
Release early and often: Developing Software with Origo

Till G. Bay
Chair of Software Engineering

Swiss Federal Institute of
Technology in Zürich

CH-8092 Zürich
till.bay@inf.ethz.ch

Manuel Oriol
Chair of Software Engineering

Swiss Federal Institute of
Technology in Zürich

CH-8092 Zürich
manuel.oriol@inf.ethz.ch

Bertrand Meyer
Chair of Software Engineering

Swiss Federal Institute of
Technology in Zürich

CH-8092 Zürich
bertrand.meyer@inf.ethz.ch

ABSTRACT
Just as important as the technical activities of software de-
velopment – requirements, design, coding, documenting, com-
piling, testing, debugging. . . – are the management and com-
munication tasks: recording project events, managing project
Wikis and web pages, sending out notifications, reconciling
changes, and many others. These tasks become ever more
delicate with the increasingly distributed nature of modern
software projects, small as well as large. If not handled
properly they can not only consume considerable time but
also, just like bugs and other flaws in technical tasks, cause
considerable damage.

Origo is a comprehensive platform for addressing such
project needs by providing such facilities as project Web
pages (both editable and generated), forums, mailing lists,
bug tracking etc. All the facilities are also available through
a program interface (API), allowing development tools and
environments to invoke Origo mechanisms automatically upon
completion of specified project events such as a compila-
tion, a commit into the configuration management system, a
failed test; environments for which a specific Origo plugin al-
ready exists include Visual Studio, Eclipse and EiffelStudio.
Internally, Origo relies on a peer-to-peer middleware archi-
tecture supporting the integration of such application com-
ponents as web and Wiki servers, database servers, business
logic, configuration management, identification, access con-
trol, load balancing. The infrastructure is extendible both
statically and at run time, allowing the integration of new
functionalities by indepenedent providers.

Hosted by ETH Zurich, Origo is freely available to any
project, open-source or closed-source, and designed for scal-
ability. A few weeks after its introduction in August 2007,
Origo is already hosting several hundred projects. The arti-
cle describes the Origo services and architecture.

Categories and Subject Descriptors
K.6.3 [Software Management]: Software development,
Software maintenance, Software process, Software selection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

General Terms
Management, Human factors

Keywords
Software development process, software distribution and doc-
umentation, developer and user management, open- and
closed-source development

1. INTRODUCTION
Modern distributed software development combines sev-

eral applications and tools to allow developers to collaborate
over a network. The combination of these applications forms
the information systems used in software projects. Releasing
software early and often requires that such an information
system fits well into the development process. Often, devel-
opment teams are the first adopters of emerging tools and
technologies that support and accelerate collaborative work.
As a consequence a software development information sys-
tem has to be able to integrate new applications when they
become important for a process.

The Origo platform provides a generic replacement for
any ad-hoc combination of applications and improves the
state of the art of existing development platforms. Released
in August 2007, the platform already hosts more than 300
projects with over 1000 developers worldwide.

The novel services Origo offers are an application pro-
gramming interface (API), an innovative display of events
of project life and the possibility to host open- and closed-
source project development.

Offering an API allows integration of Origo into any de-
velopment process (see Section 2).

Origo relies on a network layer programmed using the
JXTA [18] peer-to-peer protocol. This makes it possible
to add new applications by extending them with JXTA li-
braries to handle the transport layer.

Section 2 presents the development platform, the IDE plu-
gins and the API. Section 3 describes the architecture and
implementation of Origo. Section 4 discusses related work
and Section 5 draws the conclusions and provides an outlook
on the future additions to the platform.

2. USING ORIGO
Origo (http://origo.ethz.ch) is an open-source information

management platform for software projects. The platform
enables a team of developers to track their own projects and
those of other teams. For a developer, Origo encourages
collaboration with several development teams and allows

working both on open and closed-source projects. Every
Origo project has a web page that can be reached over a
sub-domain (http://yourproject.origo.ethz.ch).

The platform does not impose any particular develop-
ment model, technology or tool; the development proper
happens outside Origo. The following paragraphs describe
what Origo offers both for development teams and for users
of the software projects that are hosted on Origo.

2.1 Projects and People
The software development platform manages projects, their

development teams and user communities. Once registered
as an Origo user, one can hold any of three roles for a given
project: project user, project member, project owner.

Project members and owners are part of a project’s devel-
opment team. They both can modify the wiki pages of the
project website, create releases on the download area and
commit code into the Subversion repository. They can also
post blogs, report issues and generally modify all content on
the project pages. Adding new developers to a project team
can be done by project owners only.

Project users can only report issues, write forum posts
and comment content on project pages. The low number of
different roles people can hold keeps the rights management
for all actions concerning the project pages simple.

This simplicity also contributes to the usability of Origo:
users and developers do not need to read documentation to
start using the platform. While there is no built-in limit to
project size, we have initially targeted Origo at fairly small
projects; of the 300 projects hosted at the time of writing
80% have seven or fewer developers.

2.2 Basic features
The basic features of an Origo-hosted project are the usual

services on which development teams rely today: a config-
uration management server for hosting the code; documen-
tation and communication possibilities; ways to report and
manage issues; a place to publish project releases. More ad-
vanced features are detailed in Section 2.3. A sample project
page shows Figure 1. Every Origo project has the following
features:

• Public and private wiki pages with WikiMedia syntax.

• Subversion repository with web user interface.

• Issue tracking with public and private issues.

• Blog, forums, comments, tags and screenshots.

• Release download area with mirroring.

The project web page, of which an example appears in
Figure 1, has navigation links that lead to the home page,
download section, screenshots, documentation, the forum
page, the blog, the issue tracker and the development page.
A project includes two kinds of pages: editable and gen-
erated. Editable pages which project members can freely
create and update, use the wiki format; they include the
home page, the screenshots, the documentation and the de-
velopment pages. Generated pages are the download area,
where all releases of a project are listed, the forum, the blog
and the issue tracker.

Fundamental functionalities, repeated on every page (cur-
rently in the left-side menu, see Figure 1) include: the user

and project settings, creation of new content, the request
form for project creation and pages that allow tracking changes.

Also on every page are the search functions. There are
several different kinds of searches; first, all projects hosted
on Origo can be searched with Google Custom Search [14].
Every project page can also be searched separately. One can
search for Origo users and the fourth search retrieves tagged
issues. The searches are implemented using Generic Compo-
nent Lookup (GCL) [2]. GCL is a search system that iden-
tifies different dimensions in the data to search separately,
and weighs the results for each dimension. Sorting results
according to an arithmetic combination of the weights fine-
tunes and improves them. This way users can both search
all the tags and the text of a reported issue separately but
then receive the results combined.

2.3 Novel features
Together with the scalable, extendible and language inde-

pendent design of the platform (see Section 3), Origo inno-
vates through the following features:

• Besides the user interface already sketched, Origo pro-
vides a programming interface (API) enabling applica-
tion developers to hook their processes and tools pro-
grammatically to the platform.

• Origo gives developers and users of a project a concise
overview of the state of the projects (see Figure 3).

• Origo allows hosting both open and closed source projects.

Integration into the development process
The Origo API enables integration of the platform into any
development process. It is implemented using XML-RPC [25].
XML-RPC is a simple, open-source specification and imple-
mentation for remote procedure calls between disparate and
heterogeneous software systems. It uses HTTP/S as trans-
port protocol and XML for message encoding. Messages
are method calls with their argument data. Currently a
wide range of languages provide XML-RPC libraries, includ-
ing Eiffel, Java, C, Python, Perl, Objective-C, PHP. Since
XML-RPC uses HTTP/S as transport protocol, it is easy to
implement if no existing language binding can be used.

Every software project creates deliveries of its code. In
some cases the delivery is an application that users can
download, in other cases the delivery consists of a library
that can be reused. All languages, operating systems and
tools rely on the regularly recurring activity of building a
delivery, driven by scripts. In spite of the wide diversity
of tools and processes, the delivery step follows a common
pattern. It involves a number of actions scheduled not man-
ually but through a script like a Makefile, an ANT-Script
or a Visual Studio Solution File. Once the script has been
run, the next step is to publish the delivery online. Pub-
lishing a delivery can with the Origo API be integrated into
the scripts. One of those scripts simply has to use the API
call to publish a release for a project on its Origo page; that
last step is also automated. There are many other API calls
available for a project (see the complete list online1). This
example illustrates how the Origo API enables hooking into
a development process.

1http://origo.ethz.ch/wiki/origo api

Figure 1: Typical Origo project page - http://csi.origo.ethz.ch

Figure 2: Release creation dialog in the Origo
Eclipse plugin

IDE Integration
Similarly to build script integration, the platform can be
used directly from integrated development environments.
Currently, plugins for EiffelStudio, Eclipse and VisualStu-
dio exist.

Figure 2 shows the Origo Eclipse plugin. Using the plugin
for an IDE, users can choose files to upload to the project
page, specifying release and platform information. All three
IDE plugins offer the same functionality and the release cre-
ation dialog looks the same for all three IDE plugins. They
all use the XML-RPC API to send calls from the IDE to
Origo.

Besides integrating release creation, the IDE plugins also
offer access to the work item overview that is discussed in
the next section.

Work item overview
A member of a collaborative project needs to know what
other team members are doing. The most important re-
sources are the source code files; projects will typically rely

on configuration management such as Subversion to enable
concurrent access by multiple developers. Apart from man-
aging the code with such a tool, developers typically also like
to be informed of changes to the source code in other ways.
An important functionality of such systems is the ability
to send mail to project members on occurrence of specific
events such as commits.

Origo generalizes this concept by enabling projects to hook
up various actions to many possible events of project life.
In Origo, all resources that can experience modifications
are tracked and the changes summarized in the work item
overview of a project page (see Figure 3).

The five resources tracked by Origo for each project are
changes to source files, issues that are reported or modified,
wiki pages that are edited, blogs that are posted and releases
that are published. Figure 3 shows the work item overview
page. In the figure, the tab for the Origo project itself is
active and it shows the work items of the project at that
point in time. Each listed work item links to a corresponding
page that shows the changed resource. When a new resource
is created (for example a new blog posted) - the link points
to that resource. If an existing resource is modified, the
link points to a page showing the differences between the
old and the new version of the resource (for example when
a typo on an existing wiki page is corrected). The figure
shows also other tabs for other projects. The tabs on the
left are all the projects of which the user (here: bayt) is a
member. After the projects that a user belongs to, the tabs
for bookmarked projects are enumerated. Every project on
Origo can be bookmarked by a user and then the work items
for that project are shown on the overview page accordingly.
Whenever new work items for a project are published, its
corresponding tab is highlighted.

For each project showing on the work item overview page
one can configure both the mode of notification (receiving a
mail for an update on a resource or listing the updated work
item on the overview page) and it can be set which of the five
work item types should be tracked. This allows setting the
level of information a user or developer desires individually
for every project. For all work items and projects an RSS
feed is generated and can be used to get information on work

item updates as well.
As mentioned above, also the IDE plugins show the work

item overview as part of their user interface. Just like the
work item overview page, the IDE plugins link the displayed
work items back to Origo, or show the updated differences
directly inside the IDE. For screenshots of the IDE plugins
see the screenshot page online2.

Open- and closed source projects
The third contribution of Origo is the hosting of closed-
source projects. Origo helps its users produce and maintain
better software, faster, more effectively. It is not its role
to push a political agenda for either open- or closed-source
development. There are all kinds of reasons for a project to
prefer a closed-source model. This is not only true in the
software industry, but even in a purely academic environ-
ment where some work on projects needs to be kept closed
until time for publication is suitable. The open or closed-
source nature of an Origo project determines the visibility of
its work items for its non-members; source code commits for
example can only be seen and accessed by developers that
are members of a closed-source project.

3. ARCHITECTURE
The key design goals for Origo were scalability, extendibil-

ity and language independence. To achieve these aims, Origo
uses a peer-to-peer (P2P) back-end that relies on widely
supported communication protocols. Figure 4 shows the
architecture of the platform. Origo is running on multi-
ple servers and is built following the model view controller
(MVC) pattern. In the figure, the P2P back-end represents
the controller and the applications represent the different
views that are available. One of those views is the project
page of a given Origo project; another would be the work
items that are displayed in the Eclipse plugin for Origo3.
The views and the controller communicate using XML-RPC.
For communication inside the controller, Origo uses the P2P
framework VamPeer [23] that is itself based on JXTA [18].
Some nodes of the back-end provide access to databases that
are themselves representing the model in the MVC pattern.

3.1 Back-end
The back-end forming the controller of Origo is built us-

ing different peer-to-peer nodes. Besides acting as controller
for the platform, the nodes of the back-end also provide ac-
cess to several collaborating services that are used in Origo.
Services include the database server, the Subversion servers,
the FTP and the mail server; all of them exist as nodes of
the back-end. The JXTA protocol is the infrastructure that
they use to communicate. The back-end relies on four main
notions, nodes, node types, messages and use cases, to be
detailed now.

Nodes and Node Types
Each node represents a service used in the back-end (see
Figure 5). A node type regroups a set of nodes that all
provide the same service. Each node type has its own policies
for message processing. Each node of a given node type is
equal and any incoming message for a node can be treated
by any other node of the same type.

2http://www.origo.ethz.ch/wiki/screenshots
3http://origo.ethz.ch/download

Se
rv

er
s

P2
P

Ba
ck

en
d

A
PI

A
pp

lic
at

io
ns

VamPeer

XML-RPC

Drupal

Minestrone

http://yourproject.origo.ethz.ch

other applications
build scriptsEi�elStudio

Visual Studio

Eclipse

Figure 4: Origo architecture

Node Type

Node
Messages

API Nodes

Core Nodes

Storage Nodes

FTP

SVN

Mail

Figure 5: Nodes and node types in Origo

Figure 3: Work item overview page for multiple projects

Messages and Use Cases
The core nodes contain the code representing the use cases.
A use case is the description of how the Origo back-end
reacts to an incoming XML-RPC API call. After the API
nodes receive a call, messages are sent to the core nodes that
then send messages to all nodes taking part and performing
some action in that particular use case.

Core Nodes
The core nodes are the controller of Origo and contain the
code of the use cases. They manage all interactions between
other nodes. Load balancing for all node types is imple-
mented in the core nodes. The core nodes are aware of all
node types existing and know how to use them to perform
each of the use cases.

API Nodes
The API nodes are the interface to access the Origo back-
end. API nodes listen to incoming XML-RPC calls as a
daemon on a port on the server machines of the platform.
The API nodes expose parts of the use cases that are en-
coded in the core nodes. They are not load balanced by the
core nodes. For load balancing incoming XML-RPC calls,
traditional web-server load balancing techniques like round
robin IP address resolution, or LVS systems should be used.

A list of the API calls currently offered can be found on-
line4. The calls offered allow access to all information stored
in an Origo project. There are calls to enumerate the work
items for a project, calls to upload and publish project re-
leases, calls for issue management as well as general calls
handling access and rights management, login processing
and management of user information.

Internal API Nodes
To avoid possible denial of service attacks to API nodes,
parts of the exposed API have to be hidden to outside ap-

4http://origo.ethz.ch/wiki/origo api

plications. The API call for creating a new Origo user is an
example for a call that has to be hidden, because bots would
be able to create uncontrollable numbers of Origo users if it
were available. Hidden calls are only available to certain
views - in the case of the user-creation call, the view that
has access to it is the Origo project web page (in Figure 4
the web page of an Origo project is the stack Drupal / Mine-
strone / http://yourproject.origo.ethz.ch in the applications
layer).

Storage Nodes
The storage nodes maintain connections to database servers.
All data used by Origo is stored in the databases managed by
them. The storage nodes handle all communication and au-
thentication with the databases. The databases store both
data on users (user ID, name, password hash, email address
and an application key) and on projects (name, description
and a logo) as well as the association of users and projects,
associations between users (development teams), access poli-
cies for all resources managed by the platform, role manage-
ment information, and session management.

Custom Nodes
An important part of Origo are the services used for software
development. The back-end contains three custom nodes
that wrap these services: One node for configuration man-
agement (at the moment this is done with Subversion), one
node for file upload when creating software releases (imple-
mented with an FTP server) and finally a node that can
send mail. Figure 5 shows the three nodes together with the
other node of the back-end.

These custom nodes wrap an external server application
as a node for the back-end. These server applications all
have their own user management mechanisms and access
protocols. The custom nodes of the back-end configure these
server applications to integrate them fully into Origo. The
login credentials for these services are created by the custom
nodes that can write configuration files and execute pro-

cesses. This allows to integrate any application into Origo.
The way developers are working evolves and the configu-
ration management servers that are used today might be
replaced by new servers that have different functionality in
the future; using custom nodes allows such evolution and
adaption of the back-end.

3.2 Scalability
Nodes of the same type perform the same service within

Origo. Nodes receive messages and then return the results
to the node that sent the message. They are not aware
of the other nodes of the same type within their group of
nodes. Nodes have unique identifiers inside the peer-to-peer
back-end and can be addressed using this identifier. How
to balance load among nodes of a same type can vary and
it is left to the implementer of the node type. As a simple
solution, round robin load balancing is used for the core and
storage nodes.

3.3 Extendibility
Two attributes of Origo allow its adaption. The first ca-

pability lies in the nature of the nodes. Nodes do not need to
be on one single computer; they can be distributed across a
number of machines. Nodes of the same type can be on dif-
ferent machines. By measuring load and performance on the
running platform, a favorable distribution across machines
can be found.

The second attribute making it possible for Origo to react
to change is that nodes can join the back-end at any time.
If at one point in time the number of nodes of a certain type
is not sufficient anymore (this can be caused by increased
load for example) - more nodes of that type can be started.
These nodes will then register themselves within the back-
end and start processing messages. The inverse case of nodes
leaving a system can also happen and can be used to react
to changing needs. This mechanism is also used to update
the running platform dynamically whenever new or updated
nodes are becoming available.

3.4 Language Independence
The Origo back-end uses the JXTA [18] peer-to-peer pro-

tocol and benefits from the multiple implementations of JXTA
that make it language independent. Both the communica-
tion inside the back-end as well as the interface to the outside
are language independent. The messages exchanged are sim-
ple key value pairs of strings that are sent from one node to
another. The calls Origo can receive from the outside world
are similar and reach the system using the XML-RPC [25]
transport protocol.

Chioce of P2P Framework
The available peer-to-peer frameworks today include Chimera
(was Tapestry),5 Pastry [20], Chord6 (distributed hash func-
tions and the Self-certifying File System 7), GNUNet8, XNap9,
and the Peer-to-Peer Trusted Library10. Some of these sys-
tems address the necessary P2P networking requirements

5http://current.cs.ucsb.edu/projects/chimera
6http://pdos.csail.mit.edu/chord
7http://www.fs.net/sfswww
8http://www.ovmj.org/GNUnet
9http://xnap.sourceforge.net

10http://sourceforge.net/projects/ptptl

sufficiently, others provide routing algorithms that are adapted
to a specific peer-to-peer application (like for example file
sharing). None of these frameworks, however provide an ap-
plication construction framework. A peer-to-peer applica-
tion construction framework is general and abstract enough
to support building P2P applications that go beyond file
sharing and instant messaging. The existing application
construction frameworks are Juxtapose (JXTA) [18], Jini [24],
and OogP2P11. Jini is implemented only for the Java lan-
guage and OogP2P does not provide sufficient functionality
to be used in Origo. This justifies the use of JXTA for im-
plementing the back-end.

JXTA has extensive functionality. The JXTA specifica-
tion contains protocols for routing, message passing, discov-
ery of peers and support for secure communication using
HTTPS. In addition, multiple language bindings (for Eif-
fel, Java and C) exist. JXTA is open-source, widely used,
well supported, easy to extend and is general and abstract
enough to support the functionality required by Origo. With
JXTA, Origo propagates the messages. JXTA implements
all routing and other communication protocols for such ex-
changes in Origo in a technology-independent fashion.

4. RELATED WORK
This section presents other existing software development

platforms as well as other service integrating middleware
architectures.

4.1 Development Platforms
Software development platforms are not new; the most

popular platform known today is Sourceforge [22] with 155’000
projects and 1.5 million registered users. Other platforms
are Google Code [13], BerliOS [16], GForge [6], Savannah [12],
Trac [11] and Collabnet [9]. A state of the art study [3] sum-
marizes and compares the functionality and services offered
by these systems. Many more platforms and systems are ex-
amined in the study, but the present selection includes the
most significant ones.

Considering the history of the platforms, most of them
originate from the initial open-source version of the Source-
forge platform. Both GForge and BerliOS as well as Sa-
vannah are branches of its code base. The architecture of
these platforms did not allow future extension and adaption
- for example when a configuration management server sys-
tem should be complemented by a new one. This happened
when Subversion became more popular with development
teams than the former CVS based solutions. Sourceforge
today offers Subversion repositories for the code, but the
quality of service is not constant and it took the platform
more than a year to integrate. With the custom node such
a change can be realized much faster for our platform.

Neither GForge, Sourceforge, nor Savannah offer and API.
BerliOS is running a GForge instance that is maintained

by the Fraunhofer Institute for Communication. GForge,
Sourceforge and Savannah do not host closed-source projects.

Trac is an open-source software development platform that
integrates a Subversion repository with an extendible project
tracking wiki. Trac does not have an API and Trac instances
are for one development project only.

11http://www.duke.edu/ cmz/p2p

The platforms by Google and Collabnet are both closed-
source, have no API and do not offer hosting closed-source
projects.

None of the platforms offer or enable any integration into
development environments. For the platforms that are closed-
source it is difficult to know if their architectures scale and
to support extension or adaption. Besides Trac and GForge
none of the open-source platforms are built with extension
possibilities.

4.2 Middleware Architectures
An important part of Origo is its architecture that sepa-

rates the external services needed in Origo from the back-end
of the platform. This has two effects: (1) it allows to scale
up the platform if needed, (2) it allows the integration of
different implementations of a given service.

Middleware for dynamic adaptation flourished in the past
years. As an example, Linda-like [7] coordination media such
as AOS [4] use a shared tuple space to decouple applications.
Origo is by nature more flexible as it takes into account
replicated nodes.

Contrary to systems like HydroJ [17], LuckyJ [19], Frac-
tal [5] or Service Groups [21] where the final recipients of
messages are chosen by the infrastructure, Origo defines the
entry points but lets the node types define their own poli-
cies to treat messages. Origo is similar to Matrix [1] in
that it specializes in providing an infrastructure to build
distributed applications of a particular type. In the case of
Matrix however, the applications that are built have precise
requirements in terms of distribution (load balancing of the
servers during peaks) while in the case of Origo the main re-
quirement is extendibility. In the end, Origo is much more
expressive than Matrix (that could be coded using Origo
nodes).

Origo nodes integrate already existing applications and
make them communicate independent of the language in
which they were programmed; this is a very common charac-
teristics for a middleware infrastructure like CORBA [15] or
web services [10, 8]. . .). Comparing to other infrastructures,
Origo nodes include the necessary tools to integrate busi-
ness applications such as identity management and informa-
tion controller components. They also rely on a language
independent communication layer (XML-RPC provides the
external API, JXTA enables internal communication). This
enables us to focus only on the parts of the system that really
matter: the application logic and applications to compose
using Origo nodes.

5. CONCLUSIONS AND FUTURE WORK
Origo bridges the gap between coding and publication

in software development projects. It brings together de-
velopment teams and offers them an information manage-
ment platform that is easy to use and integrates - thanks
to the API and the IDE plugins - directly into the develop-
ment process. Accelerating the publication of software re-
leases improves software quality. The overview of work items
of all projects facilitates working on multiple projects and
with different development teams simultaneously. The open-
source platform Origo allows hosting closed-source projects
as well. This makes the platform not only attractive and use-
ful for the classic distributed software development projects
known - the open-source projects - but also for all other
groups of developers working collaboratively without want-

ing to disclose their sources.
With Origo currently managing 1000 users and hosting

300 projects from all over the world, ranging from commer-
cial products to university projects the platform stands the
test of reality.

Future work on Origo focuses on three main goals: Im-
plementing explicit and implicit creation and detection of
development communities and to provide specific communi-
cation platforms for them. The second goal is to improve
the display of projects; the current listing of projects can
take into account activity measurement connected to work
items, number of developers on a project and web statistics.
For users looking for a certain project on the platform a
ranking of the projects can improve the usability. Detecting
similarities among projects and suggesting them to users for
consideration can be a valuable information source within
communities and we plan to offer that. The third goal is to
maintain and improve the running platform driven by the
reported issues - one popular demand we are considering
is the inclusion of a distributed configuration management
service.

6. REFERENCES
[1] R. K. Balan, M. Ebling, P. Castro, and A. Misra.

Matrix: Adaptive middleware for distributed
multiplayer games. In Middleware, pages 390–400.
Springer, 2005.

[2] T. Bay, P. Eugster, and M. Oriol. Generic component
lookup. Lecture Notes in Computer Science,
4063:182–197, June 2006.

[3] T. G. Bay. Software development platforms state of
art analysis. 2005.

[4] L. Bradford, S. Milliner, and M. Dumas. Experience
using a coordination-based architecture for adaptive
web content provision. In COORDINATION, pages
140–156. Springer, 2005.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani. The FRACTAL component model
and its support in java. Softw, Pract. Exper,
36:1257–1284, 2006.

[6] G. L. L. C. Gforge. http://gforge.org.

[7] N. Carriero and D. Gelernter. Applications experience
with Linda. ACM Sympos. on Parallel Programming,
July 1985.

[8] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web services description language
(WSDL) 1.1. http://www.w3.org/TR/wsdl.

[9] Collabnet. Collabnet. http://www.collab.net.

[10] W. W. W. Consortium. Simple object access protocol.
http://www.w3.org/TR/SOAP.

[11] Edgewall. Trac. http://trac.edgewall.org.

[12] GNU. Savannah. savannah.gnu.org.

[13] Google. Google code. http://code.google.com.

[14] Google. Google custom search engine.
http://google.com/coop/cse.

[15] O. M. Group. The Common Object Request Broker
Architecture: Core Specification, Version 3.0.3. OMG,
2004.

[16] F. Institute. Berlios. http://www.berlios.de.

[17] K. Lee, A. LaMarca, and C. Chambers. Hydroj:
object-oriented pattern matching for evolvable

distributed systems. In OOPSLA ’03: Proceedings of
the 18th annual ACM Conference on Object-Oriented
Programing, Systems, Languages, and Applications,
pages 205–223, 2003.

[18] S. Oaks and L. Gong. Jxta in a Nutshell. O’Reilly &
Associates, Inc., Reading, Massachusetts, 2002.

[19] M. Oriol and G. Di Marzo Serugendo. A disconnected
service architecture for unanticipated run-time
evolution of code. IEE Proceedings-Software, Special
Issue on Unanticipated Software Evolution,
151:95–107, April 2004.

[20] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. Lecture Notes in
Computer Science, 2218:329–??, 2001.

[21] S. Sadou, G. Koscielny, and H. Mili. Abstracting
services in a heterogeneous environment. In
IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware 2001), pages 141–159.
Springer, 2001.

[22] I. SourceForge. Sourceforge. http://sourceforge.net.

[23] B. Strasser. Vampeer. http://vampeer.origo.ethz.ch,
2007.

[24] Sun Microsystems. JINI Connection Technology, 1999.

[25] XML-RPC. Internet remote procedure call.
http://www.xmlrpc.com/spec.

