
Event Library: an object-oriented library for
event-driven design

Volkan Arslan, Piotr Nienaltowski, Karine Arnout

Swiss Federal Institute of Technology (ETH), Chair of Software Engineering,
 8092 Zurich, Switzerland

{Volkan.Arslan, Piotr.Nienaltowski,
Karine.Arnout}@inf.ethz.ch

http://se.inf.ethz.ch

Abstract. The Event Library is a simple library that provides a solution to the
common problems in event-driven programming. Its careful design facilitates
further extensions, in order to satisfy users’ advanced needs. It has been im-
plemented in Eiffel, taking advantage of the advanced mechanisms of this lan-
guage. In this paper, we present the architecture of the library and show how it
can be used for building event-driven software. The discussion is illustrated
with a sample application.

1 Introduction

Event-driven programming has gained considerable popularity in the software engi-
neering world over the past few years. Several systems based on this approach have
been developed, in particular Graphical User Interface (GUI) applications. Event-
driven techniques facilitate the separation of concerns: the application layer (also
called business logic) provides the operations to execute, whereas the GUI layer trig-
gers their execution in response to human users’ actions.

Similar ideas have been proposed under the names Publish/Subscribe and Ob-
server pattern. The latter, introduced in [6], purports to provide an elegant way to
building event-driven systems. It certainly contains useful guidelines for the devel-
opment of event-driven programs; however, it falls short when talking about reuse:
developers have to implement the pattern anew for each application. In order to solve
this problem we decided to turn the Observer pattern into an Eiffel library, so that it
can be reused without additional programming effort.

Despite its small size — just one class — the Event Library is powerful enough to
implement the most common event-driven techniques, and it can be extended to han-
dle users’ advanced needs. Its simplicity results from using specific mechanisms of
Eiffel, including Design by Contract™, constrained genericity, multiple inheritance,
agents, and tuples. The underlying concepts of event-driven programming are pre-
sented in [9]. The same article provides also a review of existing techniques, such as
the .NET delegate mechanism and “Web Forms”. In this paper, we focus on the Event
Library.

The rest of the paper is organized in the following way. Section 2 explains how to use
the Event Library, and illustrates it with an example. Section 3 describes the architec-
ture of the Event Library and shows how it fulfills the space-, time-, and flow-
decoupling requirements of the Publish/Subscribe paradigm. Section 4 draws conclu-
sions and discusses possible extensions of the library.

2 Event Library in Action

We use a sample application to show the basic capabilities of the Event Library. We
explain, step by step, how to use the Event Library to build an event-driven applica-
tion. Both the library and the example presented here are available from [1]. They
were developed with the EiffelStudio 5.2 graphical development environment [3],
and they can be used on any platform supported by EiffelStudio1.

Fig. 1. Sample Event application

2.1 Sample Event-Driven Application

We want to observe the temperature, humidity, and pressure of containers in a chemi-
cal plant. We assume that the measurement is done by external sensors. Whenever the

1 Microsoft Windows, Linux, Unix, VMS, Solaris

value of one or more measured physical attributes changes, the concerned parts of our
system (e.g. display units) should be notified, so that they can update the values.

There are several reasons for choosing an event-driven architecture for such ap-
plication. First of all, we should take into account the event-driven nature of the prob-
lem: input values are coming from external sensors at unpredictable moments, and the
application is reacting to their change. Secondly, the independence between the GUI
and the “business logic” is preserved. If the physical setup changes (e.g. sensors are
replaced by different ones, new display units are introduced), the system can be easily
adapted, without the need to rewrite the whole application.

Compiling and launching the sample causes four windows to appear (Fig. 1). The
top-left window is the main application window. It displays information about the
subsequent execution phases of the application. Three client windows display the
values of temperature, humidity, and pressure in a chemical container. Note that these
three display units correspond to the same container; however, they are interested in
different sets of measures: Client window 1 shows temperature and humidity; Client
window 2 shows humidity and pressure; Client window 3 shows temperature, humid-
ity, and pressure. Each of these windows can change its “interests” over time, either
by subscribing to a given event type (see 2.5) or by unsubscribing from it (see 2.6).
All subscriptions may be also temporarily suspended (see 2.7).

2.2 Using the Event Library

Fig. 2 shows the overall architecture of our sample application. BON notation [11] is
used. The arrows represent the client-supplier relationship.

The application is divided into three clusters: event, application, and gui.
The event cluster contains one class, EVENT_TYPE, which abstracts the general
notion of an event type. The application cluster contains the application-specific
class SENSOR. The gui cluster groups GUI-related classes, including
MAIN_WINDOW, APPLICATION_WINDOW, and START.

Class SENSOR models the physical sensor that measures temperature, humidity,
and pressure. The class contains the corresponding three attributes: temperature,
humidity, and pressure, used for recording values read on the physical sensor.

class SENSOR
 feature -- Access
 temperature: INTEGER
 -- Container temperature
 humidity: INTEGER
 -- Container humidity
 pressure: INTEGER
 -- Container pressure
end

Fig. 2. Class diagram of the sample application

A set feature is provided for each attribute, e.g.

 set_temperature (a_temperature: INTEGER) is
 -- Set temperature to a_temperature.
 require
 valid_temperature:
 a_temperature > -100 and a_temperature < 1000
 do
 temperature := a_temperature
 ensure
 temperature_set: temperature = a_temperature
 end

Note the use of assertions — preconditions and postconditions — to ensure correct-
ness conditions. The precondition states that the temperature read by the sensor must
be between -100° and 1000°; the postcondition ensures that the temperature is equal
to the temperature read by the sensor.2

2.3 Creating an Event Type

We need to define an event type corresponding to the change of attribute
temperature in class SENSOR; let us call it temperature_event:

2 For the purpose of the subsequent discussion, in particular in code examples, we will only

use the attribute temperature. Similar code is provided for attributes humidity and
pressure, although it does not appear in the article.

feature -- Events
 temperature_event: EVENT_TYPE [TUPLE [INTEGER]]
 -- Event associated with attribute temperature
invariant
 temperature_event_not_void: temperature_event /= Void

To define the temperature event, we use the class EVENT_TYPE (from the event
cluster), declared as EVENT_TYPE [EVENT_DATA -> TUPLE]. It is a generic
class with constrained generic parameter EVENT_DATA representing a tuple of arbi-
trary types. In the case of temperature_event, generic parameter is of type
TUPLE [INTEGER] since the event data (temperature value) is of type INTEGER.3

2.4 Publishing an Event

After having declared temperature_event in class SENSOR, we should make
sure that the corresponding event is published when the temperature changes. Feature
set_temperature of class SENSOR is extended for this purpose:

set_temperature (a_temperature: INTEGER) is
 -- Set temperature to a_temperature.
 -- Publish the change of temperature.
 require
 valid_temperature:
 a_temperature > -100 and a_temperature < 1000
 do
 temperature := a_temperature
 temperature_event.publish ([temperature])
 ensure
 temperature_set: temperature = a_temperature
 end

The extension consists in calling publish with argument [temperature] (cor-
responding to the new temperature value) on temperature_event. Class
SENSOR is the publisher of the temperature event.

2.5 Subscribing to an Event Type

We need to complete our sample application with other classes that will subscribe to
events published by SENSOR. First, we introduce class APPLICATION_WINDOW in
the gui cluster with three features display_temperature,
display_humidity, and display_pressure. APPLICATION_WINDOW is a
subscribed class: it reacts to the published events by executing the corresponding
routine(s), e.g. display_temperature.

3 This definition complies with the constraint EVENT_DATA -> TUPLE since TUPLE
[INTEGER] conforms to TUPLE [4].

Secondly, we introduce class MAIN_WINDOW, which is in charge of subscribing
the three features of class APPLICATION_WINDOW listed above to the
corresponding three event types (temperature_event, humidity_event, and
pressure_event). In order to subscribe feature display_temperature of
application_window_1 to event type temperature_event, the subscriber
makes the following call:

Sensor.temperature_event.subscribe
 (agent application_window_1.display_temperature (?))

As a result, feature display_temperature of application_window_1 will
be called each time temperature_event is published. The actual argument of
feature subscribe in class EVENT_TYPE is an agent expression4:
agent application_window_1.display_temperature(?). The ques-
tion mark is an open argument that will be filled with concrete event data (value of
type INTEGER) when feature display_temperature is executed [2].
Let’s have a closer look at feature subscribe of class EVENT_TYPE:

subscribe (an_action: PROCEDURE [ANY, EVENT_DATA])
 -- Add an_action to the subscription list.
 require
 an_action_not_void: an_action /= Void
 an_action_not_already_subscribed:
 not has(an_action)
 ensure
 an_action_added:
 count = old count + 1 and has (an_action)
 index_at_same_position: index = old index

subscribe takes an argument of type PROCEDURE [ANY, EVENT_DATA].5
The first formal generic parameter (of type ANY) represents the base type on which
the procedure will be called; the second formal generic parameter (of type
EVENT_DATA, which is derived from TUPLE), represents the open arguments of the
procedure. This procedure will be called when the event is published. It has to be
non-void and not already among listed actions, as stated by the precondition of
subscribe. This means that the same procedure cannot be subscribed more than
once to the same event type. The postcondition ensures that the list of subscribed
actions is correctly updated.

2.6 Unsubscribing from an Event Type

Class EVENT_TYPE provides feature unsubscribe, which allows objects subscribed
to an event type to cancel their subscription. Feature start_actions of class

4 agent x.f(a) is an object representing the operation x.f(a). Such objects, called

agents, are used in Eiffel to “wrap” routine calls [2]. One can think of agents as a more so-
phisticated form of .NET delegates.

5 This argument is an agent.

MAIN_WINDOW uses it to unsubscribe application_window_1 from event type
temperature_event:

Sensor.temperature_event.unsubscribe
 (agent application_window_1.display_temperature)

The implementation of unsubscribe is similar to that of subscribe; it just does
the opposite: unsubscribes the procedure from the event type.

2.7 Additional Features of Class EVENT_TYPE

Besides procedures subscribe, unsubscribe, and publish that we have
already seen, class EVENT_TYPE has three additional features:
suspend_subscription, restore_subscription, and is_suspended.
It is possible to define custom event types by inheriting from EVENT_TYPE and
redefining or adding specific features. This is explained in detail in [9].

3 Architecture of the Event Library

In this section, we discuss the architecture of the Event Library. We also show how
the library fulfills the requirement of space-, time-, and flow-decoupling of the event-
driven paradigm.

3.1 Basic Concepts

The design of the library relies on a few basic concepts: event type, event, publisher,
subscriber, and subscribed object. Let us have a closer look at these notions.

3.1.1 Events and Event Types

The concepts of event and event type are often confused. To reason about event-
driven design, in particular in the object-oriented setting, one should understand the
difference between them.

In event-driven systems, the interaction between different parts of the application
and external actors (such as users, mechanical devices, sensors) is usually based on a
data structure called the event-action table. This data structure records what action
should be executed by some part of the system in response to each event caused either
by another part of the system, or by an external actor. Thus an event is a signal: it
represents the occurrence of some action taken by the user (e.g. clicking a button) or
a state change of some other parts of the system (e.g. temperature change measured
by the sensor). An event type provides the abstraction for events. In other words, an
event is an instance of the corresponding event type. For example, every time the user
clicks a mouse button, an event of event type Mouse_Click is published. In our

sample application, each temperature change caused an event of type
temperature_event to be published.

3.1.2 Publishers, Subscribers, and Subscribed Objects
Publisher is the part of the system capable of triggering events. The action of trigger-
ing an event is called publishing. In the Event Library, this is achieved by calling
feature publish of the corresponding EVENT_TYPE object.

Subscribed objects are notified whenever an event of the corresponding event type
is published. The notification is done by calling the feature of the subscribed object
previously registered within the event type. In the Event Library, the agent mecha-
nism is used for registration and notification of subscribed objects. An object may be
subscribed to several event types at a time, and receive notification from all of them.
Conversely, an event type may have several subscribed objects.

Subscriber is in charge of registering subscribed objects to a given event type. In
the Event Library, this is achieved by calling feature subscribe of the correspond-
ing EVENT_TYPE object. We introduce a separation between the concepts of sub-
scriber and subscribed object. It is important to note that such distinction provides
another level of abstraction in the event-driven design, although in most cases sub-
scribed objects are their own subscribers.

3.2 Implementation

Class EVENT_TYPE inherits from the generic class LINKED_LIST from the
EiffelBase Library [8]. Therefore all features of LINKED_LIST are available to the
class EVENT_TYPE. In a previous version of the Event Library, client-supplier
relation was used instead of inheritance. We opted for the inheritance-based solution
because it is an easy way to implement the subscription list (class EVENT_TYPE can
itself be considered as a list of subscribed agents); it also facilitates future extensions
of the library, e.g. through the redefinition of features in class EVENT_TYPE. On the
other hand, it introduces a potential risk: some features inherited from the class
LINKED_LIST might be misused by the clients of EVENT_TYPE, e.g. a client
having access to an event type could simply clear the list. Therefore, one may want to
hide these features by changing their export status to {NONE}, thus preventing the
clients from using them directly.

3.3 Space-, flow-, and time-decoupling

Event-driven architectures may provide separation of application layers in three di-
mensions: space, time, and flow. Such decoupling increases scalability by removing
all explicit dependencies between the interacting participants. [5] provides a short
survey of traditional interaction paradigms like message passing, RPC, notifications,
shared memory spaces, and message queuing; they all fail to provide time, space and
flow decoupling at the same time. It is interesting to note that, in spite of its simplicity
and small size, the Event Library can provide decoupling in all three dimensions.

Space decoupling. The publisher and the subscribed class do not know each
other. There is no relationship (neither client-supplier nor inheritance) between the
classes SENSOR and APPLICATION_WINDOW in Fig. 2. Publishers and subscribed
classes are absolutely independent of each other: publishers have no references to the
subscribed objects, nor do they know how many subscribed objects participate in the
interaction. Conversely, subscribed objects do not have any references to the publish-
ers, nor do they know how many publishers are involved into the interaction. In our
sample application, class SENSOR has a client-supplier relationship to the class
EVENT_TYPE, but no relationship to subscribed classes. Only class MAIN_WINDOW,
which is the subscriber, knows the publisher and the subscribed objects. In fact, in
the general case, the subscriber does not have to know the publisher; it has to know
the event type to which subscribe an action. Event types are declared in the publisher
class SENSOR; this is why class MAIN_WINDOW has a reference to the class
SENSOR. Had the event types been declared in another class, the subscriber class
would keep no reference to the publisher. On the other hand, declaring the event type
outside the scope of the publisher (SENSOR) might be dangerous: every client having
access to the event type (e.g temperature_event) can publish new events. In
such case, the publisher (SENSOR) would have no possibility to control the use of
that event type.

Flow decoupling. Publishers should not be blocked while publishing events.
Conversely, subscribed objects should be able to get notified about an event while
performing other actions; they should not need to “pull” actively for events. Obvi-
ously, support for concurrent execution is necessary in order to achieve flow decoup-
ling. In our sample application, there is no such support; therefore flow decoupling
does not exist: publisher objects are blocked until all subscribed objects are notified.

The Event Library can ensure flow decoupling, provided that publisher, event type
and subscribed objects are handled by independent threads of control, e.g. SCOOP
processors [7][10]. See section 4 for more details.

Time decoupling. Publishers and subscribed objects do not have to participate ac-
tively in the interaction at the same time. Such property is particularly useful in a
distributed setting, where publishers and subscribed objects may get disconnected,
e.g. due to network problems.

Current implementation of the Event Library does not provide time decoupling.
Nevertheless, it can be easily extended to cover this requirement. The basis for such
extension should be, as in the case of flow decoupling, a support for concurrent and
distributed execution (see section 4).

4 Current Limitations and Future Work

Initially, our goal was to provide a reusable library that implements the Observer
pattern. We soon realized that the Event Library can be turned into something much
more powerful: a simple and easy to use library for event-driven programming. De-
spite its small size, it caters for most event-based applications. Whenever more ad-
vanced features are needed, the library can be easily extended.

An important contribution of our approach is the distinction between the concepts
of subscribed and subscriber objects (see 3.1). Such separation of concepts brings an
additional level of abstraction in application design, thus facilitating reasoning about
event-driven systems.

Future enhancements of the Event Library could include “conditional event
subscription” for subscribed objects only interested in events fulfilling certain criteria
or conditions. For example, objects subscribed to event type
temperature_event may want to be notified of a temperature change only if the
value of attribute temperature is between 25 and 50 degrees.

A support for concurrent and distributed execution is another important extension
of the library. In particular, flow- and time-decoupling cannot be provided without
such support (see 3.3). We plan to base the extension on the SCOOP model [7].
SCOOP provides high-level mechanisms for concurrent and distributed object-
oriented programming. We are currently implementing the model for Microsoft .NET
[10]; other platforms (POSIX threads, MPI) are also targeted.

Acknowledgements

We would like to thank Bernd Schoeller, Susanne Cech, and Vaidas Gasiunas, for
their comments. Bertrand Meyer contributed essentially to the design of the library.
We also benefited from the very helpful support from Julian Rogers from ESI.

References

1. Arslan V.: Event Library, at http://se.inf.ethz.ch/people/arslan/
2. Eiffel Software Inc.: Agents, iteration and introspection, at
 http://archive.eiffel.com/doc/manuals/language/agent/agent.pdf
3. Eiffel Software Inc.: EiffelStudio 5.2, at http://www.eiffel.com.
4. Eiffel Software Inc.: Tuples, at
 http://archive.eiffel.com/doc/manuals/language/tuples/page.html
5. Eugster P. Th., Felber P., Guerraoui R., Kermarrec A.-M.: The Many Faces of
 Publish/Subscribe, Technical Report 200104 at
 http://icwww.epfl.ch/publications/documents/IC_TECH_REPORT_200104.pdf.
6. Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns: Elements of Reusable
 Object-Oriented Software, 1st edition, Addison-Wesley, 1995.
7. Meyer B.: Object-Oriented Software Construction, 2nd edition, Prentice Hall, 1997.
8. Meyer B.: Reusable Software: The Base Object-Oriented Component Libraries,
 Prentice Hall, 1994.
9. Meyer B.: The power of abstraction, reuse and simplicity: an object-oriented library for
 event-driven design, at http://www.inf.ethz.ch/~meyer/ongoing/events.pdf.
10. Nienaltowski P., Arslan V.: SCOOPLI: a library for concurrent object-oriented program-

ming on .NET, in Proceedings of the 1st International Workshop on C# and .NET Tech-
nologies, University of West Bohemia, 5-8 February 2003, Pilsen, Czech Republic.

11. Walden K., Nerson J.-M.: Seamless object-oriented software architecture, Prentice Hall,
1995.

