
By students, for students: a production-quality multimedia
library and its application to game-based teaching

Till Bay
Chair of Software Engineering

ETH Zurich
8092 Zurich, Switzerland

+41 44 632 76 33

till.bay@inf.ethz.ch

Michela Pedroni
Chair of Software Engineering

ETH Zurich
8092 Zurich, Switzerland

+41 44 632 76 84

michela.pedroni@inf.ethz.ch

Bertrand Meyer
Chair of Software Engineering

ETH Zurich
8092 Zurich, Switzerland

+41 44 632 04 10

bertrand.meyer@inf.ethz.ch

ABSTRACT

The attractive idea of using game development for teaching
programming can only meet student expectations and modern
software engineering requirements if it uses advanced multimedia
technology, at the level of the best commercial solutions. In
implementing novel pedagogical techniques, we have developed a
powerful multimedia library, with major contributions from
students, and used it to offer games as course projects. More than
150 games have been developed, many of very high quality, and
publicly available for everyone’s enjoyment. This experience
combines advanced software development with student
participation, strong O-O software engineering principles, and the
excitement of one of the coolest areas of technology.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – curriculum. D.2.2, D.2.13 [Software
Engineering]: Design tools and techniques, Reusable software.
H.5.4, H.5.5 [Information Systems]: Hypertext/Hypermedia,
Sound and music computing — systems.

General Terms
Theory, Software engineering.

Keywords
Curriculum design, knowledge modeling, course comparison.
object-oriented programming, game programming.

1. GAMES IN THE CURRICULUM
Today’s students are increasingly game-savvy; computer games
are among the top three positive factors that make them consider
computer science as a major [4]. CS education should not only
acknowledge this phenomenon but capitalize on it. This can only
succeed if we meet the quality expectations of students used to
increasingly powerful graphics and multimedia.

Starting with the very first CS course, introductory programming,
our teaching fundamentally relies on games, especially game
projects, to introduce software concepts and let students apply
them to large examples. As a key component of this strategy we
have developed a state-of-the-art multimedia library, EiffelMedia
[3]. Started in 2004 as a single student project to support the city
simulation software Traffic used in our introductory course ([15]
and fig. 1), the library has progressively expanded into a major
software project, now reaching 500,00 lines of code, but still
maintained by students. We use it extensively in our courses, both
introductory and intermediary. We feel that the library fills the
needs of game programming in an educational environment, a
claim backed by more than 150 student-implemented games to
date, some of industrial grade and all publicly available (like
EiffelMedia itself) in both source and binary.

Figure 1: City3D Traffic example application

Section 2 is an overview of the library. Section 3 explains how we
use it for teaching. Section 4 presents a few student games.
Section 5 describes our open-source development process
involving students. Section 6 presents an evaluation and outlook.

2. KEY FRAMEWORKS

EiffelMedia consists of a number of frameworks, some of which
will now be presented. Each description provides an overview and
a screenshot of an example application, making it clear in which
part of game programming the framework can help.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. 2.1 2D graphics
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00. The core framework is for displaying two-dimensional image

data. EiffelMedia supports most image file formats and has a

pixel manipulation API, as well as built-in alpha channels that
allow adjusting opacity or even making portions of the screen
transparent. Loading images alone is not enough for gaming; the
framework also supports displaying so-called sprites: time-based
sequences of flip-through images used for example to animate the
movement of a player within a game.
To handle and display text, font support is available. This
includes not only bitmap fonts, which require generating one
bitmap image per font size (fig. 2) but also TrueType fonts, which
remove this limitation and support seamless scaling, anti-aliasing
and transparency.

Figure 2: Bitmapfont bitmaps for three different font sizes

A collection of geometric figures including polygons, circles and
lines completes the 2D API. It is possible to perform drawing
operations without loading the data from image files. All
rendering of geometric figures is anti-aliased. The object model
for the graphical artifacts allows combining them in a hierarchical
way and manipulating entire sets at one time. The standard
viewport into which EiffelMedia renders is an entire program
window, but it is possible to switch to full screen or render into a
widget of EiffelVision [5], the platform-independent widget
toolkit of the Eiffel [6] platform. To partition the application into
different logical parts, EiffelMedia provides scenes. In the context
of games, these scenes can be understood as levels.
Soon after the first jump'n'run games had been developed, users of
the library asked for a physics engine that would provide a
general solution to the problem of applying forces to the
movement of graphical objects. The resulting framework goes
further than this goal; since different games may require different
kinds of physics, it actually provides a scriptable physics engine,
which can be configured for different force directions, different
force fields and varying forces. The project that contributed this
engine also showed how difficult it was to generalize game
developers' needs; as a result, physics manipulation for the 3D
part of the library is left to individual developers. The project
leaders propose a sample 3D physics engine as inspiration, but no
generic implementation as for the 2D case.

Figure 3: “HelloWorld” example application

Fig. 3 shows the small sample application of the 2D framework: a
simple Hello world consisting of a displayed bitmap image.

Figure 4 is from an application that demonstrates the use of the
2D drawing primitives and a zooming viewport.

Figure 4: Drawable example application

2.2 Sound
An image is worth a thousand words, but in gaming the mood of
the game is also conveyed by the soundtrack. Sound was only
added in the fourth version, more than a year after the first public
release. Until then, it had been the most urgently requested
addition on the forums. It is interesting to see how much more fun
a game with good sound is.
Game developers can choose from a wide range of possibilities to
add sound. As with image formats, the library supports the most
popular binary audio file formats. The API for playback supports
mixing different tracks, adjusting sound volume, and grabbing
sound data for use as input for visual sound renderings. A mini-
framework is also available to manage sound filters. As with the
2D-physics engine, a generalized framework with a simple
interface is available for the more common sound needs of a game
(playback of a background tune with short mixed-in sound effects
underlining actions happening in the game).
A small and easily understandable example shows the basic use of
the sound API; its code is just

if Audio_subsystem.is_enabled then
 -- Open ixer with frequency 44.1 kHz m
 Audio_subsystem.mixer.open
 -- Initialize with one single file
 creat player.make_with_file ("wish_you_were_here.ogg") e
 player.set_repeat (true)
 player.play
end
A full application — an Audio Mixer, fig. 5 — is also available,
demonstrating the full range of possibilities.

Figure 5: Audio Mixer example application

2.3 Collision detection
Collisions are one of the primary sources of interactions between
game objects. For collision detection it soon became clear that it’s
not enough to use bounding boxes based on outer edges of
colliding objects. In the TinyToys student game (fig. 7), for

example, cars race each other on a track that contains obstacles
which cannot possibly be approximated by bounding boxes.

Figure 6: Collision detection example application

Figure 7: TinyToys, a racing game

The immediate enhancement was to switch to polygon-based
collision detection. It still requires manual definition of the
polygons for all cases involving concave polygons, but this is
supported by the polygon editor illustrated in figure 8.

Figure 8: Polygon Editor

2.4 3D graphics
With Direct3D [9] and OpenGL [14], the industry provides
powerful back-ends for rendering three-dimensional worlds.
EiffelMedia is platform-independent and therefore builds its 3D
support on OpenGL. The EiffelMedia 3D framework supports
loading 3D polygon mesh models from different vendors, and
texturing and lighting these models. At the moment, collision
detection in 3D is managed using intersecting spheres; this
appears sufficient.
Manipulating objects in 3D-space requires suitable and ready-to-
use data structures, such as vectors and quaternions, all with
implementations of cameras and rendering pipes that handle the
fast display of complex structures. The library provides a number
of 3D primitives including spheres, boxes, triangles and cylinders,
complemented by such advanced features as procedural textures
and support for the OpenGL Shading Language (GLSL) [1].
Using the object-oriented 3D framework has enabled student
projects to implement games such as Conquer (figure 9) or
AntWorld (figure 10), which although all each implemented in a

few weeks reach a level of 3D quality that withstands the
comparison with commercial games.

Figure 9: Conquer, a world conquering game similar to Risk

Figure 10: Day and night in AntWorld

2.5 Networking and high-score tracking
Just like sound, the ability to interact with other players adds a
key dimension to today's games. EiffelMedia’s networking
framework illustrates our view of a ready-to-use infrastructure,
letting students and other game authors go in little time from
localhost to the full World-Wide Web. Starting with TCP and
UDP support, it moves on to sample implementations of HTTP
and other protocols useful in network gaming. Again the API is
simple and contains a generalized multiplayer example.
EiffelMedia adds to this a high-score-publishing framework, to
share the outcome of gaming sessions. One of the requirements
was to be general enough to support various game modes.
Ranking in games can vary from very simple lists, where points
are listed in decreasing order, to games where players can form
clans or teams; the framework supports this full spectrum.

2.6 Widget toolkit

Figure 11: Widget Browser example application, showing 3D

Sierpinsky's pyramid in OpenGL widget

One of the reasons for EiffelMedia's feature richness is that the
development process allowed immediate integration of user
feedback. As an example, when the creators of Conquer (figure 9)
encountered the need for buttons and other widgets, they
implemented what is now the Widget Toolkit, themable and well
integrated with the rest of the library. The API is inspired by
existing toolkits such as EiffelVision2 [5] and native ones such as
Cocoa [2] , GTk [8] and GDI [10].
The toolkit includes a large set of themable widgets—everything
from the radio button to the split-screen widget; some elements
such as a Rich-Text widget, not needed so far, remain to be
added. Fig. 11 shows the widget example application with a
navigation panel where different widgets can be investigated. The
selected widget illustrates the component for 3D object rendering.

2.7 Other features
Game programming requires many other facilities, which are
available in EiffelMedia but cannot be fully described in the
scope of this article. We’ll list only a few. EiffelMedia supports
user interaction through a wide variety of input devices:
keyboard, mouse, joystick, CD-ROM, DVD. It includes a
framework for serializing object structures (e.g. for save-games);
a level management mechanism; a resource-loading framework;
an error reporting facility; video playback for intro and outro
game sequences.

3. USES IN THE CLASSROOM
Our use of games is part of a comprehensive approach to teaching
introductory programming, based on novel concepts of “inverted
curriculum” and “outside-in” strategies and supported by a
textbook in progress [12]. The approach emphasizes strong
software engineering principles, including some formal aspects, to
prepare our students for the IT world of the future; but it is also
deeply rooted in the practice of software development and gives a
key role to active student participation. One of its characteristics
is that it presents students, right from the start of the first-semester
introductory course, with considerable amounts of software, both
existing libraries and some, like Traffic, developed specifically
for this purpose. This pursues several objectives: providing large
amounts of inspiration (since programming is learned in part by
imitation anyway, better offer good software for imitation);
showing the benefits of abstraction, information hiding and
Design by Contract; enabling students to develop their own
exciting applications.
In this last goal the results have exceeded all our expectations. We
started asking students to produce games as final project for the
2nd-year Software Architecture course in 2005; the results were so
impressive that we gave a similar assignment for the first-
semester introductory programming course the next year. In
groups of 2 to 4, students produced games, in each case over a
period of only 6 to 8 weeks at the end of the semester.
We encourage students to choose partners of equal proficiency
and let them freely choose the game to produce1. This creates a
motivational boost and results in a mastery effect that proves to be
highly beneficial for the learning process. We chose to trust the
creativity and good sense of the students, and experience showed

1 As ETH was celebrating its 150th anniversary in 2005, the rule, broad

and not strictly enforced, was that games have some connection to ETH,
Switzerland, the year 1855 or the number 150.

this to have been the right decision. Many expended considerable
effort, far more than required; in fact, because of the specific rules
at ETH (where student assessment for the first two years is based
solely on an end-of-year exam), the projects are not even graded.
We have been repeatedly amazed by the seriousness of the work,
including (as we of course request) design documents and user
documentation. Along with the fun, students understood that these
were serious software engineering endeavors. Some projects are
professionally delivered, with such trappings as an installation
(.msi) package. In the end, more than 150 different running games
have been developed over these two courses; several dozen are
available for public enjoyment at games.ethz.ch [7].
Particularly gratifying is that surprisingly good games were
created not only by the whiz-kids but also by average students.
We believe that the attraction of games combined with relentless
emphasis of the best software engineering principles is one of the
best teaching vehicles, and profits both the students who were
programming-savvy before their studies and those who are new to
the field but strong in other areas, for example mathematics.

4. EXAMPLE GAMES
The following are three examples of student-created games,
available from the site.

4.1 X Adventure Engine

Figure 12: X Adventure Engine

X Adventure Engine (XAE) was the first game to blew
everybody's mind, in the first “Software Architecture” project.
The four students wrote not just a game but a game engine that
can load adventure games described in XML. The viewer
application loads the game files and renders panorama images on
a cylindrical stage where the user navigates, picks up objects and
talks to people. It supports animation, as well as loading and
saving of playing status; the credits section shows amazing 3D
animations. XAE comes with an example game entitled
“Tomorrow is another day”. The game’s goal game is to decode
an encrypted USB stick to find an algorithm that converts
frequent-customer points from a well-known Zurich supermarket
into credit points for your studies. In the process you may query
fellow students (from that year) as well as some ETH professors,
appearing in effigy throughout the game, for help according to
their expertise, e.g. cryptographic algorithms. There are many
more creative ideas, all invented (as well as the story) by the
students, who created all the images and convinced students and
professors to appear in the game. Playing the game through takes
approximately an hour.

http://games.ethz.ch/

4.2 Ebouncy

Figure 13: Different levels in Ebouncy

Ebouncy has been responsible for many students spending time
gaming rather than studying. The plot is simple: a laser splits the
game area into two parts, with hostile objects bouncing around to
make this difficult. The higher the (unlimited) level, the more
hostile objects. Power-ups, extra-lifes and other candy can make
life easier. Enhancing the game are a cool soundtrack and the
connection to a high-score server. The game is visually very
attractive, with considerable attention devoted to graphics effects.

4.3 AntWorld
AntWorld (fig. 10), based on the latest version of the library,
features the most advanced 3D graphics and never fails to impress
with its graphic sophistication. The game idea is simple: the
gamer controls an ant population that tries to spread on a planet.
The students came up with mouse-driven 3D navigation and
implemented different perspectives for looking at the world.

5. DEVELOPMENT PROCESS
The library is maintained as an open-source project with the help
of numerous students. The most important factor in its
development has been students first using it for their game
projects, then contributing. They quickly noticed whatever was
missing for their games; after the courses, many came back and
naturally started to add the missing elements. This has led to a
fast and effective development process. The result is feature
richness—mini-frameworks have come to life that the project
owners would never have imagined—and the reconciliation of
different visions of what the ideal multimedia library should be.
Such a process also has risks. The software grows organically and
may veer into directions that need to be abandoned later. The key
to success has been to enforce thoroughly on everyone involved—
students and assistants— a small set of critical design principles.

5.1 Design principles
Not only does EiffelMedia provide a completely object-oriented
multimedia API, with extensive use of genericity, polymorphism
and dynamic binding, it also relies on a strong O-O approach for
its own design, including Eiffel-specific techniques, notably
Design by Contract [11]. This yield a library that is easy to
understand and to maintain. Another principle is that every part of
the API must provide, from the start, a very simple example
showcasing its use. Library and examples evolve together: a
student who improves the audio API must update all the related
examples. We encourage every team also to provide a larger
application—such as the mixer of fig. 5 for the sound API—
demonstrating the full power of their API. We think that this idea
of a small and a big demo to drive the process is of interest as a
general principle of library design.

Another principle (initially neglected, which caused considerable
later work) is: no use of any copyrighted material. It’s by
imposing this rule strictly, not only on the library but on all
applications built with it, and by checking its observance, that we
were able to publish all the projects on the Web [7].

5.2 Metrics
EiffelMedia and the EiffelMedia community have grown
substantially since the library was started two years ago. Some of
the relevant figures are: one permanent (but part-time) developer
(the first author, who was the original student behind the first
version); 30 developers in total over two years of development;
2000 posts on mailing list; 12,300 CVS check-ins; 1350 classes;
500,000 lines of code; more than 150 applications.

5.3 Awards
While having teams of students develop the next version of the
library, we participated in two iterations of a programming
contest, the Eiffel Struggle [13], organized by an independent
consortium; EiffelMedia won the 15th price in 2004 and 2nd price
in 2005. The prize money is used for release parties. This contest
has been a strong motivational factor for the students..

6. OUTLOOK
The EiffelMedia experience shows that it is possible to develop
production-grade software in a university context. It also
demonstrates that it pays to give good tools to students and
encourage their creativity, and that coolness can go very well with
teaching the sternest software engineering principles.
Fostering contributions by students who formerly experienced the
library as clients has boosted the development of EiffelMedia to a
full-fledged multimedia library. This idea of letting everybody
suggest new functionality and add to future versions can work in
other programming projects, and not just for education. Whether
for students or for professional programmers, it’s hard to think of
a better motivation.

7. REFERENCES
[1] 3Dlabs GLSL, at developer.3dlabs.com.
[2] Apple Cocoa, at developer.apple.com/documentation/Cocoa.
[3] Till Bay: EiffelMedia 0.9.0, at eiffelmedia.origo.ethz.ch.
[4] L. Carter: Why students with an apparent aptitude for

computer science don’t choose to major in computer science,
in SIGCSE ’06, New York, ACM Press, 2006, pp. 27–31.

[5] Eiffel Software, EiffelVision 2 library, at www.eiffel.com/
libraries/vision2.html.

[6] Eiffel Software, www.eiffel.com.
[7] ETH Zurich, various students: EiffelMedia Games, numerous

games, 2003-2006, at games.ethz.ch.
[8] Gtk, at www.gtk.org.
[9] Microsoft Direct 3D, www.microsoft.com/windows/directx.
[10] Microsoft GDI, at msdn.microsoft.com/library/default.asp?

url=/library/en-us/gdicpp/GDIPlus/aboutGDIPlus.asp.
[11] Bertrand Meyer: Object-Oriented Software Construction, 2nd

edition, Prentice Hall, 1997.
[12] Bertrand Meyer: Touch of Class: Learning how to Program

Well Using Object Technology and Design by Contract, to
appear; draft and supporting material at se.ethz.ch/touch.

[13] NICE Consortium: Eiffel Struggle, at http://www.eiffel-
nice.org/eiffelstruggle/2005/results.html.

[14] OpenGL, at www.opengl.org.
[15] Michela Pedroni: Traffic v. 3.0.0, at traffic.origo.ethz.ch.

http://developer.3dlabs.com/
http://developer.apple.com/documentation/Cocoa
http://eiffelmedia.origo.ethz.ch/
http://www.eiffel.com/%0Blibraries/vision2.html
http://www.eiffel.com/%0Blibraries/vision2.html
http://www.eiffel.com/
http://games.ethz.ch/
http://www.gtk.org/
http://www.microsoft.com/windows/directx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/gdicpp/GDIPlus/aboutGDIPlus.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/gdicpp/GDIPlus/aboutGDIPlus.asp
http://se.ethz.ch/touch
http://www.eiffel-nice.org/eiffelstruggle/2005/results.html
http://www.eiffel-nice.org/eiffelstruggle/2005/results.html
http://www.opengl.org/
http://traffic.origo.ethz.ch/

	1. GAMES IN THE CURRICULUM
	2. KEY FRAMEWORKS
	2.1 2D graphics
	2.2 Sound
	2.3 Collision detection
	2.4 3D graphics
	2.5 Networking and high-score tracking
	2.6 Widget toolkit
	2.7 Other features

	3. USES IN THE CLASSROOM
	4. EXAMPLE GAMES
	4.1 X Adventure Engine
	4.2 Ebouncy
	4.3 AntWorld

	5. DEVELOPMENT PROCESS
	5.1 Design principles
	5.2 Metrics
	5.3 Awards

	6. OUTLOOK
	7. REFERENCES

