
Reuse Frequency as Metric for Component Assessment

Till G. Bay1 and Karl Pauls2

1 Eidgen̈ossische Technische Hochschule Zürich,
Chair of Software Engineering,

ETH Zentrum, RZJ 22, CH-8092 Zürich, Switzerland,
bay@inf.ethz.ch

2 Freie Universiẗat Berlin,
Fachbereich Mathematik und Informatik,

Takustr. 9, D-14195 Berlin, Germany,
pauls@inf.fu-berlin.de

Abstract. In component based software engineering, the quality of the produced
software directly depends on the quality of the components involved. As com-
ponent quality measurement is gaining attention, discovery of good quality com-
ponents is an advancing topic. This paper presents a new metric for component
assessment. The contribution of this paper is threefold. First, we define the Reuse
Frequency of a component. We observe how Reuse Frequency correlates with
component quality. Second, we present a Component Assessment System, we use
discover and assess components automatically. Third, we introduce the Compo-
nent Graph we use to relate components to each other. Applying our technique to
a large component repository allows to classify the found components according
to their Reuse Frequency.

1 Introduction

Component orientation is a current trend for creating modern applications that increas-
ingly center around component technologies. Component based software engineering
is applied in almost all areas of application development including distributed systems,
ubiquitous computing, embedded systems, and client-side applications. The concept of
a component includes any unit of modularization ranging from a class file to plug-ins of
an application. In that respect our definition of a component is a superset of Szyperski’s
where he states that a component is an independently deployable executable unit of
composition [1] . Additionally, software reuse is one of the main benefits of component
based software development. More specifically, in most cases it is due to component
based software development that reuse can take place.

The ability to compose a component is related to its ability to express dependen-
cies on other components. Dependencies describe prerequisites for a component that
are needed for it to function. Component dependencies may exist at deployment unit
level, such as a dependency on a resource like a library, or at instance level, such as a
dependency on a service provided by another component instance.

This paper presents an approach to combine discovery of components with the
Reuse Frequency of a component as a means of quality assurance heuristic for compo-
nent assessment. The contribution of this paper is threefold. First, we define the Reuse



2

Frequency of a component. We observe that Reuse Frequency correlates with compo-
nent quality. Second, we present a scalable distributed web crawler we use to isolate
components found in source repositories and to determine their Reuse Frequency au-
tomatically. Third, we introduce the Component Graph we use to relate components to
each other. Applying our technique to a large component repository allows to classify
the found components according to their Reuse Frequency. The underlying assumption
is that the Reuse Frequency of a component directly correlates with a certain degree of
quality of the component and/or reliability, respectively. This assumption is based on
the fact that a high Reuse Frequency of a component does increase the likelihood of the
component to be reused again. Subsequently, this leads to a chain reaction increasing
the overall quality of the component as increased usage usually leads to more feedback,
more specific bug-reports, and reports about the fitness of use of the component. Hence
allowing further improvement and refinement.

2 Reuse Frequency

An important advantage of Component Based Software Engineering is reuse. By reusing
existing solutions to problems can one reduce time to market. Components capture these
solutions in a way they can be reused easier.
Component dependency is a structural attribute of Component Software. Component
dependency represents how a component uses functionality provided by another com-
ponent. Such a relationship yields a functional component dependency. In order to func-
tion a component needs to satisfy the transitive closure of all the components it depends
on. Letc1, c2 be two components. A dependency ofc1 onc2 is denoted byc1→ c2.

Definition 1. Component Rank

r(c) = (1-d) + d(r(c1)/u(c1) + . . . + r(cn)/u(cn))

Where c is a component that used by the components c1. . . cn, u(ci) denotes the number
of components ci depends on and0≤ d≤ 1 is a damping factor.

The Component Rank is derived from Google’s PageRank [2] equation. Just like PageR-
ank Component Rank gives an approximation of a component’s importance or it’s qual-
ity.

Definition 2. Reuse Frequency
To normalize the Component Rank, we use the sum of all Component Ranks in the
Graph. This gives the Reuse Frequency that forms a probability distribution.

f(ci)=
r(ci)

∑n
k=1 r(ck)

A component has a higher Reuse Frequency if many components depend on it, or
if some components depend on it that have a high Reuse Frequency. Intuitively a com-
ponent that is used by many other components has a higher probability of being reused



3

again. Also components that are used by only few other components, that are highly
reused get a higher Reuse Frequency. If a component was not of high quality a highly
reused one would probably not depend on it. The recursive propagation of Reuse Fre-
quency handles both dependencies (being used by an important component and being
used by many components). Additionally, the Reuse Frequency denotes the importance
of a specific component for other components that depend on it. More specific, if a com-
ponent enables another component to function since it satisfies the other component’s
only dependency it will gain a relatively higher Reuse Frequency than a component that
is only a part of a hole set of other components that are needed to satisfy the dependen-
cies of yet another component. Therefore, our notion also covers the likelihood that a
specific component can be useful in a certain environment (i.e., enable as much other
components to function as possible).

3 Component Assessment System

To address the challenges involved in assessing components we built a Component
Graph that uses the above mentioned Reuse Frequency. By querying the Component
Graph a user can get information on how extensively a specific component is used by
other components. The user can also find out what other components the component
itself depends on and uses. And finally the Component Graph shows what other com-
ponents are in use in systems that use the component in question. Figure1 illustrates
these three queries a user can ask the Component Graph.

Fig. 1.Component Graph showing three possible queries

The Component Graph is the core of the Component Assessment System we use
to improve component assessment. Building the annotated Component Graph involves
finding the information about the components, preprocessing it and storing it in the
Component Graph. In Figure2 the overview of the Component Assessment System we
use is shown.

3.1 Code Crawler

The first part of the Component Assessment System is the Code Crawler. The Code
Crawler addresses the first two issues mentioned above: The finding, processing and



4

storing of all the information we can find about a component while only looking at its
source code or meta information. The Code Crawler is a fully configurable, scalable
and distributed web crawler. It can crawl the web for files containing source code of
any given programming language. By adding filters for specific source code or meta
data files one can retrieve semantic information about the component to which a file be-
longs. The Code Crawler can be configured to crawl source code repositories that can be
reached via a URL, or it can also query specialized component repositories like Eureka
[3]. Again a configurable filtering mechanism allows to use any source or component
repository. Assessing components should not be limited to one component technology
and we decided to design Code Crawler to be able to talk to component repositories
but to also allow crawling the web for component related information (i.e., source files
available in source code repositories). This separation is shown by the redirection of
the output of Code Crawler into different component meta data containers after the
crawling - see Figure2.

Fig. 2.Component Assessment System Overview

Crawling Source Code RepositoriesThe current implementation focuses on ViewCVS
[4], as it is the most widely-used script to publish a source code repository on the web.
The Code Crawler stores the crawled and filtered source files in a database. The database
is indexed with the Apache Jakarta Lucene library [5] and can be efficiently searched
for keywords. Our component assessment approach focuses on information that can be
found in a component’s source code. However it is also possible to retrieve relevant data



5

from components that don’t make their code available to the public. See Section6 for
suggestions how to handle such components.
For every file type that we download during a crawl, we specify the format of the depen-
dency relation. In addition to the filters that discriminate source files of one program-
ming language from source files from another one, we define a pattern of the depen-
dency relation. If we take the filter that crawls all files ending with *.java, it is straight
forward to list all the import statements or the fully qualified class names, that exist in
one of the crawled Java files. We identify component dependencies from the collected
import statements and the found fully qualified class names.

Component Repositories Component repositories allow communication through an
API they provide. Therefore we don’t need to crawl them to find information about
components. The name Code Crawler is misleading in a situation where we use an
API to communicate with a component repository. Nevertheless we decided to include
that part of the Component Assessment System in the Code Crawler as well, as it also
falls into the information collection phase. See Figure2 to see how we store the found
information in different component meta data containers for the two different cases.

3.2 Component Graph

Like the structure of Html documents that are linked to each other, components depend-
ing on each other span a directed graph. The component dependencies can be viewed
synonymous to the hyper-links in Html documents. See Figure1 for an illustration of an
ensemble of components that use each other - the resulting graph looks similar to what
we know from linked Html documents. The analogy is not complete - it is for example
very common to have cycles for the Web Graph while it is seldom for the Component
Graph.

Definition 3. Component Graph

CG = (N,E)

where each node n∈ N is a component and each edge e∈ E is a dependency between
two nodes.

See Figure1 for an illustration of a very small Component Graph.

Weighting the Nodes After constructing the Graph with Components as nodes and
Component dependencies as edges, the Reuse Frequency of the components is cal-
culated. The calculated Reuse Frequency is stored along with the Graph nodes. The
Component Graph is now complete and can be used for assessing components.



6

4 Usage Scenario

This section presents how we applied our Component Assessment System to a concrete
component repository. The next paragraph briefly introduces the three used technolo-
gies namely OSGi [6], Eureka [3], and Gravity [7], followed by the case-study.

The Open Services Gateway Initiative (OSGi) framework and service specification,
was defined by the OSGi Alliance to deploy, activate, and manage service-oriented ap-
plications dynamically. The OSGi framework sits on top of a Java virtual machine, is an
execution environment for services. It defines a unit of modularization, a bundle, that is
both a deployment and an activation unit. Physically, a bundle is a Java JAR file contain-
ing a single component. After installing a bundle is installed, it can be activated if all of
its Java package dependencies are satisfied. Package dependency meta data is contained
in the manifest of the JAR file. Bundles can export/import Java packages to/from each
other - these are deployment-level dependencies. After a bundle is activated it can pro-
vide or use service implementations of other bundles within the framework. A service
is a Java interface with externally specified semantics. When a bundle uses a service,
an instance-level dependency on the provider of that service is created. Technically, the
OSGi service framework can be boiled down [8] to a custom and dynamic Java class
loader and service registry that is globally accessible within a single Java virtual ma-
chine. The custom class loader maintains a set of dynamically changing bundles that
share classes and resources with each other and interact via services published in the
global service registry.

Eureka is a network-based resource discovery service supporting deployment and
run-time integration of components into extensible systems using Rendezvous’ DNS-
based approach [9]. Publishing and discovery of components can be performed in both
wide-area and local-link (i.e., ad-hoc) networks.

Figure3 is a conceptual view of the Eureka architecture. Each Eureka server has
an associated DNS [10] server, whose resource records the Eureka server can manipu-
late. An Eureka server has a client API, that allows clients to publish components, dis-
cover available components and discover other Eureka servers. Component discovery
occurs in the DNS/Rendezvous cloud of the Figure representing the unified local-link
and wide-area networks accessible through mDNS [11] and standard DNS respectively.

Gravity [7] is a research project investigating the dynamic assembly of applications
and the impact of building applications from components that exhibit dynamic availabil-
ity, i.e., they may appear or disappear at anytime. Gravity is built as a standard OSGi
bundle and provides a graphical design environment for building application using drag-
and-drop techniques. Using Gravity, an application is assembled dynamically and the
end user is able to switch at anytime between design and execution mode. Eureka was
integrated into the Gravity user interface to enable end user discovery of components
for integration into his running application. Figure4 Gravity’s user interface with the
context menu, that is used to find components.

4.1 Component Discovery and Deployment Case Study

As mentioned above, the Component Assessment System can communicate with com-
ponent repositories of a specific component technology (see Figure2). For this case-



7

Fig. 3.Eureka Architecture

study we communicate with an OSGi component repository. The discovered compo-
nents are then fed back into an Eureka network, annotated with their Reuse Frequency.
This allows two things: First, we can also feed other OSGi components that we find
during a crawl into Eureka and second we get an ordering of the displayed components
in Gravity.

Eureka as a Component Meta Data Providerallows to extract dependencies of discov-
ered Bundles. Additionally, existing repositories can also be queried using the Eureka
API. In case that an entry point to such a repository is discovered during a crawl, the
Component Assessment System queries and retrieves information about published bun-
dles and their dependencies. In the next step, the Component Graph is created showing
a network of bundles connected by their dependencies. Since our Component Assess-
ment System is component model agnostic deployment and instance level dependencies
can be treated equally in the resulting view.

Component Discoveryis enabled via a special filter integrated into the Component As-
sessment System and applied in case a Bundle is discovered. Subsequently, the filter
uses Eureka to extract the dependencies of the Bundle while storing the meta data in an
Eureka controlled component repository. The component is now available to clients via
Eureka using this repository. Additionally, we write the Reuse Frequency the compo-
nent’s meta data.



8

Fig. 4.Gravity showing a list of discovered bundles

Reuse Frequency used as Order Relationin OSGi based applications has been evalu-
ated using the Eureka enhanced Gravity. As mentioned above, Gravity provides a re-
source discovery that enables the user to extend her application at runtime. For example,
an editor component could be extended by a spell-checker or a buffer switcher. More
specifically, the dependencies of the underlying component serve as a means of filtering
the suggested components. In a situation where the amount of suggested components is
small the order of the suggestions has low importance. If many components are found,
that resolve a specific dependency, Reuse Frequency is used to order the displayed sug-
gestions. The order of the suggestion list provides the user with additional information.
First, it is likely that by choosing one of the more prominent suggestions (i.e., one with a
higher Reuse Frequency) over a less prominent one with a similar or equal functionality
(e.g., two different spell-checkers are available) the one with the higher importance or
quality is chosen. Second, by following the former approach the assembled application
will be more extendable since heavily reused components will be added and therefore
more suggestions will become available.

4.2 Component Graph Case Study

At the moment two free OSGi R3 [12] framework implementations are available. Both
projects provide a small component repository. Both contain the implementation of the
OSGi R3 service specification. Oscar [13] from Richard S. Hall is part of ObjectWeb
[14] and Knopflerfish [15] is based on the Gatespace GDSP OSGi framework. In or-
der to present the Component Graph and to intuitively validate the assumption that the



9

Fig. 5.Component Graph of Oscar’s Bundle Repository

visualization of component dependencies combined with the calculation of their Reuse
Frequency allows reasoning about importance or quality issues both repositories have
been inspected. First we published the components of each repository under a differ-
ent scope in Eureka. Subsequently, our Component Assessment System retrieved the
information about the components together with their dependencies from Eureka and
created a Component Graph for each of the two repositories. Figure6 shows the vi-
sualization of Knopflerfish’s repository while Figure5 shows the visualization of the
Oscar repository. Currently we are not able to draw a conclusion about a component’s
quality looking at his Component Graph. However, future work will include empirical
analysis of other repositories and focus on conclusions that can be derived directly from
the visualizations or the calculated Reuse Frequencies respectively.

Figure 7 shows a subset of the Oscar repository. Table1 shows the Reuse Fre-
quencies of the Bundles in the Component Graph shown in Figure7 calculated using
a damping factor of 0.85. Due to the Reuse Frequency of the example one can reason
about the importance of the participating components. Furthermore, information about
the likeliness that a component may function because all of its dependencies are satis-
fied is conveyed. The two components with the highest Reuse Frequency (JMX Bundle
and Service Introspector) are self-contained (i.e., deployable without any assumptions
about the availability of other components). One step down the hierarchy the MBean



10

Fig. 6.Component Graph of Knopflerfish’s Bundle Repository

Factory can be found - it has dependencies on the two aforementioned Bundles. At last
the Service Notifier depends on all of the other inspected components and has the lowest
rank, because no other components depend on it. This observations empirically support
the intuitive assumption that the Reuse Frequency can be used as an order relation as in
our Gravity case-study. Additionally, the given order indicates which component should
be of higher quality. A high Reuse Frequency indicates that a larger amount of other
components depends on a component and a developer should thus pay more attention
to the quality of such a component.

Apart from Oscar and Knopflerfish a third free OSGi implementation exists sup-
porting underlying the last release of eclipse [16]. Eclipse is a kind of universal tool
platform, an open extensible IDE for anything and nothing in particular as stated on
their web-site. The interesting thing to note however, is that eclipse uses it’s own OSGi
framework implementation as a plug-in mechanism and provides the possibility to dis-
cover, deploy, and dynamically integrate plug-ins (i.e., Bundles) from remote sources.
The entry point for the remote repositories is the eclipse web site. Future Work will use



11

Fig. 7.Partial Component Graph of Oscar’s Bundle Repository

Component Name u(ci) r(ci) f(ci)

Service Notifier 0 0.15 0.17
MBean Factory 1 0.19 0.21
JMX Bundle 2 0.27 0.31
Service Introspector 2 0.27 0.31

Table 1.Reuse Frequencies of the Component Graph shown in Figure7, d=0.85

the presented Code Crawler in order communicate with eclipse’s bundle repository and
make this huge repository available via Eureka. A Component Graph created using all
eclipse plug-ins that can be found this way promises to be an overwhelming source for
empirical validations of our assumptions.

5 Related Work

Automatic component discovery is closely related to other search and matching prob-
lems such as: text document matching, web search and web service matching. Compo-
nent assessment on the other hand is related to software quality assurance. Additionally,
component repositories like OBR become interesting.

Text Document Matchingand classification is a well studied problem in information re-
trieval. Popular solutions to the problem are based on term frequency analysis [17], [18],
[19] In our case term frequency can be used once we extend our automatic component
discovery infrastructure to also include component documentation into the assessment
process. However it will be a supplementary information source to the dependency re-
lations that we are able to extract from the source code or the component repositories.



12

Web Searchinspires techniques proposed in this paper. We compare component ar-
chitectures to the world wide web. We suggest addressing the component searching
problem specifically by using component specific information. Web search should nev-
ertheless influence component search since for example component documentation is
normally deployed on the web.

Web Service MatchingIn Woogle [20] the authors propose unsupervised matching of
web services at the operation level. Web services comply to the notion of a software
component and the technologies shown for matching on the operation level can con-
tribute to the information stored in the Component Graph.

OBR The oscar bundle repository [21] is an incubator and repository for OSGi bundles.
OBR provides a repository of useful and/or didactic bundles that can be easily deployed
into existing OSGi frameworks. It promotes a community effort around bundle creation
by increasing the visibility of individual bundles. OBR provides simple access mecha-
nisms for the bundles in the repository. Consequently, there are multiple ways to access
the repository bundles namely, web access (via a web-site), programmatic access (via
a provided OSGi service) for dynamically deploying repository bundles and interactive
access (using the Oscar Shell).

6 Future work and Conclusion

As mentioned before there are a open issues where development of our system contin-
ues. In the following we would like to list suggestions for each one of them. We also
mention how the system can be extended to become even more general.

Closed source componentsOur system should be able to access and use the depen-
dency information of closed components. Closed components are components that do
not make their source code available on the web.
The strongest argument why getting the information will always be possible is that it is
in the nature of components to advertise how it can be composed with other components
and what requirements need to be satisfied in order to do so. Therefore the dependency
information will also be visible to a tool that is trying to retrieve it automatically. It will
merely be an issue of finding out what has to be done in order to access that information.
Once the retrieval method is found it will remain an implementation issue to integrate
it into the Code Crawler or some other automatic information gathering system.

For example the meta data available with .net assemblies can be used to gather
information about component dependencies. The documentation of components can
also be taken into account, so that the component relationships described there can
serve to enrich the data in the Component Graph.

Clustering and Information RetrievalThe second open issue is the clustering of the
dependency relations. Since we want to operate on a coarser level of granularity, than
the one of a simple class file - we will need to cluster the found dependency relations.
Clusters of similar package names - getting back to the previously mentioned example



13

with Java files indicate that all the files belong to the very same project, library or com-
ponent.
Smart information retrieval algorithms would also allow to combine documentation
search with component search - leading to a general search engine that could list the
most widely-used components for a certain functionality.
Bridging the gap between our technology and Woogle’s argument level operation match-
ing algorithms it would be possible to find more important components to fulfil a spec-
ified purpose. More precisely it would be possible to find the most widely-used imple-
mentation of a specific API.

Extension - User InterfaceProviding a user interface that allows searching the Compo-
nent Graph for other users of a certain component and for related components will be a
very important extension of our system. The challenges will include the following:

– Visualization of component dependencies.
– Visualization of component quality attributes.
– Providing a user-friendly search interface.

Extension - Google APIAs mentioned above it will be very important to also take a
component’s documentation into account when trying to assess it’s quality or fitness for
a purpose. Most of the documentation developers use nowadays is available online. The
most natural step is therefore to start integrating information we can access through the
Google API into our Component Assessment System.

Conclusion In this paper we presented how Reuse Frequency can be used for compo-
nent assessment. Together with the Component Assessment System and the Compo-
nent Graph and the Reuse Frequency calculation it contains, our method can be applied
to many different component technologies. Using Eureka as a concrete example we
demonstrated how Reuse Frequency establishes an order on the components involved
and can be used to compare the importance of different components. The possibility
to generalize our method to other component technologies or component information
of different granularity makes it attractive for general component assessment. More as-
sessments on large component repositories will show how good Reuse Frequency is as
a measure of user perceived component quality.

References

1. C. Szyperski: Component Software: Beyond Object-Oriented Programming. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA (1998)

2. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer
Networks and ISDN Systems30 (1998) 107–117

3. Karl Pauls and Richard S. Hall: Eureka - A Resource Discovery Service for Component
Deployment. In: Proceedings of the 2nd International Working Conference on Component
Deployment (CD 2004). (2004)

4. ViewCVS: ViewCVS - Official Web Site (retrieved October 2004)http://viewcvs.
sourceforge.net.

http://viewcvs.sourceforge.net
http://viewcvs.sourceforge.net


14

5. Jakarta Lucene: Jakarta Lucene - Official Web Site (retrieved October 2004)http:
//jakarta.apache.org/lucene/.

6. OSGi Alliance: OSGi Alliance. Official Web Site,http://www.osgi.org (2004)
7. Richard S. Hall and H. Cervantes: Gravity: Supporting Dynamically Available Services in

Client-Side Applications. In: Poster paper in Proceedings of ESEC/FSE 2003. (2003)
8. Richard S. Hall and H. Cervantes: An OSGi Implementation and Experience Report. In:

Proceedings of IEEEConsumer Communications and Networking Conference. (2004)
9. Apple Computer, Inc.: Rendezvous. Official Web Site,http://developer.apple.com/

macosx/rendezvous/ (2004)
10. P. Mockapetris: Domain Names - Concepts and Facilities. RFC 1034 (1987)
11. S. Cheshire and M. Krochmal: Multicast DNS. Internet Draft,http://files.

multicastdns.org/draft-cheshire-dnsext-multicastdns.txt (2004)
12. The Open Services Gateway Initiative: OSGi Service Platform. IOS Press, Amsterdam, The

Netherlands (2003) Release 3.
13. Oscar Community: Official Web Site (2004)http://oscar.objectweb.org.
14. Object Web: Official Web Site (2004)http://www.objectweb.org/.
15. Knopflerfish OSGi: Official Web Site (2004)http://www.knopflerfish.org/.
16. The Eclipse Foundation: Eclipse Platform - Technical Overview. Technical report, Object

Technology International Inc. (2003)
17. Scott Cost and Steven Salzberg: A Weighted Nearest Neighbor Algorithm for Learning with

Symbolic Features. Machine Learning10 (1993) 57–78http://citeseer.ist.psu.edu/
cost93weighted.html.

18. Larkey, L.S., Croft, W.B.: Combining classifiers in text categorization. In Frei, H.P., Harman,
D., Scḧauble, P., Wilkinson, R., eds.: Proceedings of SIGIR-96, 19th ACM International
Conference on Research and Development in Information Retrieval, Zürich, CH, ACM Press,
New York, US (1996) 289–297

19. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization.
In Fisher, D.H., ed.: Proceedings of ICML-97, 14th International Conference on Machine
Learning, Nashville, US, Morgan Kaufmann Publishers, San Francisco, US (1997) 412–420

20. Xin Dong et Al.: Simlarity Search for Web Services. In: Very Large Data Bases. (2004)
582–599

21. Richard S. Hall: Oscar Bundle Repository - Official Web Site.http://oscar-osgi.sf.
net (2004)

http://jakarta.apache.org/lucene/
http://jakarta.apache.org/lucene/
http://www.osgi.org
http://developer.apple.com/macosx/rendezvous/
http://developer.apple.com/macosx/rendezvous/
http://files.multicastdns.org/draft-cheshire-dnsext-multicastdns.txt
http://files.multicastdns.org/draft-cheshire-dnsext-multicastdns.txt
http://oscar.objectweb.org
http://www.objectweb.org/
http://www.knopflerfish.org/
http://citeseer.ist.psu.edu/cost93weighted.html
http://citeseer.ist.psu.edu/cost93weighted.html
http://oscar-osgi.sf.net
http://oscar-osgi.sf.net

	Reuse Frequency as Metric for Component Assessment
	Till G. Bay (ETH Zürich), Karl Pauls (Freie Universität Berlin)

