL. But more important, it gives the ability
to have a “memento” of different attributes. In the previous example, we could have
a TUPLE [TYPE 1, TYPE 2]; the first element would correspond to astribute 1 and the
second to attribute 2. One drawback with tuples though: there is no elegant way to
access the elements of a TUPLE. The current implementation of ISE Eiffel provides
a query item, which gives the element corresponding to the integer index given as
argument. The problem is that item’s return type is ANY, thus we end up writing
assignment attempts each time we access an element of the memento. For example,
if we have:

memento: TUPLE [TYPE 1, TYPE 2]

we need to write:

attribute_1 7= memento « item (1)
attribute_2 1= memento « item (2)

The next version of Eiffel will solve this issue by providing “labeled tuples”.
In the previous example we could have:

memento: TUPLE [attribute 1: TYPE I; attribute 2: TYPE 2]

where attribute I and attribute 2 are labels that we can use to access the tuple
elements. For example:

attribute 1 = memento «attribute 1
attribute 2 := memento « attribute 2

removing the need for assignment attempts.

Second step: Componentizing the pattern implementation

If we represent the memento as a TUPLE, we don’t need a class MEMENTO anymore.
The class ORIGINATOR simply has a factory function new_memento that returns a
TUPLE. The ORIGINATOR also needs a feature set state_from _memento (like in the
traditional pattern implementation) to enable restoring the previous state from the
memento (of type TUPLE).

MEMENTO §15

Thetwo attributes are
called attribute 1 and
attribute 2 in class
MEMENTO as well
but the names could
be different.

The class CELL is
specific to ISE Eiffel.
(It is part of Eiffel-
Base.) It does not
exist in SmartEiffel
nor in Visual Eiffel.
The Gobo Eiffel Data
Structure Library
provides a DS_CELL,
which is similar to
ISE Eiffel’s CELL.

Meyer 1992], p 330-
334.

Assignment attempts
7= are explained in
appendixA, p 378.

See chapter 13 of
Meyer 200?b].

The labels do not
need to have the same
name as the corre-
sponding attributes;
for example, they
could be called
element 1 and
element 2.

§15.2 TOWARDS A REUSABLE MEMENTO LIBRARY

But why should we rewrite the class ORIGINATOR each time we want to apply
the Memento pattern? There is no reason. It is possible to write a reusable Memento
Library consisting of only one class MEMORIZABLE that declares the two features
new_memento and set_state_from_memento. It also provides a boolean query is valid,
which is used in the precondition of ser state from memento. The class
MEMORIZABLE i1s deferred and all its features as well; descendants need to effect the
three routines.

Here is the class diagram of a typical application using the Memento Library.
(The classes APPLICATION, ORIGINATOR, TYPE 1, TYPE 2, and TYPE 3 are not part
of the library; they just explain how to use it. Class ORIGINATOR effects the library
class MEMORIZABLE.)

*
MEMORIZABLE
new_memento™®
1 set state from memento*

is_valid*

+

APPLICATION ORIGINATOR

new_memento+
set_state from_memento+
is_valid+

attribute 1

attribute 2)
attribute 3

memento
— (rED

memento

The text of the library class MEMORIZABLE appears next:

deferred class
MEMORIZABLE
feature -- Access

new_memento: TUPLE is
-- New memento from internal state
deferred
ensure
new_memento_not_void: Result /= Void
new memento is valid: is valid (Resulf)
end

feature -- Status setting

set_state_from_memento (a_memento: like new_memento) is
-- Set internal state from a_memento.
require
a memento not void: a_memento /= Void
is_valid: is_valid (a_memento)
deferred
end

247

1 decided to call the
class MEMORIZABLE
rather than ORIGINA-
TOR to remind the
name of the original
pattern.

Class dia-
gram of a typ-
ical
application
using the
Memento
Library

The attribute memento
is both a client of
TYPE I and TYPE 2
becauseit is declared
of type TUPLE [TYPE_
1, TYPE 2] in class
APPLICATION (see
class text on page
249)

Memento
Library

When effecting new_
memento, descen-
dants of class MEMO-
RIZABLE may provide
a more precise type
than just TUPLE. For
example, the class
ORIGINATOR (see
below) returns a new
memento of type
TUPLE [TYPE_1,
TYPE 2]

248

feature -- Status report

is_valid (a_memento: like new_memento): BOOLEAN is
-- Is a_memento a valid memento?
require
a memento not void: a_memento /= Void
deferred
end

end

The application class ORIGINATOR (whose text appears below) declares three
attributes artribute 1, attribute 2, and attribute 3 (like in the example presented with
the original Memento design pattern). It uses the Memento Library to give the ability
to save the values of two attributes (astribute 1 and artribute 2): it inherits from class
MEMORIZABLE and effects new memento, set_state_from_memento, and the query is_
valid.

class

ORIGINATOR
inherit

MEMORIZABLE
create

make

feature { NONE} -- Initialization

make is
-- Initialize attribute 1 and attribute 3. (attribute_2 may be void.)
do
create attribute [
create attribute 3
end

feature -- Access

attribute_1: TYPE 1
-- Part of the originator's internal state

attribute 2: TYPE 2
-- Another part of the originator's internal state (May be Void)

attribute 3: TYPE 3
-- Another attribute
-- (not useful to characterize the originator's internal state)

feature -- Memento

new memento: TUPLE [TYPE 1, TYPE 2]is

-- New memento from attribute 1 and attribute 2

do
Result := [attribute_1, attribute 2]

ensure then
new_memento_has two_elements: Result.count =2
attribute 1 set: Result«item (1) = attribute 1
attribute 2 set: Resulteitem (2) = attribute 2

end

MEMENTO §15

Application
class inherit-
ing from the
Memento
Library class
MEMORIZ-
ABLE

This example sup-
poses TYPE I and
TYPE 3 (the generat-
ing classes of
attribute 1 and
attribute_3) to have
default_create as cre-
ation procedure.

§15.2 TOWARDS A REUSABLE MEMENTO LIBRARY

feature -- Status setting

set_state_from_memento (a_memento: like new_memento) is
-- Set internal state (attribute 1, attribute 2) from a_memento.
do
attribute 1 7= a_memento « item (1)
attribute 2 7= a_memento « item (2)
ensure then
attribute | set: attribute 1 =a _memento « item (1)
attribute 2 set: attribute 2 =a_memento « item (2)
end

feature -- Status report

is valid (a_memento: like new_memento): BOOLEAN is
-- Is a_memento a valid memento?
do
Result == (a_memento ¢ count =2
and then a_memento « item (1) /= Void)
ensure then
definition: Result implies (a_memento « count =2
and then a_memento « item (1) /= Void)
end

invariant

attribute 1 not void: attribute 1 /= Void
attribute 3 not void: attribute 3 /= Void

end

Class ORIGINATOR implements the feature new memento inherited from
MEMORIZABLE and provides more precise information about the function’s return
type, saying it is not any kind of TUPLE but a TUPLE [TYPE 1, TYPE 2]. It means
that the returned tuple has at least two elements of which the first is of type TYPE I
and the second of type TYPE 2. Besides, the postcondition of new memento specifies
that the size of the returned tuple is exactly 2. (The argument of ser state from
memento and is_valid follows the new type specification of new memento because of

the anchored definition like new_memento.)

The class APPLICATION (see text below) is a client of ORIGINATOR: it asks

for a memento of the ORIGINATOR’s internal state, keeps it for a while, and restores

it later.
class
APPLICATION
create
make
feature { NONE?} -- Initialization

249

Assignment attempts
7= are explained in
appendix4, p 378.

A valid memento of
ORIGINATOR has two
values corresponding
to attribute 1 and
attribute_2 of which
the second may be
void (because
attribute_2 may be
void), but not the first
(because of the class
invariant attribute 1/
= Void). Hence the
implementation and
postcondition of fea-
ture is_valid.

Application
keeping a
memento of
the origina-
tor and
restoring it
later on

250 MEMENTO §15

make is
-- Request a memento from an originator
-- and give it back after a while.
local
an_originator: ORIGINATOR
do
create an_originatore make

-- Create a snapshot of current state of an_originator.
memento = an_originatore new_memento

-- Time passes and state of originator changes.
-- Give the memento back to the originator.
an_originatorsset_state_from_memento (memento)
end

feature -- Access

memento: TUPLE [TYPE 1, TYPE 2]
-- Access to memento

invariant
memento_not void: memento /= Void

end

Componentizability vs. usefulness

The previous sections have shown that the Memento pattern can be transformed into
a reusable component. The next question is: does the Memento Library really
simplify the task of the programmer; in other words, is it really useful and usable in
practice? The answer is not obvious.

It was mentioned that clients of the Memento Library must inherit from
MEMORIZABLE and implement the inherited features new memento, set state_from_
memento and is valid.

. One advantage is to inherit the assertions defined in class MEMORIZABLE, in
particular the boolean query is valid. However, is valid is deferred in
MEMORIZABLE, meaning it is up to the descendants to provide the
implementation anyway. Thus, it does not bring much to rely on the library
rather than writing the code from scratch in each class using the pattern.

. Another point is to ensure that developers won’t forget an important feature
of the pattern; they are more likely to implement the pattern in a correct way
without having to look at Design Patterns or Design Patterns and Contracts. [lézéquel 1999],
Nevertheless, the small number of features involved in the pattern makes it
quite difficult to forget one.

. The pattern implementation is simple; thus developers are likely to use it
without even thinking about it. Therefore they won’t use the Memento
Library. (They may not even know that the “pattern” they are using has a
name and is the Memento design pattern.) The reusable component may only
be useful for beginners who have learnt during their studies about the
Memento pattern and remember its intent but do not know how to implement
it in practice. This public of novices may appreciate having a library at
disposal and rely on it.

§15.3 COMPONENTIZATION OUTCOME

I think it is a step forward to have a reusable component and give programmers the
possibility to use it (or not). Even if not useful to experienced developers, the
Memento Library may give a hand to novice programmers.

15.3 COMPONENTIZATION OUTCOME

The componentization of the Memento pattern, which resulted in the development of
the Memento Library, is not completely satisfactory because it does not meet all the
componentizability quality criteria established in section 6.1:

Completeness: The Memento Library covers all cases described in the original
Memento pattern.

Usefulness: The Memento Library is not really useful for experienced
developers because the pattern implementation is so simple that programmers
are likely to use it without even thinking about it. Therefore they won’t use
the Memento Library. The reusable component may only be useful for
beginners who know about the pattern but do not know how to implement it.

Faithfulness: The Memento Library is slightly different from an
implementation from scratch of the Memento pattern because the
ORIGINATOR class now inherits from the class MEMORIZABLE rather than
being a client of a class MEMENTO. Nevertheless, the Memento Library
satisfies the intent of the original Memento pattern and keeps the same spirit.
Therefore I consider the Memento Library as being a faithful componentized
version of the Memento pattern.

Type-safety: The Memento Library relies on tuples and contracts. Both
mechanisms are type-safe in Eiffel. As a consequence, the Memento Library
is also type-safe.

Performance: Comparing the implementation of the Memento Library with a
direct pattern implementation shows that the only difference is the use of
tuples and contracts. TUPLE is based on an anonymous class whose fields can
be considered as attributes of this class. Thus the performance will be the
same as any other class. Therefore, the performance of a system based on the
Memento Library will be in the same order as when implemented with the
Memento pattern directly.

Extended applicability: The Memento Library does not cover more cases than
the original Memento pattern.

15.4 CHAPTER SUMMARY

The Memento pattern describes a way to capture the internal state of an object
(typically some attribute values) at a certain point of the program execution
and restore this state later on.

Non-conforming inheritance helps implementing the pattern in cases where
only attributes are stored in the memento.

The Memento pattern cannot be applied if the originator continues modifying
the values stored in the memento. (Changes prevent restoring an earlier state
because the previously stored attribute values have been overridden.)

It is possible to write a reusable Memento Library using the Eiffel support for
tuples and Design by Contract™.

251

See the above discus-
sion on Componen-
tizability vs.
usefulness.

Gamma 1995], p
283-291.

Meyer 1986

Meyer 1997
Mitchell 2002], and
Meyer 200?c].

252

MEMENTO §15

The Memento Library may be useful for novice programmers who just know
about the Memento pattern but have no idea how to implement it. It is unlikely
to help experienced developers a lot. Hence the categorization of the Memento See “Design pattern
113 . 2 izability
pattern as “1.3.4 Componentizable but useless”. ﬁ’”—%}":’fw"l’z;’:jf 10
(filled) . page 90.

PART D: Non-componentizable patterns

254

Part B presented a new pattern classification by level of componentizability.
Part C described the componentizable design patterns, explaining their goals
and how to componentize them. Part D will focus on the remaining patterns

and show that skeleton classes may help when full componentizability is not
possible.

16

Decorator and Adapter

Non-componentizable, skeletons with method

In chapter 5, we saw with the Decorator example that componentization was not
possible for all the design patterns described by [Gamma 1995]. The Decorator is
not the only “non-componentizable pattern”.

This chapter focuses on two non-componentizable design patterns (Decorator
and Adapter) for which it is feasible to write skeleton classes — classes with holes
that developers need to complete — to help application programmers, and to provide
a method describing how to fill the skeletons. They belong to the category “2.1.1
Skeleton, with method” of the pattern componentizability classification. The two
patterns are supported by the Pattern Wizard, which will be presented in chapter 21.

16.1 DECORATOR PATTERN

The Decorator pattern describes how to “attach additional responsibilities to an
object dynamically. Decorators provide a flexible alternative to subclassing for
extending functionality”.

Chapter 5 already presented much of the Decorator pattern. Therefore this
section concentrates on the skeleton classes it is possible to write for this pattern and
on the method we can suggest to fill in these classes “with holes”.

We saw in section 5.3 that there are two kinds of decorations: additional
attributes or additional behavior; hence two different skeletons for writing the
decorated components. Let’s review each of them. (The reader may want to have a
quick look at section 5.3 again to better understand the structure of the following
skeleton classes.)

With additional attributes

Here is a possible skeleton class to decorate components with extra attributes:

indexing
description: “Skeleton of a component decorated with additional attributes”

class
DECORATED COMPONENT -- You may want to change the class name.
inherit

COMPONENT -- You may need to change the class name
redefine
-- List all features of COMPONENT that are not deferred.
end

See 5.3, page 74.

See “‘Design pattern
componentizability
classification
(filled) ", page 90.

Gamma 1995], p
175.

See ‘A non-compo-

nentizable pattern:
Decorator”, 5.3

page 74.

Skeleton of a
component
decorated
with addi-
tional
attributes

256 DECORATOR AND ADAPTER §16

create

make
-- You may want to add creation procedures to initialize the additional attributes.

feature { NONE} -- Initialization

make (a_component: like component) is
-- Set component to a_component.
require
a_component not void: a_component /= Void
do
component := a_component
ensure
component_set: component = a_component
end

-- List additional creation procedures taking into account additional attributes.
feature -- Access

-- List additional attributes.
feature -- To be completed

-- List all features from COMPONENT and implement them by delegating

-- calls to component as follows:

-- do

-- component s feature_from_component

-- end

feature { NONE?} -- Implementation

component. COMPONENT
-- Component that will be used for the “decoration”

invariant
component not void: component /= Void

end

A possible algorithm to fill the class holes is, in outline:

. Make this component a decorated component by redefining all features from
COMPONENT in class DECORATED COMPONENT to delegate all calls to the
component object to be decorated. (Effective features from class COMPONENT
need to be listed in the corresponding redefine clause.)

. Decorate this component by:
. Declaring additional attributes in a feature clause “Access”.
. Possibly adding additional creation procedures to take these new

attributes into account.

You may also have to change the class names COMPONENT and DECORATED _
COMPONENT to adapt to your program.

§16.1 DECORATOR PATTERN 257

With additional behavior

Here is a possible skeleton class to add behavior to an existing component:

indexing
description: “Skeleton of a component decorated with additional behavior”
class

DECORATED COMPONENT -- You may want to change the class name.

inherit
COMPONENT -- You may need to change the class name
redefine
-- List all features of COMPONENT that are not deferred.
end
create
make

feature {NONE?} -- Initialization

make (a_component: like component) is
-- Set component to a_component.
require
a_component not void: a_component /= Void
do
Skeleton of a

component ‘= a_component

component
ensure
component set: component = a _component decorated
o PoRERLER comp =eomp with addi-
tional behav-
feature -- To be completed lor

-- List all features from COMPONENT and implement them by delegating
-- calls to component as follows:

-- do

-- component s feature_from_component

-- end

-- For some of these features, you may want to do something more:
-- do

-- component e feature from_component

-- do_something _more

-- end

feature {NONE} -- Implementation

component. COMPONENT
-- Component that will be used for the “decoration”

invariant
component not void: component /= Void

end

The algorithm to complete this second skeleton class is very close to the first case
with additional attribute decorations:

. Redefine the features from COMPONENT to forward calls to the to-be-
decorated component object. (Effective features from class COMPONENT need
to be listed in the corresponding redefine clause.)

258

. Decorate this component with additional behavior by redefining some of the
features from COMPONENT to do something more than just the behavior
defined in class COMPONENT. A few routines of class DECORATED
COMPONENT will typically look like:

do_something is
-- Do something on component.
do
component«do_something
-- Do something more here.
end

Again, programmers may have to change the class names COMPONENT and
DECORATED COMPONENT to adapt to their programs. The Pattern Wizard makes
this task easy: users just need to enter the class names they want and the wizard
generates the corresponding skeletons automatically with the given names.

Componentization outcome

Chapter 6 defined the rule to assert the patterns’ componentizability: “Design
patterns are declared “non-componentizable” if none of the following mechanisms:

. Client-supplier relationship
. Simple inheritance

. Multiple inheritance

. Unconstrained genericity

. Constrained genericity

. Design by Contract™

. Automatic type conversion
. Agents
. Aspects

permits to transform the pattern into a reusable component”. The preview of
Decorator in chapter 5 examined these possibilities successively. Let’s summarize
the outcome here:

. The first considered technique was genericity. The idea was to have one
generic class DECORATED COMPONENT [G] and several generic derivations
like DECORATED COMPONENT [BOOK] representing a decorated book,
DECORATED COMPONENT [VIDEO RECORDER] representing a decorated
video recorder, etc. But the Decorator pattern description says that a
DECORATED COMPONENT needs fo be a COMPONENT to enable clients to
use one variant or the other transparently, yielding the following code:

class
DECORATED COMPONENT [G —> COMPONENT)]

inherit

end

This code cannot work in Eiffel. The language would need to be interpreted or
support techniques like C++ templates, which is not desirable. Thus, genericity
(unconstrained and constrained) and inheritance (single or multiple) do not help
componentizing the Decorator pattern.

DECORATOR AND ADAPTER §16

Routine with
additional
behavior

“Pattern Wizard”
21, page 323.

«

Componentizabil-

ity criteria’, 6.1
page 85.

“An attractive but
invalid scheme”
page 78.

Constrained
genericity and
simple inher-
itance do not
help compo-
nentizing the
Decorator

Multiple inheritance
would not bring more
than single inherit-
ance here.

§16.2 ADAPTER PATTERN 259

. Design by Contract™ does not help either: if componentization is possible
then the componentized version can benefit from the support of contracts but
contracts alone do not give a reusable component.

. Chapter 5 also considered automatic type conversion and showed that it was A valid but useless
useless because the decoration would be added to a clone of the original 2/0ach™ page7d
object, not on the object itself.

. Agents were not reviewed in section 5.3 but they do not help componentizing
Decorator either: agents do not enable adding an attribute to a given COMPONENT.

Now that we have examined all mechanisms mentioned in the definition of non-
componentizable pattern, we can assert that Decorator is non-componentizable.

16.2 ADAPTER PATTERN

In chapter 5 and in the previous section, we learnt how to decorate an object with See “4 non-compo-
extra functionalities while keeping an interface that is compatible with the original %%
object to ensure transparency for the client. We will now study how to make page74

incompatible interfaces work together with the Adapter pattern.

There are two kinds of “adapters”: class adapters and object adapters. This
section examines both, first writing them in Eiffel, second evaluating possibilities to
componentize them.

Pattern description

The Adapter pattern serves to “convert the interface of a class into another interface [Gamma 1995], p
clients expect. Adapter lets classes work together that couldn t otherwise because of 139.
incompatible interfaces”.

An object adapter may be viewed as a plug adapter one uses to plug an
electrical appliance in when traveling abroad. One does not change the device’s plug
(it is still the same object); one just passes it to the (object) adapter that takes care
of making it compatible with the plug’s shape (the object interface) of the country
you are visiting.

The class adapter is a more static scheme because it involves classes, not
objects, and relies on inheritance. It is the “marriage of convenience” described by [Meyer 19971, p 530-
Meyer.

Let’s now describe each adapter variant.

Class adapter

Here is the class diagram of a typical application using the class adapter pattern:

Class dia-
{PPLICATIO ADAPTEE)~ $ram of a byp-
. application
using the

class adapter
pattern
ADAPTER The BON notation is

f— g Wf explained in appen-
dix A, page 394.

260 DECORATOR AND ADAPTER §16

The idea is the following: you have two classes TARGET and ADAPTEE that do not
have the same interface. You, as a client, need the TARGET’s interface, but you want
the implementation of ADAPTEE. Therefore, you write a new class ADAPTER that
inherits from both TARGET and ADAPTEE, allowing you to keep the interface of
TARGET while redefining its features to use the implementation of ADAPTEE,
transparently to the APPLICATION.

In the general case, the features f from TARGET and g from ADAPTEE may
have different signatures and different contracts. In that case, the class ADAPTER
needs to redefine the version f from TARGET and “reconcile” the new f with the
existing g coming from ADAPTEE. Let’s take an example to illustrate how it works.
Suppose we have the following class TARGET:

class
TARGET
feature -- Basic operation

f(i: INTEGER; s: STRING) is
-- Do something with i and s.

require

s not void: s /= Void
do
end

end

and this class ADAPTEE:

class

ADAPTEE
feature -- Basic operation

g (s: STRING; i: INTEGER) is
-- Do something with s and i.
require
s not void: s /= Void
s not _empty: not seis_empty
do

end

end

which we need to adapt. Here is what an ADAPTER could look like:

class
ADAPTER
inherit

TARGET
redefine

f

end

expanded ADAPTEE
export
{NONE} all
end

Class TAR-
GET

Class ADAP-
TEE

Class adapter
example

§16.2 ADAPTER PATTERN

feature -- Basic operation

f(i: INTEGER; s: STRING) is
-- Do something with i and s.
require
s not void: s /= Void
do
if not s+is_empty then
g (s, 1)
end
end

end

A particular case of the Class adapter pattern, which is supported by the Pattern
Wizard, is when the two features /' and g have the same signatures and contracts. It
becomes possible to merge these two features by undefining the version from
TARGET and renaming g from ADAPTEE as fin ADAPTER. Here is the resulting code:

class
ADAPTER
inherit
TARGET
undefine

/

end
expanded ADAPTEE

rename

gasf
export

{NONE?} all
end

end

The rename clause means that in class ADAPTER the feature g inherited from
ADAPTEE is known under the name /. But class TARGET also has a feature f, causing
a conflict in ADAPTER (which inherits from both TARGET and ADAPTEE). The
undefine clause solves the problem: it undefines feature f from class TARGET
(meaning, makes it deferred), which results in an automatic merging. In other words,
the deferred feature /' coming from 7ARGET is effected by the feature f/ (originally
named g) inherited from ADAPTEE, which is exactly what we want: the interface of
TARGET with the implementation of 4ADAPTEE.

Inheriting for implementation purposes is sometimes pointed out as being a sign of wrong

design. Meyer explains why it is useful in some cases.

The keyword expanded means that there is no conformance on the inheritance
path with ADAPTEE. In other words, class ADAPTER conforms to TARGET but does
not to ADAPTEE; hence, it is forbidden to assign an ADAPTER to an ADAPTEE as
shown below:

target: TARGET
adaptee: ADAPTEE
adapter: ADAPTER

create adapter
target .= adapter
-- Correct because ADAPTER conforms to TARGET
adaptee = adapter
-- Incorrect because ADAPTER inherits but does not conform to ADAPTEE

261

Adapter of ADAPTEE
to be usable as a TAR-
GET.

Class adapter
example

The routines of class
ADAPTEE (others
than g — renamed as
1) do not need to
belong to the
ADAPTER sinterface;
hence the export
clause to restrict the
exportation status of
allinherited features.
(Feature fis still
available to clients
through the second
inheritance link —
with class TARGET.)

See [Meyer 1992]:
chapter 6 about
inheritance and
chapter 11 about
repeated inheritance,
adaptation clauses.

Meyer 1997], p 530-
532.

See section 6.9 of

Meyer 200?b] about
non-conforming
inheritance.

About non-
conforming
inheritance

262 DECORATOR AND ADAPTER §16

In fact, non-conforming inheritance is not supported by the Eiffel compilers yet
(meaning the class ADAPTER given before would not compile). It will be part of the
next version of Eiffel.

For the moment, Eiffel developers would restrict the export status of features
inherited from class ADAPTEE to come close to expanded inheritance, although not
quite because it is still conforming:

class
ADAPTER
inherit
ADAPTEE
export

{NONE} all
end

end

The following text shows typical use of a class adapter. The class APPLICATION
exposes a procedure do_something, which takes a TARGET as argument. First use is
of course to call the feature with a direct instance of TARGET. But it is also possible
to call it with an instance of a proper (conforming) descendant of TARGET, here
ADAPTER. The creation routine make shows both possibilities.

class

APPLICATION
create

make

feature { NONE} -- Initialization

make is
-- Do something. (Show typical use of the class adapter pattern.)
do
-- Call the version of TARGET.
do_something (create {TARGET?Y)
-- Call the version of ADAPTEE.
do_something (create {ADAPTERY)
end

feature -- Basic operations

do_something (a_target: TARGET) is
-- Do something on a_target.
do
a_target.f
end

end

There is also an object variant of the Adapter pattern. It is covered next.

Meyer 200?b].

With restric-
tion of the
export status

Application
using a “class
adapter”

§16.2 ADAPTER PATTERN

Object adapter

Here is the class diagram of an Eiffel implementation of the object adapter pattern:

TARGET
f %

APPLICATIO

\ adaptee

ADAPTER
fH+

Classes TARGET and ADAPTEE are the same as before. Only the class ADAPTER
changes: now it is a client of ADAPTEE rather than a (non-conforming) heir.

The resulting class is shown below:

ADAPTEE

g

class
ADAPTER
inherit
TARGET
redefine
S
end
create
make

feature { NONE} -- Initialization

make (an_adaptee: like adaptee) is
-- Set adaptee to an_adaptee.
require
an_adaptee not void: an_adaptee /= Void
do
adaptee := an_adaptee
ensure
adaptee set: adaptee = an_adaptee
end

feature -- Access

adaptee: ADAPTEE
-- Object to be adapted to TARGET

feature -- Basic operations

fis
-- Do something. (Delegate work to adaptee.)
do
adaptee « g
end

invariant
adaptee not void: adaptee /= Void

end

263

Class dia-
gram of a typ-
ical
application
using the
object adapter
pattern

See “‘Class diagram
of a typical applica-
tion using the class
adapter pattern”
page 259.

Adapter of ADAPTEE
to be usable as a TAR-
GET.

Object
adapter

264 DECORATOR AND ADAPTER §16

The inheritance clause says that the implementation of feature f (inherited from
TARGET) is redefined (it has a redefine clause). If we have a look at the
implementation of f in class 4ADAPTER, we see that it just forwards the call to the
adaptee, which is passed at creation.

The core difference with the previous design and implementation is that here
we are dealing with the same object; everything is done at run time. The
APPLICATION gives the instance of ADAPTEE it wants to use to the ADAPTER, which
takes care of making it compatible with the TARGET interface the APPLICATION
must satisfy.

The example below illustrates how to use an “object adapter”:

class
APPLICATION
create
make
feature { NONE?} -- Initialization

make is
-- Do something.
-- (Show a typical use of the object Adapter pattern.)
local
an_adaptee: ADAPTEE
do
-- Call the version of TARGET.
do_something (create {TARGETY})

create an_adaptee
-- Possibly perform some operations on an_adaptee.

-- Do something using existing object adaptee.
-- Call the version of ADAPTEE.
do_something (create {ADAPTER} « make (an_adaptee))
end

feature -- Basic operations

do_something (a_target: TARGET) is
-- Do something on a_target.
do
a_targetef
end

end

As mentioned at the beginning of this section, using an object adapter is like using
a plug adapter for an electric appliance when traveling in another country. You give
an adaptee (not a copy of adaptee) to the ADAPTER (in the case of plug adapter, you
keep the same plug at the end of the line, you don’t cut the wire to put another plug
instead) and you use this compatible adaptee as TARGET argument to do_something.

16.3 A REUSABLE ADAPTER LIBRARY?

Let’s now review techniques — already in the Eiffel language or not — that may
help componentizing the Adapter pattern.

Client appli-
cation using
an “object
adapter”

The current version
of Eiffel is defined in
Meyer 1992], the

next version in

Meyer 200?b].

§16.3 A REUSABLE ADAPTER LIBRARY?
Object adapter

Using genericity?

A core drawback of the approach presented in the previous section is to require
creating a new class ADAPTEE _ADAPTER for each ADAPTEE. To adapt a TEXTBOOK
to be compatible with a BOOK, we would need to create a class TEXTBOOK _
ADAPTER. 1f we decide that a DICTIONARY is also a BOOK and should be added to
a library, then we need to create a DIRCTIONARY _ADAPTER. Hence the idea of using
genericity and have a class ADAPTER [G] that could have any number of derivations:
ADAPTER [TEXTBOOK], ADAPTER [DICTIONARY], ADAPTER [COMICS], etc.

But genericity alone is not enough. Indeed, the primary goal in creating an
ADAPTER is to make it compatible with (conformant to) a certain ZARGET. In other
words, we want that ADAPTER [G] inherits from a class TARGET. But then we need
to make sure that call delegation will work. For example, if we have a feature f in
ADAPTER, its implementation should be adapree.f. But what if / does not exist in
class ADAPTEE (considering a type ADAPTER [ADAPTEE])? Therefore, we need
constrained genericity, imposing actual generic parameters to conform to, say
ADAPTABLE, with ADAPTABLE defining the feature /. We would end up with
something like:

class

ADAPTER [G —> ADAPTABLE)

inherit
TARGET
redefine
h
end

feature -- Access

adaptee:
-- Object to be adapted to TARGET

feature -- Basic operations

fis
-- Perform an operation. (Delegate work to adaptee.)
do
adaptee of
end

end

But this class is not usable in practice. Let’s see why.

How to write the classes TARGET and ADAPTABLE? They are likely to look
pretty much the same: a class declaring a feature / (or at best several features with
different names), and that’s it. We cannot do much more in the general case.

Besides, any actual generic parameter needs to conform to ADAPTABLE,
which means in most cases inherit from ADAPTABLE. In other words, the class
ADAPTEE is likely to require some changes to be used by the ADAPTER, removing
the whole purpose of having an object ADAPTER.

265

Tentative
componenti-
zation of the
Object
adapter using
constrained
genericity

266

A more appealing scheme would be to have two generic parameters, namely
a class ADAPTER [G, H] where G is the ADAPTEE and H the TARGET. However, this
idea falls short when introducing inheritance. Indeed, we need ADAPTER [G, H] to
conform to the target H, meaning something like:

class
ADAPTER [, H]
inherit

end

which is not possible in a compiled language like Eiffel as explained in detail in
section 5.3 about the Decorator pattern.

Using conversion?

If inheritance is not possible, it may seem attractive to consider type conversion.
Such automatic mechanism is not available in the current version of Eiffel. However,
it will be supported in the next version. (Chapter 5 explained the proposed syntax in
detail; therefore it is not reproduced here. The reader may go back quickly to section
“A valid but useless approach”, page 79 if type conversion is not so fresh in his or
her mind.)

First possibility, modify the class TARGET to have a conversion routine taking
an argument of type ADAPTEE:

class
TARGET
create
make_from_adaptee
convert
make from_adaptee ({ADAPTEE?Y)

end

Such a scheme is hardly applicable in practice: first, you may not have access to the
source code of class TARGET (otherwise you would not have to create an ADAPTER
and could modify the classes directly); second, you lose the dynamic aspect of an
object adapter because conversion will create a new object instead of working on the
original object given as argument. Using the metaphor of a plug adapter again: you
want to keep the plug we have on your electric appliance and not cut the wire to put
a new plug.

The second approach is to modify the class ADAPTEE (if you have this
possibility):

class
ADAPTEE
convert
to_target: {TARGET?}

end

Again, conversion will create a new object, which is not what we want.

DECORATOR AND ADAPTER §16

Object
adapter with
multiple
generic
parameters

(WARNING:
Wrong code)

See “An attractive
but invalid scheme”
page 78.

The current version
of Eiffel is defined in
Meyer 1992]; the

next version is
described in [Meyer
2007b].

Modified
class TAR-
GET with
conversion
from ADAP-
TEE

Modified
class ADAP-
TEE with
conversion

function to
TARGET

§16.3 A REUSABLE ADAPTER LIBRARY?

Using agents?

It was mentioned several times that the implementation of an ADAPTER is like a
Proxy, delegating calls to the original ADAPTEE. Could agents help? The idea of
using agents would be to replace the call to the ADAPTEE’s routine by a call on the
agent; this agent would be passed as argument to the creation routine of class
ADAPTER. A possible implementation appears next:

class
ADAPTER
inherit
TARGET
redefine
S
end
create
make

feature { NONE} -- Initialization

make (an_impl: like impl) is
-- Set impl to an_impl.

require
an_impl not void: an_impl /= Void
do
impl :=an_impl
ensure
impl_set: impl = an_impl
end

feature -- Access

impl: PROCEDURE [ANY, TUPLE]
-- Procedure ready to be called by f

feature -- Basic operations

fis
-- Do something.
do
implecall ([])
end

invariant
impl_not void: impl /= Void

end

Typical client code would be:
create {ADAPTER} « make (agent {ADAPTEE?} «f)

Such implementation is correct and works. However, it changes the goal of the
Object adapter pattern. Indeed, the idea of an object adapter is that we have an
adaptee and we want to find an adapter to use it. For example, we have a laptop
computer with a French plug and we want to use it during a travel in the United
States, meaning we want to find an adapter from French to US plugs.

267

Object
adapter using
agents

Client using
an object
adapter
implemented
with agents

268 DECORATOR AND ADAPTER §16

Agents give the impression the pattern works the other way around: we have
an adapter and we need to find an adaptee to use this adapter. It is the reverse.
Therefore agents do not help componentizing the Object adapter pattern.

Using aspects?

What about aspects? I introduced the concept of Aspect-Oriented Programming

(AOP) in chapter 5. Although not supported by Eiffel for the moment, the notion of See “What about
aspect is gaining considerable attention in the software engineering community. %Pecis’". page82.
Hence, it is worth examining whether having some kind of “aspects” in Eiffel would

help implementing a reusable Adapter library.

Here is a possible implementation of an Adapter aspect using AspectJ™:

aspect Adapter {

/I Apply aspect whenever f of class Target is called.
pointcut adapterPointcut ():
call (Target . f)

Aspect
// Adaptee providing the new implementation of f'declared in Target adapter .
public Adaptee adaptee; (flppr oxima-
five
// New implementation of f'declared in Target Aspect]™
around (): syntax)
adapterPointcut (){
adaptee « g()
b

¥

Like for the Decorator pattern, aspects break the dynamic dimension of the object
Adapter pattern. Indeed, one does not have an object-scope control on the aspect:
either it is applied to all instances created at run time or none. Therefore, having
aspects in Eiffel would not help componentizing the object Adapter pattern.

Componentization outcome

We have just seen that genericity (constrained or not), agents, conversion, and
aspects do not help componentizing the Object adapter pattern. Contracts could only
improve a componentize version but cannot make a pattern componentizable.
Finally, inheritance (single or multiple) cannot help because it is a static mechanism
whereas an object adaptation should happen at run time.

According to the definition given in chapter 6, we can assert that the Object See “Componentiz-
adapter pattern is non-componentizable. bility criteria . 6.1
page 85.

Class adapter

We bump into the same barriers as for the object adapter when exploiting genericity
or type conversion: genericity and inheritance involving a generic parameter are
simply incompatible. The idea of combining agents with automatic type conversion
and constrained genericity seems more appealing. That’s what we will discuss now.

Combining constrained genericity, type conversion and agents?

The third approach examined to componentize the Object adapter was to use agents.
It was not retained because it was breaking the dynamic dimension of the object
adapter. But here, we are talking about class adapter, namely static interface
adaptation, usually through inheritance. Thus, it is worth investigating more closely.

§16.3 A REUSABLE ADAPTER LIBRARY?

Because we are looking for reusability, we also need genericity. But genericity
with inheritance (involving a generic parameter) is impossible. Therefore type
conversion seems to be the only way to go. The beginning of a class ADAPTER will
look as follows:

class
ADAPTER [G, H]

convert

to_target: {1}

feature -- Conversion
to_target: I'1is
-- Target corresponding to given adaptee
do

-- Requires a default creation procedure in H.
ensure

target not void: Result /= Void
end

end

where G denotes the ADAPTEE and H the TARGET. As pointed out by the comment
of function so_target, we need to require from the second generic parameter to have
a creation procedure default create. (Otherwise, we could not perform the type
conversion.) Besides, we also need actual generic parameters used as target to
conform to a certain interface, say TARGET, to be sure they expose a feature, say f
(or several features).

Here, TARGET refers to the generic constraint that appears below; in: class ADAPTER [G,
H -> TARGET create default create end]. It could also have been called “TARGETABLE”. The
reader should not confuse with the type TARGET used so far, which is a possible actual
generic parameter for / that conforms to the generic constraint.

In other words, we need constrained genericity to apply automatic type
conversion.

The following table shows a possible implementation of a class adapter
combining constrained genericity, type conversion and agents:

class
ADAPTER [G, H —> TARGET create default create end]
create
make
convert
to_target: {1}
feature -- Conversion
is
-- Target corresponding to given adaptee

to _target:

do

create Result
ensure

target not void: Result /= Void
end

269

See “Using generic-
iy?”, page 265 and
“An attractive but

page 78.

Sketch of
class adapter
using
genericity and
type conver-
sion

This notation is
explained in appen-
dix A with the notion
of constrained
genericity, starting
on page 387.

Adapter com-
bining con-
strained
genericity (for
reusability),
automatic
type conver-
sion to the
target, and
agents

270 DECORATOR AND ADAPTER §16

feature { NONE} -- Initialization

make (an_impl: like impl) is
-- Set impl to an_impl.
require
an_impl not void: an_impl /= Void
do
impl = an_impl
ensure
impl_set: impl = an_impl
end

feature -- Access

impl: PROCEDURE [ANY, TUPLE]
-- Procedure ready to be called by f

feature -- Basic operations
fis
-- Perform an operation.
do

implecall ([])
end

invariant

impl_not void: impl /= Void

end

This implementation is correct and works; it is even reusable, thanks to genericity.
Using again the 4PPLICATION code example introduced on page 262 for class
adapter, we could replace the second call to do_something by:

an_adapter: ADAPTER [ADAPTEE, TARGET] Application

create an_adaptere make (agent {ADAPTEE}.f) using .the

do_something (an_adapter) generic Cll.lSS
-- Call the agent (given as argument to the creation procedure of adapter with
-- ADAPTER), namely the version of f from class ADAPTEE. agents and

-- It is equivalent to: do_something (an_adaptersto_target) t_}:’p ¢ conver-
T = - sion
-- because of automatic type conversion.
But this is just a “toy” example. Is our reusable class adapter really applicable in
practice? Let’s try to use it in the book library example presented in earlier chapters.
We would like to write something like:
books: LINKED LIST [BOOK]
an_adapter: ADAPTER [TEXTBOOK, BOOK] Example with
generic class
create an_adapters make (agent { TEXTBOOK?} « borrow_textbook) adapter
books « extend (an_adapter)

But it requires modifying class BOOK to inherit from TARGET and have default create
as a valid creation procedure (remember the constraint on the second generic
parameter). The former would be possible although not desirable (we don’t want to
change BOOK to create an adapter for TEXTBOOKs; we may even not have access to
the source code of class BOOK). The latter may even require a complete refactoring
of the book library example because a simple default create procedure may not
ensure the class invariant of BOOK.

§16.3 A REUSABLE ADAPTER LIBRARY?

Thus, our componentized class adapter appears not usable in practice, or
usable in only few applications (those providing a default creation procedure). A
solution would be to allow arguments in the conversion function (fo_target in our
example) and pass an agent to the creation procedure of class ADAPTER to take care
of filling those arguments; such a scheme is however not possible in the automatic
type conversion described in [Meyer 200?7b].

Using aspects?

Another technique that may help us in componentizing the Class adapter pattern is
aspects. Although not provided in Eiffel at the moment, it is worth looking whether
they could bring something to us. The aspect adapter presented on page 268 works
to build a class adapter. However, it is not a reusable solution. We would need to
combine it with genericity to target any kind of ADAPTEE and TARGET, but then we
lose conformance. Yet another (more complicated) implementation of the Class
adapter, aspects do not help componentizing the pattern though.

Componentization outcome

We have just seen that constrained genericity, agents, automatic type conversion, and
aspects do not help componentizing the Class adapter pattern. Because constrained
genericity is powerless, unconstrained genericity would not help either. Contracts
could not make a pattern componentizable; they could just improve the
componentized version of the pattern. Finally, multiple inheritance provides a way
to implement the Class adapter pattern, but it does not make the pattern
componentizable. The classes TARGET and ADAPTEE depend too much on the
context. We cannot know in advance what kind of ADAPTEE we will need to adapt
and to which TARGET.

Because none of these mechanisms helps componentizing the Object adapter
pattern, we can assert that it is non-componentizable (according to the definition
given in chapter 6,).

Intelligent generation of skeleton classes

For lack of componentizability, we have to consider helping programmers with
skeleton classes to be completed. The class texts shown in 16.2 provide a good basis
to develop such skeletons.

A step forward would be an automatic tool filling parts of the classes from a
minimal input entered by the programmer. The class texts appearing below and on
the next page show how it could be done for the class and object adapter patterns:

class
ADAPTER
inherit

TARGET
undefine
-- To be completed
end

expanded ADAPTEE
rename
-- To be completed
export
{NONE} all
end

271

The Factory library
describedin chapter 8
uses a similar imple-
mentation with
agents.

For more details
about aspects, see
“What about

aspects?”’, page §2.

See “An attractive
but invalid scheme”
page 78 and "“Using
genericity?”, page
265.

See “Class adapter’’
page 259

See “‘Componentiz-
ability criteria”, 6.1
page 85.

Adapter of ADAPTEE
to be usable as a TAR-
GET.

Class adapter
skeleton

272

create

-- List creation procedure(s) here.
feature

-- List features here.
end

DECORATOR AND ADAPTER §16

A possible algorithm to fill the class holes is, in outline:

. Detect features with same feature name in TARGET and ADAPTEE.

. In case of name clashes: choose the version from 7ARGET (which should
contain the information, ADAPTEE bringing only the implementation) by

adding a rename clause in ADAPTEE.

. For features of TARGET when TARGET is deferred not implemented in

ADAPTEE, list them in clause feature of ADAPTER.

Here is the object variant:

class
ADAPTER Adapter of ADAPTEE
to be usable as a TAR-
inherit GET.
TARGET
redefine
-- List all features from TARGET
-- that have a direct counterpart in ADAPTEE
end
create
make
feature {NONE?} -- Initialization
make (an_adaptee: like adaptee) is Object
-- Set adaptee to an_adaptee. adapter skele-
require ton

an_adaptee not void: an_adaptee /= Void
do

adaptee = an_adaptee
ensure

adaptee_set: adaptee = an_adaptee
end

feature -- Access

adaptee: ADAPTEE
-- Object to be adapted to TARGET

feature

-- List all features from TARGET and implement them
-- by calling the version from ADAPTEE if applicable

-- (adaptee « feature_from_adaptee) otherwise leave an empty body.

invariant
adaptee not void: adaptee /= Void

end

§16.4 CHAPTER SUMMARY

Let’s now have a look at two other patterns — Template Method and Bridge — for
which it is possible to write skeleton classes but impossible to provide a method to
fill them. Developers have to complete the class texts depending on their particular
context and specification.

16.4 CHAPTER SUMMARY

. The Decorator pattern provides a way to add new attributes or extra behavior
to an existing component.

. The Decorator pattern is non-componentizable but it is possible to write
skeleton classes and even provide programmers with a method to fill those
class texts.

. The Adapter pattern describes a way to make classes work together although
they were not designed for it and have incompatible interfaces.

. The Adapter pattern has two variants: the “class adapter” and the “object
adapter”. The former is a static scheme involving multiple inheritance. The
latter is a dynamic adaptation of an existing object to match the target’s
interface.

. Multiple inheritance and client delegation enable writing class and object
adapters in Eiffel.

. Neither current Eiffel mechanisms (constrained genericity, inheritance, agents,
etc.) nor extensions (automatic type conversion, aspects) make it possible to
build a reusable Adapter library.

. It is possible to componentize the Class adapter pattern by combining
constrained genericity, automatic type conversion and agents, but it is hardly
usable in practice.

. It is possible to provide developers with skeleton classes for both the class
adapter and the object adapter schemes. A completion wizard may be feasible
to help programmers fill parts of the skeleton classes.

. The Decorator and the Adapter design patterns belong to the category “2.1.1
Non-componentizable, skeleton, possible method”.

273

Gamma 1995], p
175-184.

See ‘A non-compo-
nentizable pattern:

Decorator”, page

74.

Gamma 1995], p
139-150.

The current version
of Eiffel is defined in
Meyer 1992]; the
next version is
described in [Meyer
200?b].
About aspects, see
“What about

aspects?”, page 82.

See “‘Design pattern

componentizability

classification
illed)”, page 90.

274 DECORATOR AND ADAPTER §16

17

Template Method and Bridge

Non-componentizable, skeletons but no method

The previous chapter showed two non-componentizable patterns (Decorator and
Adapter) for which it is possible to generate skeleton classes and to provide a
method to help application programmers fill in those skeletons.

This chapter focuses on two non-componentizable design patterns (Template
Method and Bridge) for which it is also feasible to produ