
ARTOO: Adaptive Random Testing for Object-Oriented
Software

Ilinca Ciupa, Andreas Leitner, Manuel Oriol, Bertrand Meyer
Chair of Software Engineering

ETH Zurich, Switzerland
{firstname.lastname}@inf.ethz.ch

ABSTRACT
Intuition is often not a good guide to know which testing strategies
will work best. There is no substitute for experimental analysis
based on objective criteria: how many faults a strategy finds, and
how fast. “Random” testing is an example of an idea that intu-
itively seems simplistic or even dumb, but when assessed through
such criteria can yield better results than seemingly smarter strate-
gies. The efficiency of random testing is improved if the generated
inputs are evenly spread across the input domain. This is the idea
of Adaptive Random Testing (ART).

ART was initially proposed for numerical inputs, on which a no-
tion of distance is immediately available. To extend the ideas to
the testing of object-oriented software, we have developed a notion
of distance between objects and a new testing strategy called AR-
TOO, which selects as inputs objects that have the highest average
distance to those already used as test inputs. ARTOO has been im-
plemented as part of a tool for automated testing of object-oriented
software.

We present the ARTOO concepts, their implementation, and a set
of experimental results of its application. Analysis of the results
shows in particular that, compared to a directed random strategy,
ARTOO reduces the number of tests generated until the first fault
is found, in some cases by as much as two orders of magnitude.
ARTOO also uncovers faults that the random strategy does not find
in the time allotted, and its performance is more predictable.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—testing
tools

General Terms
Verification

Keywords
software testing, adaptive random testing, object distance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

1. OVERVIEW
Testing remains the most widely used method for assessing soft-

ware quality. Recently, automated solutions have become increas-
ingly practical. They do not, however, remove the basic limitation
of testing: the impossibility of exhaustiveness for any non-trivial
program, requiring testers to come up with strategies for selecting
inputs to be tested in the time available.

One possible strategy is random testing. It has several advan-
tages: wide practical applicability, ease of implementation in an
automatic testing tool, no overhead for choosing inputs out of the
set of all inputs, lack of bias. This absence of any system in choos-
ing inputs is also what exposes random testing to the most criticism.
Several other strategies for input generation have been proposed
(symbolic execution combined with constraint solving [30], [18],
direct setting of object fields [5], genetic programming [29], etc.),
but none of these strategies reaches the level of applicability and
the speed of execution of random testing.

Several algorithms have therefore been developed which attempt
to maintain the benefits of random testing while increasing its ef-
ficiency. They generally provide ways to guide testing, so that it
is no longer purely random. This is also the case for the family
of algorithms developed around the work of Chen et al. on Adap-
tive Random Testing (ART) [9]. ART is based on the intuition that
an even distribution of test cases in the input space allows find-
ing faults through fewer test cases than with purely random testing.
ART generates candidate inputs randomly, and at every step selects
from them the one that is furthest away from the already used in-
puts. ART was initially introduced for numerical values and it cal-
culates the distance between two such values using the Euclidean
measure. ART was shown to reduce the number of tests required to
reveal the first fault by as much as 50% over purely random testing.

The ideas behind ART are attractive for testing object-oriented
(O-O) applications too. The challenge is to define what it means to
“spread out” instances of arbitrarily complex types as ART does for
numerical values. We have developed a method for automatically
calculating an “object distance” [11] and applying it to adaptive
random testing of object-oriented applications.

This paper brings some changes to the previously proposed model
for the object distance. The new model (presented in Section 2) re-
moves some of the deficiencies of the previous one and is more
intuitive. Additionally, this paper makes the following contribu-
tions:

• Implementation: It presents the implementation of the new
testing strategy (called ARTOO) in the AutoTest tool [19]
based on the object distance (Sections 3 and 4).

• Evaluation: It examines how this strategy performs com-
pared to a directed random testing strategy (Section 5). The

results show that in most cases ARTOO reduces the number
of tests required to reveal a fault, and that this difference can
be as high as two orders of magnitude.

• Other applications: It presents ideas for further applications
of the object distance, such as object clustering and integra-
tion of manual and automatic testing (Section 6).

2. OBJECT DISTANCE
The object distance is a measure of how different two objects

are. It is a general relation that can be applied to any pair of objects
in an O-O context. A full definition and examples can be found in
our previous publication [11] on this topic. Here we list only the
main principles behind the calculation of the object distance and
highlight the differences we introduce with respect to the initial
model.

In general objects are characterized by:

• their values

• their dynamic types

• recursively the primitive values of the attributes or the objects
referred by the attributes.

Hence, the object distance must take into account these three di-
mensions. Thus, the distance between two composite objects p and
q should be a monotonically non-decreasing function of each of the
following three components:

• Elementary distance: a measure of the difference between
the direct values of the objects (the values of the references
in the case of reference types and the embedded values in the
case of primitive types).

• Type distance: a measure of the difference between the ob-
jects’ types, completely independent of the values of the ob-
jects themselves.

• Field distance: a measure of the difference between the ob-
jects’ individual fields1. This will be the same notion of
object distance, applied recursively. The fields should be
compared one by one, considering only “matching” fields
corresponding to the same attributes in both objects; non-
matching fields also cause a difference, but this difference is
captured by the type distance.

Thus, we may express the formula for the distance p ↔ q:

p ↔ q = combination (
elementary distance (p,q),
type distance (type (p), type (q)),
f ield distance ({[p.a ↔ q.a]

|a ∈ Attributes (type (p), type (q))}))

(1)

where Attributes(t1, t2) is the set of attributes applicable to both
objects of type t1 and objects of type t2. We look below at pos-
sible choices for the functions combination, elementary distance,
type distance, and f ield distance.

This formula differs from the one introduced in [11] in that it sep-
arates clearly between the notions of elementary distance (which
does not involve traversing the object structure) and field distance,
1We use the term field as a dynamic notion corresponding to the
static notion of attribute. In other words, classes have attributes,
while objects have fields.

which involves the recursive application of the distance calculation
to the matching fields of the two objects, regardless of whether the
type of these fields is primitive or reference. This unified view is
not only more intuitive, but it also removes a deficiency present in
the previous model: according to the formula introduced in [11],
the distance between two distinct references pointing to the same
object was 0. We believe this to be incorrect, since a distance of
0 should indicate identical references. The formula presented here
fixes this issue by taking into account the different values of the
references in the distance calculation.

We now look at each of the components of the distance.
For the elementary distance we define fixed functions for each

possible type (primitive or reference) of the compared values p and
q:

1. For numbers: F(|p− q|) (where F is a monotonically non-
decreasing function with F(0) = 0).

2. For characters: 0 if identical, C otherwise.

3. For booleans: 0 if identical, B otherwise.

4. For strings: the Levenshtein distance [20].

5. For references: 0 if identical, R if different but none is void
(null), V if only one of them is void.

In this definition, C, B, R, and V are positive values chosen con-
ventionally.

The distance between two types is a monotonically increasing
function of the sum of their path lengths to any closest common
ancestor, and of the number of their non-shared features2. In lan-
guages where all classes have a common ancestor (ANY in Eiffel,
Object in Java), any two classes have a closest common ances-
tor. If the types of the two compared objects do not have a closest
common ancestor, then the object distance is not defined for them,
since the objects must always be compared with respect to a com-
mon type of which they are direct or indirect instances. Non-shared
features are features not inherited from a common ancestor.

We thus obtain the following formula for the type distance be-
tween two types t and u:

type distance (t,u) =

λ ∗ path length (t,u)+ν ∗∑a∈non shared (t,u) weighta
(2)

where path length denotes the minimum path length to a closest
common ancestor, and non shared the set of non-shared features. λ

and ν are two non-negative constants. weighta denotes the weight
associated with attribute a. It allows for increased flexibility in
the distance definition, since thus some attributes can be excluded
from the distance (by an associated weight of 0) or can be given
increased weight relative to others.

The field distance is obtained by recursively applying the dis-
tance calculation to all pairs of matching fields of the compared
objects:

f ield distance (p,q) = ∑
a

weighta ∗ (p.a ↔ q.a) (3)

where a iterates over all matching attributes of p and q. We take the
arithmetic mean (the sum divided by the number of its elements) to
avoid giving too much weight to objects that have large numbers of
fields.

The combination function is a weighted sum of its three compo-
nents. The weights (ε for the elementary distance, τ for the type
2Attributes and methods

distance and α for the field distance) allow for more flexibility in
the distance calculation. Furthermore, each of the three compo-
nents of the distance must be normalized to a bounded interval with
the lower limit 0, so that the distances remain comparable. A nor-
malization function norm(x) should be monotonically increasing
and fulfill the property norm(0) = 0. By convention, we will take
1 as the upper bound of the normalization interval.

The following formula gives the full distance definition combin-
ing the previous definitions:

p ↔ q = 1
3 ∗ (

norm (ε ∗ elementary distance (p,q))

+norm (τ ∗λ ∗ path length (type (p), type (q))

+τ ∗ν ∗∑a∈non shared (type(p),type(q)) weighta)

+norm (α ∗∑
a

weighta ∗ (p.a ↔ q.a)))

(4)

where in the last term a ranges over all matching fields.
This definition uses several constants and a function, for which

any application must choose values. The implementation described
in Section 4 uses the following values:

• 1 for all constants except α = 1
2 and R = 0.1

• the normalization function applied to each component of the
distance: (1− 1

1+x) ∗max distance, where max distance is
the upper limit of the interval to which the distance must be
normalized. As mentioned above, we used a value of 1 for
this limit.

While our experience with the model indicates that these simple
values suffice, we intend to perform more experiments to determine
correlations between the nature of the application under test and the
choice of parameters.

3. ADAPTIVE RANDOM TESTING FOR
OBJECT-ORIENTED SOFTWARE
(ARTOO)

The object distance allows the development of several testing
algorithms. We have proposed an algorithm [11] which keeps track
of the already used and the available objects and always chooses as
input from the available set the object that has the highest average
of distances to the already used objects. The algorithm is shown in
Figure 1.

This algorithm uses pseudo-code but borrows some notations
and conventions from Eiffel. In particular, ANY is the root of the
class hierarchy: all classes inherit from it by default. The distance
function is implemented as described in Section 2. For simplicity,
the algorithm only computes the sum of the distances and not their
average; this is a valid approximation since, to get the average dis-
tance for every object in the available set, this sum of distances
would have to be divided by the number of objects in the already
used set, which is constant at every step of choosing an input.

This algorithm is applied every time a new test input is required.
For example, for testing a routine (method) r of a class C with the
signature r (o1: A; o2: B), 3 inputs are necessary: an in-
stance of C as the target of the routine call and instances of A and
B as arguments for the call. Hence, ARTOO maintains a list of the
objects used for all calls to r, and applies the algorithm described
above every time a new input is required. In other words, when

used_objects: SET [ANY]
candidate_objects: SET [ANY]
current_best_distance: DOUBLE
current_best_object: ANY
v0, v1: ANY
current_accumulation: DOUBLE
...

current_best_distance := 0.0
foreach v0 in candidate_objects
do

current_accumulation := 0.0
foreach v1 in used_objects
do

current_accumulation :=
current_accumulation + distance(v0, v1)

end
if (current_accumulation > current_best_distance)
then

current_best_distance := current_accumulation
current_best_object := v0

end
end
candidate_objects.remove(current_best_object)
used_objects.add(current_best_object)
run_test(current_best_object)

Figure 1: Algorithm for selecting a test input. The object that
has the highest average distance to those already used as test
inputs is selected.

an instance of C is necessary, ARTOO compares all instances of C
available in the pool of objects to all the instances of C already used
as targets in test calls to r. It selects the one that has the highest
average distance to the already used ones, and then repeats the al-
gorithm for picking an instance of A to use as first argument in the
call, and then does the same for B.

This strategy is similar to the one originally proposed for ART [9],
the differences being the selection criterion (average distance rather
than maximum minimum distance) and the computation of the dis-
tance measure.

4. IMPLEMENTATION
We implemented ARTOO as a plug-in for the AutoTest [24] tool.

ARTOO is available in open source at http://se.inf.ethz.
ch/people/ciupa/artoo.html. This section first provides an
overview of AutoTest, then describes in detail its algorithm for gen-
erating test inputs, then explains how ARTOO is integrated in Au-
toTest, and finally provides an example that illustrates how ARTOO
works.

4.1 AutoTest
AutoTest performs fully automatic unit testing of Eiffel code

equipped with contracts. Here we only provide an overview of the
tool and present in detail the parts that are particularly relevant for
the implementation of ARTOO.

According to the Design by Contract software development me-
thodology [23], contracts (routine pre- and postconditions and class
invariants) express elements of the specification of the software. If
they are executable, they can be monitored at runtime and any con-
tract violation signals a fault in the executed program. This enables
AutoTest to use the contracts present in the code as an automated
oracle. AutoTest targets Eiffel code, since Eiffel has embedded
support for Design by Contract. AutoTest can also function in the
absence of contracts: in such a case, it would report any uncaught
exception as a fault.

The released version of AutoTest employs a directed random
strategy for input generation (explained in detail in Section 4.2), but
the tool has a pluggable architecture so that other strategies for in-
put creation can easily be added. In particular, a command line op-
tion selects the desired input generation method out of the available
ones. Using the currently selected strategy, AutoTest automatically
generates inputs, runs the routine under test with these inputs, and
monitors contracts. If it detects any contract violation (except for
the case in which a generated test does not fulfill the precondition
of the routine under test), it reports a fault. The detected problem
may lie either in the implementation or in the contract, requiring
further analysis, but this is not significant at this point: regardless
of the location of the fault, a contract violation signals a mistake in
the developer’s thinking, so a testing tool should report it as a fault.

AutoTest uses a two-process model for test execution: a mas-
ter process knows the testing strategy and gives simple commands
(such as object creation, routine invocation, etc.) to a slave process.
The slave (an interpreter) is responsible only for executing such in-
structions and returning responses to the master. This separation of
orchestration and execution has the advantage of robustness: if the
slave cannot recover from a failure triggered during test execution,
the master simply shuts it down and restarts it, resuming testing
where it was interrupted.

4.2 Random input generation in AutoTest
AutoTest keeps a pool of objects available for testing; in this pool

it stores all objects created as test inputs and returns them once they
have been used in tests. The algorithm for input generation pro-
ceeds in the following manner, given a routine r of a class C cur-
rently under test. To test r, a target object and arguments (if r takes
any) are necessary. The algorithm either creates new instances for
the target object and arguments or uses existing instances from the
pool. The decision is taken probabilistically for each required in-
put; for the results presented here we used a probability of 0.25 of
creating new objects: a new object is created roughly once every
four test case runs. We use this value because previous work [12]
determined it to deliver the best results (in terms of the number of
found faults) for the random strategy.

If the decision is to create new instances, AutoTest calls a ran-
domly chosen constructor of the corresponding class (or, if the class
is abstract, its closest non-abstract descendant). If this constructor
takes arguments, the same algorithm is applied recursively. The in-
put generation algorithm treats primitive types (such as INTEGER,
REAL, CHARACTER, BOOLEAN) differently: for an argument declared
of a primitive type, a value is chosen according to a preset proba-
bility (also 0.25 as determined by previous experiments) either out
of the set of all possible values or a set of predefined special values.
These predefined values are assumed to have a high fault-revealing
rate when used as inputs; for example, for type INTEGER, they in-
clude the minimum and maximum possible values, 0, 1, -1, etc.
This selection of primitive values from predefined sets makes the
input generation not purely random; we hence call it “directed ran-
dom testing”. Please note that this term only refers to the strategy
described above and not to homonyms found in the literature ([15],
[28]).

To obtain more diverse objects in the pool, the random strategy
also performs diversification operations: it calls a command (rou-
tine that does not return a value and may change the state) on an
object selected randomly from the pool. Such a diversification op-
eration occurs with probability 0.5 after every call to a routine un-
der test.

Generating objects by calling constructors and then possibly other
routines of the class has the advantage that it produces only valid

objects, that is objects that satisfy the class invariant, since it is the
job of the constructor to fulfill this class invariant after it is done
executing and all subsequently called routines must maintain it.

4.3 ARTOO in AutoTest
We implemented ARTOO as a plug-in strategy for input gen-

eration in AutoTest. ARTOO only affects the algorithm used for
creating and selecting inputs. The other parts of the testing process
(execution in the two processes, using contracts as an oracle) re-
main in AutoTest as described above, allowing objective perfor-
mance comparisons between the input generation strategies. This
is particularly important if one wants to compare the performance
of the two strategies: the conditions under which the experiments
are run must be the same.

ARTOO creates new objects and applies diversification opera-
tions with the same probabilities as the directed random strategy. It
proceeds differently from the latter only with respect to the selec-
tion of the objects (composite and primitive) to be used in tests. Its
implementation is similar to the algorithm presented in Section 3.
The main difference is that, while the latter algorithm does not con-
sider the creation of new objects as it proceeds (in other words, no
new objects are added to the set of available inputs), in the imple-
mentation new instances are created constantly and then considered
for selection as test inputs.

The implementation of ARTOO solves infinite recursion in the
field distance by cutting the recursive calculation after a fixed num-
ber of steps (2 in the case of the results presented in the next sec-
tion). Also, the calculation of the object distance is slightly dif-
ferent in the implementation of ARTOO than the formula given in
Section 2, in that no normalization is applied to the elementary dis-
tances as a whole: for characters, booleans, and reference values
the given constants are directly used, and for numbers and strings
the normalization function given in Section 2 is applied to the ab-
solute value of the difference (for numbers) and to the Levenshtein
distance respectively (for strings). For the field distance, no nor-
malization is necessary, since the averaged distances between the
objects referred by the attributes are themselves bounded to the
same interval.

4.4 Example
The following example shows how the implementation of AR-

TOO in AutoTest proceeds. Suppose ARTOO tests the class
BANK ACCOUNT, given in Listing 1.

class BANK ACCOUNT
create

make

feature −− Bank account data
owner: STRING
balance: INTEGER

feature −− Initialization
make (s : STRING; init bal : INTEGER) is

−− Create a new bank account .
require

positive initial balance : init bal >= 0
owner not void : s /= Void

do
owner := s
balance := init bal

ensure
owner set : owner = s
balance set : balance = init bal

end

feature −− Operation

withdraw (sum: INTEGER) is ...

deposit (sum: INTEGER) is ...

transfer (other account : BANK ACCOUNT; sum: INTEGER
) is
−− Transfer ‘sum’ to ‘ other account ’.

require
can withdraw: sum <= balance

do
balance := balance − sum
other account . deposit (sum)

ensure
balance decreased : balance < old balance
sum deposited to other account : other account .balance

> old other account .balance
end

invariant
owner not void : owner /= Void
positive balance : balance >= 0

end

Listing 1: Part of the code of class BANK ACCOUNT, which
ARTOO must test.

For testing routine transfer, ARTOO needs an instance of
BANK ACCOUNT as the target of the call, another instance of
BANK ACCOUNT as the first argument, and an integer as the second
argument. For the first test call to this routine, there are no inputs
previously used, so ARTOO will pick objects with corresponding
types at random from the pool. Suppose at this point the pool con-
tains the following objects:

ba1: BANK ACCOUNT, ba1.owner=”A”, ba1.balance=675234
ba2: BANK ACCOUNT, ba2.owner=”B”, ba2.balance=10
ba3: BANK ACCOUNT, ba3.owner=”O”, ba3.balance=99
ba4 = Void
i1 : INTEGER, i1 = 100
i2 : INTEGER, i2 = 284749
i3 : INTEGER, i3 = 0
i4 : INTEGER, i4 = −36452
i5 : INTEGER, i5 = 1

Suppose ARTOO picks ba3 as target, ba1 as first argument and
i5 as second argument for the first call to transfer. These 3
values are saved to disk 3 and then the call is executed:

ba3. transfer (ba1, i5)

The state of the object pool is now as follows:

3It is necessary to save them before the call to the routine because
the execution of the routine might change their state or it might
crash the process in which it is executing.

ba1: BANK ACCOUNT, ba1.owner=”A”, ba1.balance=675235
ba2: BANK ACCOUNT, ba2.owner=”B”, ba2.balance=10
ba3: BANK ACCOUNT, ba3.owner=”O”, ba3.balance=98
ba4 = Void
i1 : INTEGER, i1 = 100
i2 : INTEGER, i2 = 284749
i3 : INTEGER, i3 = 0
i4 : INTEGER, i4 = −36452
i5 : INTEGER, i5 = 1

For the next call to transfer, ARTOO chooses a target by pick-
ing the non-Void object of type BANK ACCOUNT that is furthest from
the already used target. For the first argument it picks the instance
of BANK ACCOUNT that is furthest from the first argument previously
used, and likewise for the integer argument. It thus chooses ba1 as
target, ba4 as first argument (Void references always have the max-
imum possible distance to non-void references), and i2 as second
argument. These values are saved and the call is executed:

ba1. transfer (ba4, i2)

This triggers an attempt to call a routine on a Void target (through
the instruction other account.deposit (sum) in the body of
routine transfer), which results in an exception, so ARTOO has
found a fault in routine transfer. The precondition of this routine
should state that other account must be non-Void.

The pool is not changed and ARTOO picks again the objects
with the highest average distances to the already used ones. So
ba2 is chosen as both target and first argument, and i4 as second
argument. The values are saved and the call is executed:

ba2. transfer (ba2, i4)

This triggers a postcondition violation in transfer since trying to
transfer a negative amount from the current account does not reduce
the balance of the current account. ARTOO has thus found another
fault, since transferring negative amounts should not be allowed.
It is interesting to note that this call actually exposes another fault,
namely that transferring money from an account to itself should not
be allowed.

For simplicity this example did not consider the creation of ob-
jects between test calls. In practice, objects are created with a cer-
tain probability and added to the pool between calls to routines un-
der test, so ARTOO also considers these new instances when se-
lecting the inputs.

5. EXPERIMENTAL RESULTS
5.1 Experimental setup

It is important to evaluate testing tools on real-world code, which
can be tested as it is and was not written only for the purposes of a
specific experiment or tool evaluation study. Practical applicability
of the tool is one of the major conditions required for its acceptance
by the testing community.

The subjects used in the evaluation of ARTOO are classes from
the EiffelBase library [2] version 5.6. EiffelBase is an industrial-
grade library used by virtually all projects written in ISE Eiffel,
similar to the System library in Java or C#. No changes were made
to this library for the purposes of this experiment: the classes tested
are taken from the released, publicly-available version of the library
and all faults mentioned are real faults, present in the 5.6 release of
the library.

Table 1 presents some properties of the classes under test. All the
metrics except the last column refer to the flat form of the classes,

that is a form of the class text that includes all the features of the
class at the same level, regardless of whether they are inherited or
introduced in the class itself.

All tests were run using the ISE Eiffel compiler version 5.6 on a
machine having a Pentium M 2.13 GHz processor, 2 GB of RAM,
and running Windows XP SP2. The tests applied both the directed
random strategy (called RAND for brevity below) and ARTOO,
testing one class at a time. Since the seed of the pseudo-random
number generator influences the results, the results presented below
are averaged out over 5 10-minute tests of each class using different
seeds.

It is important to note that the testing strategy against which we
compare ARTOO is in fact not purely random, as explained in Sec-
tion 4.2: values for primitive types are not always selected ran-
domly from the set of all possible values, but from a restricted,
predefined set of values considered to be more likely to uncover
faults. We chose this strategy as the basis for comparison because
previous experiments [12] have shown it to be more efficient than
purely random testing.

The results were evaluated according to two factors: number of
tests to first fault and time to first fault. Other criteria for the evalua-
tion (such as various measures of code coverage) are also possible.
However, we consider the fault-detecting ability of a testing strat-
egy to be its most important property. Measuring the time elapsed
and the number of test cases run until the first fault is found is
driven by practical considerations: software projects in industry
usually run under tight schedules, so the efficiency of any testing
tool plays a key role in its success.

5.2 Results
Table 2 shows a routine-by-routine comparison of the time to

first fault and tests to first fault for both ARTOO and RAND ap-
plied to classes ARRAYED LIST and ACTION SEQUENCE. The table
shows, for each routine in which both strategies found faults, the
number of tests and time required by each strategy to find a fault in
that particular routine. Both the tests and the time are averages, on
the five seeds, of the time elapsed since the beginning of the testing
session and the decimal part is omitted. All calls to routines and
creation procedures of the class under test are counted as test cases
for that class. The table also shows, for each of these two factors,
the ratios between the performance of ARTOO and that of RAND
rounded to two decimal digits, showing in bold the cases for which
ARTOO performed better.

At courser granularity, Table 3 shows for every class under test
the average (over all routines where both strategies found at least
one fault) of the number of tests to first fault and time to first fault
for each strategy and the proportions ARTOO/RAND, rounded to
two decimal digits. Figures 2 and 3 show the same information,
comparing for every class the number of tests to first fault and the
time to first fault, respectively.

In most cases ARTOO reduces the number of tests necessary to
find a fault by a considerable amount, sometimes even by two or-
ders of magnitude. However, calculating the object distances is
time-consuming. The overhead ARTOO introduces for selecting
which objects to use in tests (the distance calculations, the serializa-
tions of objects, etc.) causes it to run fewer tests over the same time
than RAND. For the tested classes, which all have fast-executing
routines, although ARTOO needs to run fewer tests to find faults,
RAND needs less time.

The experiments also show that there are cases in which AR-
TOO finds faults which RAND does not find (over the same test
duration). Table 4 lists the classes and routines where only AR-
TOO was able to find some faults, the number of tests and the time

Figure 2: Comparison of the average number of tests cases to
first fault required by the two strategies for every class. AR-
TOO constantly outperforms RAND.

Figure 3: Comparison of the average time to first fault required
by the two strategies for every class. RAND is generally better
than ARTOO.

that ARTOO needed to find the first fault, and the number of faults
it found in each routine.

Class Routine Tests to Time to #faults
first fault first fault

(seconds)
ARRAYED LIST remove 167 46 1
FIXED TREE child is last 717 283 1
FIXED TREE duplicate 422 134 1
STRING grow 492 163 2
STRING multiply 76 17 2

Table 4: Faults which only ARTOO finds

Class Total lines of code Lines of contract code #Routines #Attributes #Parent classes
ACTION SEQUENCE 2477 164 156 16 24

ARRAY 1208 98 86 4 11
ARRAYED LIST 2164 146 39 6 23

BOUNDED STACK 779 56 62 4 10
FIXED TREE 1623 82 125 6 4
HASH TABLE 1791 178 122 13 9
LINKED LIST 1893 92 106 6 19

STRING 2980 296 171 4 16

Table 1: Properties of the classes under test

Class Routine Tests to first fault Time to first fault (seconds)
ARTOO RAND ARTOO

RAND ARTOO RAND ARTOO
RAND

ARRAYED LIST append 432 5517 0.08 311 191 1.62
do all 296 737 0.40 137 18 7.48
do if 16 1258 0.01 2 39 0.05
fill 159 7130 0.02 40 256 0.16
for all 303 517 0.59 138 17 7.93
is inserted 31 126 0.25 3 7 0.43
make 23 3 7.44 2 1 2.80
make filled 13 117 0.11 2 4 0.50
prune all 51 10798 0.00 3 367 0.01
put 96 89 1.08 11 4 2.67
put left 146 9739 0.01 32 331 0.10
put right 278 8222 0.03 132 291 0.45
resize 355 1143 0.31 320 30 10.40
there exists 307 518 0.59 151 17 8.78
wipe out 594 3848 0.15 546 123 4.41

ACTION SEQUENCE arrayed list make 748 6800 0.11 564 174 3.24
call 109 2382 0.05 10 67 0.15
duplicate 378 410 0.92 196 13 14.46
for all 286 623 0.46 64 21 3.00
is inserted 115 95 1.21 5 2 2.36
make filled 183 449 0.41 49 13 3.65
put 81 67 1.21 4 4 1.15
remove right 448 17892 0.03 201 475 0.42
resize 399 5351 0.07 187 160 1.17
set source connection agent 265 3771 0.07 96 112 0.86
there exists 215 104 2.07 67 2 33.83

Table 2: Results for two of the tested classes, showing the time and number of tests required by ARTOO and RAND to uncover the
first fault in each routine in which they both found at least one fault, and their relative performance. In most cases ARTOO requires
significantly less tests to find a fault, but entails a time overhead.

It is also true that RAND finds faults which ARTOO does not
find in the same time. This suggests that the two strategies have
different strengths and, in a fully automated testing process, should
ideally be used in combination. Previous case studies [12] indicate
that the evolution of the number of new faults that RAND finds is
inversely proportional to the elapsed time. This means in particular
that after running random tests for a certain time, it becomes un-
likely to uncover new faults. At this point ARTOO can be used to
uncover any remaining faults. In cases where the execution time of
the routines under test is high, ARTOO is more attractive due to the
reduced number of tests it generates before it uncovers a fault.

The results also show that ARTOO is generally less sensitive
than RAND to the variation of the seed value, so that its perfor-
mance is more predictable. Table 5 shows this in terms of the stan-
dard deviation of the number of faults found by each strategy for

each class under test after 1, 2, 5, and 10 minutes of testing, and
of the average and standard deviation of the standard deviations for
each strategy. The results are however not indicative of any clear
relation between the testing timeout and the variation with the seed
of the number of found faults.

5.3 Discussion
We chose to compare the performance of the two strategies when

run over the same duration, although other similar comparative
studies in the literature use rather the number of generated tests
or an achieved level of code coverage as the stopping criterion. We
preferred to use time because, in industrial projects and especially
in the testing phases of these projects, time is probably the most
constraining factor.

These results show that, compared to a directed random testing

Class Tests to first fault Time to first fault (seconds)
ARTOO RAND ARTOO/RAND ARTOO RAND ARTOO/RAND

ACTION SEQUENCE 293.72 3449.76 0.09 131.53 95.11 1.38
ARRAY 437.19 856.39 0.51 133.21 21.23 6.27
ARRAYED LIST 206.80 3317.80 0.06 122.16 113.42 1.07
BOUNDED STACK 282.50 357.17 0.79 128.00 11.45 11.18
FIXED TREE 333.99 463.91 0.71 127.73 136.64 0.93
HASH TABLE 581.21 2734.42 0.21 164.41 65.85 2.49
LINKED LIST 238.20 616.71 0.38 98.39 18.14 5.42
STRING 279.64 1561.60 0.17 85.03 144.28 0.58
Overall averages 331.66 1669.72 0.19 123.81 75.77 1.63

Table 3: Averaged results per class. ARTOO constantly requires fewer tests to find the first fault: on average 5 times less tests than
RAND. The overhead that the distance calculations introduce in the testing process causes ARTOO to require on average 1.6 times
more time than RAND to find the first fault.

strategy, ARTOO generally reduces the number of tests required
until a fault is found, but suffers from a time performance penalty
due to the extra computations required for calculating the object
distances. The times reported here are total testing times; they in-
clude both the time spent on generating and selecting test cases
and the time spent on actually running the tests. Total time is the
measure that most resembles how the testing tool would be used
in practice, but this measure is highly dependent on the time spent
running the software under test. The test scope of the experiment
described above consists of library classes whose routines generally
implement relatively simple computations and average at below 20
LOC/routine. When testing more computation-intensive applica-
tions, the number of tests that can be run per time unit naturally
decreases, hence the testing strategy that needs less tests to uncover
faults would be favored.

The biggest threat to the validity of these results is probably the
test scope: the limited number of seeds and the tested classes. The
results presented here were obtained by averaging out over 5 seeds
of the pseudo-random number generator. Given the role random-
ness plays in both the compared testing algorithms, averaging out
over more seeds would produce more reliable results. Likewise,
we have chosen the tested classes so that they are fairly diverse (in
terms of their semantics and of various code metrics), but testing
more classes would yield more generalizable results. We intend to
extend the scope of the case study in both these directions.

6. OPTIMIZATIONS
Having the possibility to compute a distance between objects al-

lows clustering techniques to be applied to objects. Any of the
known clustering algorithms can be applied based on this distance,
so it is possible to group together objects that are similar enough.
This allows ARTOO to be optimized by computing the distances to
the cluster centers only, and not to each individual object. The pre-
cision is dependent on the maximum distance between two distinct
objects within a given cluster. A preliminary implementation of
this testing strategy shows an average improvement of the time to
first fault over ARTOO of 25% at no cost in terms of faults found.

Another improvement is to use information contained in man-
ual tests to further guide the search for fault-revealing inputs. The
assumption is that manually written tests for a certain class have in-
puts more likely to reveal faults than random ones. The generation
of inputs is still random, as described above; the information from
the manual tests influences only the process of selecting a value to
use as input out of the available ones, very much like the basic ver-
sion of ARTOO does. This strategy uses two measures to assess

the desirability of using a certain value as test input: how close this
value is to the manual inputs and how far it is from already used
automatic inputs. Preliminary experiments using a first prototype
implementation of this testing strategy show that it can reduce the
number of tests to first fault by an average factor of 2 compared to
the basic implementation of ARTOO described above.

The implementation of ARTOO used in the experiments uses a
“complete” definition of the object distance, as described in Sec-
tion 2. A less computationally intensive definition of the object
distance might still require fewer tests to uncover a fault, but also
less time. We intend to also explore such alternatives in order to
improve the performance of ARTOO.

The definition of the object distance provided in Section 2 only
uses the syntactic form of the objects and does not take their seman-
tics into account in any way. This approach has the merit of being
completely automatable. Integrating semantics into the computa-
tion would require human intervention, but would certainly enrich
the model and its accuracy and allow finer-grained control of the
developer over the testing process in ARTOO. Some support for
this is already available through the constants used in the object
distance calculation, whose values can easily be changed for fine
tuning the distance. In our future work we intend to investigate this
idea and other possibilities for providing further support for inte-
grating semantics into the object distance.

7. RELATED WORK
Random testing presents several benefits in automated testing

processes: ease of implementation, efficiency of test case genera-
tion, and the existence of ways to estimate its reliability [17]. Many
reference texts are, however, critical of it. Glenford J. Myers deems
it the poorest testing methodology and “at best, an inefficient and
ad hoc approach to testing” [25].

Several studies [14, 16] disproved this assessment by showing
that random testing can be more cost-effective than partition test-
ing. Andrews et al. [3] show that, when specific recommended
practices are followed, a testing strategy based on random input
generation finds faults even in mature software, and does so ef-
ficiently. They also state that, in addition to lack of proper tool
support, the main reason for the rejection of random testing is lack
of information about best practices.

Although random testing of numerical applications has a longer
standing tradition than random testing of object-oriented software,
the interest for the latter has increased in recent years. Tools like
JCrasher [13], Eclat [27], Jtest [1], Jartege [26], or RUTE-J [4]
are proof of this interest. All these tools employ purely random

Class Timeout StDev(NumberFoundFaults)
(minutes) ARTOO RAND

ACTION SEQUENCE 1 1.87 2.92
2 1.14 2.59
5 0.89 1.22

10 1.64 0.71
ARRAY 1 2.30 13.22

2 2.45 16.81
5 2.77 17.04

10 5.27 17.04
ARRAYED LIST 1 2.95 1.52

2 3.08 3.51
5 3.81 8.37

10 4.93 12.60
BOUNDED STACK 1 2.35 1.10

2 3.56 0.84
5 3.11 1.22

10 2.17 1.48
FIXED TREE 1 2.30 3.91

2 1.30 2.70
5 1.64 2.70

10 2.59 2.17
HASH TABLE 1 0.89 2.12

2 1.64 2.05
5 2.05 5.15

10 3.11 7.91
LINKED LIST 1 0.55 1.48

2 0.45 1.79
5 1.34 2.17

10 1.14 4.22
STRING 1 2.07 1.14

2 3.13 0.44
5 3.7 1

10 3.91 0.83
Average 2.37 4.49
Standard deviation 1.19 5.14

Table 5: Standard deviations of numbers of found faults for
each strategy due to the influence of the seed for the pseudo-
random number generator, and the average and standard de-
viation of the standard deviations for each strategy. ARTOO is
generally less sensitive to the choice of seed.

strategies for input generation (possibly in combination with also
allowing users to define inputs [26]), while ARTOO’s input selec-
tion criterion is based on a measure of how different the candidate
objects are from the ones already used.

Other research based on the idea of random testing tries to im-
prove its performance by adding some guidance to the algorithm.
Such guidance can mean pruning out invalid and duplicate inputs
[28], combining random and systematic techniques [15], or try-
ing to spread out the selected values over the input domain, as is
the case for Adaptive Random Testing [9] and quasi-random test-
ing [10]. Based on the ART intuition, a series of related algorithms
have been proposed. Mirror ART [8] and ART through dynamic
partitioning [7] reduce the overhead of ART. Restricted Random
Testing [6] (RRT) is also closely related to ART and is based on
restricting the regions of the input space where test cases can be
generated. As opposed to ART, where the elements of the candi-
date set are generated randomly, in RRT test cases are always gen-
erated so that they are outside of the exclusion zones (a candidate
is randomly generated, and, if it is inside an exclusion zone, it is
disregarded and a new random generation is attempted). Further
improvements to ART are provided by lattice-based ART [22] and
ART by bisection with restriction [21].

8. CONCLUSIONS
We have presented an implementation (Sections 3 and 4) and

experimental results (Section 5) evaluating the efficiency of a test-
ing strategy called ARTOO. This strategy is based on the ideas of
Adaptive Random Testing (ART): it selects test inputs that are the
furthest apart in a set of randomly generated values. Adaptive Ran-
dom Testing was introduced for and could only be applied to nu-
meric values, for which the distance calculation is straightforward.
ARTOO extends the applicability of the basic ART algorithm to
O-O software by using the object distance [11] — a measure of
how different two objects are. This measure takes into account
an elementary distance between the direct values of the objects, a
distance between the types of the objects, and recursive distances
between the fields of the objects.

The experimental results show that ARTOO finds real faults in
real software. Compared to directed random testing, ARTOO sig-
nificantly reduces the number of tests generated and run until the
first fault is found, on average by a factor of 5 and sometimes by
as much as two orders of magnitude. The guided input selection
process that ARTOO employs does, however, entail an overhead
which is not present in unguided random testing. This overhead
leads to ARTOO being on average 1.6 times slower than directed
random testing in finding the first fault. These results indicate that
ARTOO, at least in its current implementation, should be applied
in settings where the number of test cases generated until a fault is
found is more important than the time it takes to generate these test
cases — in other words, settings in which the cost of running and
evaluating test cases is higher than the cost of generating them. This
can be the case, for instance, when there is no automated oracle and
thus manual inspection of test cases is necessary. As discussed in
Section 6, we are currently investigating ways of improving AR-
TOO’s performance, such as reducing the precision and thus the
overhead of the distance calculation or employing object clustering
techniques that would allow to calculate distances between clusters
of objects rather than between all pairs of objects.

The results also show that ARTOO finds faults that directed ran-
dom testing does not find in the same time and that ARTOO is
less sensitive than directed random testing to the influence of the
random part of the algorithm for input generation: the seed for the
pseudo-random number generator influences the results less in AR-
TOO than in directed random testing.

ARTOO is available in open source at http://se.inf.ethz.
ch/people/ciupa/artoo.html. It is provided as a plug-in to the
AutoTest framework.

Future work includes, as mentioned, improving ARTOO’s per-
formance and examining how changes to the object distance calcu-
lation would affect ARTOO’s fault finding ability; in particular, we
plan to develop a model for the object distance computation which
integrates object semantics based on information provided by the
developer. We are also looking into applications other than testing
for the object distance.

9. REFERENCES
[1] Jtest. Parasoft Corporation. http://www.parasoft.com/.
[2] The EiffelBase Library. Eiffel Software Inc.

http://www.eiffel.com/.
[3] ANDREWS, J. H., HALDAR, S., LEI, Y., AND LI, C. H.

Randomized unit testing: Tool support and best practices.
Tech. Rep. 663, Department of Computer Science,
University of Western Ontario, January 2006.

[4] ANDREWS, J. H., HALDAR, S., LEI, Y., AND LI, F. C. H.
Tool support for randomized unit testing. In RT ’06:

Proceedings of the 1st International Workshop on Random
Testing (2006), ACM Press, New York, NY, USA, pp. 36–45.

[5] BOYAPATI, C., KHURSHID, S., AND MARINOV, D. Korat:
automated testing based on Java predicates. In Proceedings
of the 2002 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2002), Rome, Italy
(2002).

[6] CHAN, K. P., CHEN, T. Y., AND TOWEY, D. Restricted
random testing. In Proceedings of the 7th International
Conference on Software Quality (2002), Springer-Verlag,
London, UK, pp. 321 – 330.

[7] CHEN, T., MERKEL, R., WONG, P., AND EDDY, G.
Adaptive random testing through dynamic partitioning. In
Proceedings of the Fourth International Conference on
Quality Software (Los Alamitos, CA, USA, 2004), IEEE
Computer Society, pp. 79 – 86.

[8] CHEN, T. Y., KUO, F. C., MERKEL, R. G., AND NG, S. P.
Mirror adaptive random testing. In Proceedings of the Third
International Conference on Quality Software (Los Alamitos,
CA, USA, 2003), IEEE Computer Society, pp. 4 – 11.

[9] CHEN, T. Y., LEUNG, H., AND MAK, I. K. Adaptive
random testing. In Advances in Computer Science - ASIAN
2004: Higher-Level Decision Making. 9th Asian Computing
Science Conference. Proceedings (2004), M. J. Maher, Ed.,
Springer-Verlag GmbH.

[10] CHEN, T. Y., AND MERKEL, R. Quasi-random testing. In
ASE ’05: Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering (2005),
ACM Press, New York, NY, USA, pp. 309–312.

[11] CIUPA, I., LEITNER, A., ORIOL, M., AND MEYER, B.
Object distance and its application to adaptive random
testing of object-oriented programs. In RT ’06: Proceedings
of the 1st International Workshop on Random Testing (2006),
ACM Press, New York, NY, USA, pp. 55–63.

[12] CIUPA, I., LEITNER, A., ORIOL, M., AND MEYER, B.
Experimental assessment of random testing for
object-oriented software. In Proceedings of ISSTA’07:
International Symposium on Software Testing and Analysis
2007 (2007), ACM, New York, NY, USA, pp. 84 – 94.

[13] CSALLNER, C., AND SMARAGDAKIS, Y. JCrasher: an
automatic robustness tester for Java. Software: Practice and
Experience 34, 11 (2004), 1025–1050.

[14] DURAN, J., AND NTAFOS, S. An evaluation of random
testing. IEEE Transactions on Software Engineering SE-10
(July 1984), 438 – 444.

[15] GODEFROID, P., KLARLUND, N., AND SEN, K. DART:
directed automated random testing. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (New
York, NY, USA, 2005), ACM Press, New York, NY, USA,
pp. 213–223.

[16] HAMLET, D., AND TAYLOR, R. Partition testing does not
inspire confidence. IEEE Transactions on Software
Engineering 16 (12) (December 1990), 1402–1411.

[17] HAMLET, R. Random testing. In Encyclopedia of Software
Engineering, J. Marciniak, Ed. Wiley, 1994, pp. 970–978.

[18] KHURSHID, S., PASAREANU, C. S., AND VISSER, W.
Generalized symbolic execution for model checking and
testing. In Proceedings of the Ninth International Conference
on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2003) (2003), vol. LNCS 2619,
Springer-Verlag, pp. 553–568.

[19] LEITNER, A., AND CIUPA, I. AutoTest.
http://se.inf.ethz.ch/people/leitner/auto test/, 2005 - 2007.

[20] LEVENSHTEIN, V. I. Binary codes capable of correcting
deletions, insertions, and reversals. Doklady Akademii Nauk
SSSR 163, 4 (1965), 845–848.

[21] MAYER, J. Adaptive random testing by bisection with
restriction. In Proceedings of the Seventh International
Conference on Formal Engineering Methods (ICFEM 2005)
(2005), LNCS 3785, Springer-Verlag, Berlin, pp. 251–263.

[22] MAYER, J. Lattice-based adaptive random testing. In
Proceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2005) (2005),
ACM, ACM Press, New York, NY, USA, pp. 333–336.

[23] MEYER, B. Object-Oriented Software Construction, 2nd
edition. Prentice Hall, 1997.

[24] MEYER, B., CIUPA, I., LEITNER, A., AND LIU, L. L.
Automatic testing of object-oriented software. In
Proceedings of SOFSEM 2007 (Current Trends in Theory
and Practice of Computer Science) (2007), J. van Leeuwen,
Ed., Lecture Notes in Computer Science, Springer-Verlag.

[25] MYERS, G. J. The Art of Software Testing. John Wiley &
Sons, 1979.

[26] ORIAT, C. Jartege: a tool for random generation of unit tests
for Java classes. Tech. Rep. RR-1069-I, Centre National de la
Recherche Scientifique, Institut National Polytechnique de
Grenoble, Universite Joseph Fourier Grenoble I, June 2004.

[27] PACHECO, C., AND ERNST, M. D. Eclat: Automatic
generation and classification of test inputs. In ECOOP 2005
— Object-Oriented Programming, 19th European
Conference (Glasgow, Scotland, July 25–29, 2005).

[28] PACHECO, C., LAHIRI, S. K., ERNST, M. D., AND BALL,
T. Feedback-directed random test generation. In ICSE ’07:
Proceedings of the 29th International Conference on
Software Engineering (2007).

[29] TONELLA, P. Evolutionary testing of classes. In ISSTA ’04:
Proceedings of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis (2004), ACM
Press, New York, NY, USA, pp. 119–128.

[30] VISSER, W., PASAREANU, C. S., AND KHURSHID, S. Test
input generation with Java PathFinder. In ISSTA ’04:
Proceedings of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis (2004), ACM
Press, New York, NY, USA, pp. 97–107.

